Beginning PHP, Apache,
MySQL® Web Development

Michael Glass
Yann Le Scouarnec
Elizabeth Naramore
Gary Mailer
Jeremy Stolz
Jason Gerner

Wiley Publishing, Inc.

Beginning PHP, Apache, MySQL® Web Development
Published by

Wiley Publishing, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www. wi | ey. com

Copyright © 2004 by Michael Glass, Yann Le Scouarnec, Elizabeth Naramore, Gary Mailer, Jeremy
Stolz, and Jason Gerner

Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

Library of Congress Control Number: 2004101426

ISBN: 0-7645-5744-0

Manufactured in the United States of America
10987654321

1IMA/SV/QS/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as per-
mitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior writ-
ten permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-Mail: per ntoor di nat or @v | ey. com

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.
THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in
the United States and other countries, and may not be used without written permission. MySQL is a
registered trademark of MySQL AB Company. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

About the Authors

Michael “BuzzLY” Glass

Michael Glass has been a gladiator in the software/Web site development arena for more than eight
years. He has more than ten years of commercial programming experience with a wide variety of tech-
nologies, including PHP, Java, Lotus Domino, and Vignette StoryServer. He divides his time between
computer programming, playing pool in the APA, and running his Web site at www. ul t i mat espi n. com
You can usually find him slinking around on the PHPBuilder.com forums, where he is a moderator with
the nickname BuzzLY.

Thanks, Staci, for putting up with long and late hours at the computer. Elizabeth and Jason, it wouldn't
have been the same project without you two. And thanks to my code testers at www.ultimatespin. com:
Spidon, Kaine, Garmy, Spidermanalf, Ping, Webhead, and FancyDan. You guys rock!

To Donna and Gerry, who have influenced my life more than they can ever know, and who taught me
the importance of finishing what you've started.

Yann “Bunkermaster” Le Scouarnec

Yann is the senior developer for Jolt Online Gaming, a British gaming company. He is a moderator at
PHPBuilder.com and a developer of open source PHP software for the gaming community. He has also
worked for major software corporations as a software quality expert.

I thank all the innocent bystanders who got pushed around because of this project: Debra and Nancy,
who were patient enough not to have homicidal thoughts; and my wife and kids, who barely saw me for
six months.

Elizabeth Naramore

Elizabeth has been programming with computers since a very young age, and, yes, she remembers when
software was packaged on cassette tapes. Graduating from Miami University at age 20 with a degree in
Organizational Behavior, she found a world of opportunity awaiting her—in corporate marketing. Her
first love was always computers, however, and she found herself sucked back to the programming world
in 1997 through Web site design and development (once a computer geek, always a computer geek).
While she plans to return to Miami to get her Masters in Computer Science, she currently stays busy run-
ning several Web sites. Her main focus is in e-commerce and running www. gi f t sf or engi neers. com

Elizabeth has spent the past six years developing Web sites and coordinating all phases of Web site pub-
lication and production. She is currently a moderator at PHPBuilder.com, an online help center for PHP.
Her other interests include poetry, arts and crafts, camping, and juggling the many demands of career,
family, and the “other duties as assigned” that come along in life. She lives in Cincinnati, Ohio, with her
husband, beautiful daughter, and a new baby on the way.

Gary “trooper” Mailer

After graduation from university in 1998, Gary worked in a major software house in central London as a
quality assurance engineer, and also as the departmental Web developer (using ASP). This gave him a
taste of Web development. After a few years, he made the jump into full-time Web development and has
not looked back since.

Gary has worked in a few different sectors, including communications (Siemens) and hotels (Hilton), as
well as in “traditional” development houses.

He is currently a freelance developer for a European communications company. Gary has been and con-
tinues to be an active member of and contributor to the PHPBuilder.com site.

Jeremy “stolzboy” Stolz

Jeremy is a Web developer at Cloverfish Inc. (wwv. cl over fi sh. net), a Web development company in
Fargo, North Dakota. Jeremy is primarily a PHP/MySQL developer, but he has also worked with many
other languages. When not working, he frequents the Internet and tries to keep up his programming
skills. He is a contributor to and moderator at PHPBuilder.com. He also frequents many other computer-
related Web sites to keep his skills sharp and up to date.

Thanks to my employer and colleagues for giving me the time and space to participate in this project.
Also, thanks to Debra Williams Cauley at Wiley for getting me involved in this project for Wrox.

I dedicate this book to my wife and family for helping me get through the long hours of preparation and
writing.

Jason “goldbug” Gerner

Jason currently spends his days working as a Web developer in Cincinnati and burns free time com-
plaining about lack of support for Web standards and abusing XML. He can often be found lurking in
the PHPBuilder.com discussion forums, waiting to chime in with nagging comments about CSS or code
efficiency.

Acquisitions Editor
Debra Williams Cauley

Development Editor
Nancy Stevenson

Production Editor
Eric Newman

Technical Editor
Jason Gerner

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Credits

Executive Editorial Director
Mary Bednarek

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Sean Decker

Carrie Foster

Joyce Haughey

Jennifer Heleine

Kristin McMullan

Quality Control Technicians
Andy Hollandbeck

Susan Moritz

Carl William Pierce

Brian Walls

Vice President & Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Robert Ipsen

Vice President and Publisher

Joseph B. Wikert

Proofreading and Indexing
TECHBOOKS Production Services

Contents

Introduction 1

Part I: Getting Started

Chapter 1: Introduction and Installation Configuration 9
Installation Configuration 9
Brief Intro to PHP, Apache, MySQL, and Open Source 10

What Is Open Source? 10
How the Pieces of the AMP Module Work Together 11
Apache 12
PHP 13
MySQL 13
PHP5: The Future of PHP 14
A Brief Overview of PHP5 14
How Changing to PHP5 Affects This Book 14
Installation Configuration of Apache 14
Customizing Your Installation 15
Installation Configuration of PHP 17
Testing Your Installation 18
Customizing Your Installation 19
Installation Configuration of MySQL 20
Testing Your Installation 20
Configuring Your Installation 23
Try It Out: Setting Up Privileges 27

Where to Go for Help and Other Valuable Resources 28
Help within the Programs 28
Source Web Sites 28
AMP Installers 29

Summary 29

Contents

Part 1I: Movie Review Web Site

Chapter 2: Creating PHP Pages

33

Overview of PHP Structure and Syntax
How PHP Fits with HTML
The Rules of PHP Syntax
The Importance of Coding Practices
Creating Your First Program
Try It Out: Using echo
Using HTML to Spice Up Your Pages
Integrating HTML with PHP
Try It Out: Using PHP within HTML
Considerations with HTML Inside PHP

Using Constants and Variables to Spice Up Your Pages

Overview of Constants
Try It Out: Using Constants
Overview of Variables
Try It Out: Using Variables
Passing Variables Between Pages
Try It Out: Using URL Variables
Try It Out: Passing the Visitor’s Username
What Is a Cookie?
Try It Out: Setting a Cookie
Passing Through Forms
Try It Out: Using Forms to Get Information
Using if/else Arguments
Using if Statements
Try It Out: Using if
Using if and else Together
Try It Out: Using if and else
Using Includes for Efficient Code
Try It Out: Adding a Welcome Message
Using Functions for Efficient Code
Try It Out: Working with Functions
A Word About Arrays
Array Syntax
Sorting Arrays
Try It Out: Sorting Arrays
foreach Constructs
Try It Out: Adding Arrays

34
34
34
35
36
37
38
39
39
40
41
41
42
43
43
45
47
52
55
56
58
59
63
63
64
65
65
65
66
68
68
73
73
73
74
74
75

Contents

While You'’re Here . . . 79
Try It Out: Using the while Function 80
Alternate Syntax for PHP 83
Alternates to the <?php and ?> php Tags 83
Alternates to the echo Command 83
Alternates to Logical Operators 84
Alternates to Double Quotes: Using heredoc 84
Alternates to Incrementing Values 84
Summary 84
Exercises 85
Chapter 3: Using PHP with MySQL 87
Overview of MySQL Structure and Syntax 87
MySQL Structure 88
MySQL Syntax and Commands 94
How PHP Fits with MySQL 94
Connecting to the MySQL Server 95
Looking at a Ready-Made Database 96
Try It Out: Creating a Database 96
Querying the Database 101
WHERE, oh WHERE 102
Try It Out: Using the SELECT Query 102
Working with PHP and Arrays of Data: foreach 105
Try It Out: Using foreach 105

A Tale of Two Tables 106
Try It Out: Referencing Individual Tables 106

Try It Out: Joining Two Tables 107

Helpful Tips and Suggestions 109
Documentation 109
Using PHPMyAdmin 109
Summary 110
Exercises 110
Chapter 4: Using Tables to Display Data 111
Creating a Table 111
Try It Out: Defining the Table Headings 111
Populating the Table 114
Try It Out: Filling the Table with Data 114

Try It Out: Putting it All Together 116

Try It Out: Improving Our Table 117

Xi

Contents

Who's the Master? 120
Try It Out: Adding Links to the Table 120

Try It Out: Adding Data to the Table 122

Try It Out: Calculating Movie Takings 123

Try It Out: Displaying the New Information 124

Try It Out: Displaying Movie Details 126

A Lasting Relationship 128
Try It Out: Creating and Filling a Movie Review Table 128

Try It Out: Querying for the Reviews 129

Try It Out: Displaying the Reviews 131
Summary 133
Chapter 5: Form Elements: Letting the User Work with Data 135
Your First Form 136
Try It Out: Say My Name 136

FORM Element 138
INPUT Element 139
Processing the Form 140
Driving the User Input 141
Try It Out: Limiting the input choice 141

INPUT Checkbox Type 144
One Form, Multiple Processing 145
Try It Out: Radio Button, Multi-Line List Boxes 145

Radio INPUT Element 149
Multiple Submit Buttons 150
Basic Input Testing 150
Dynamic Page Title 151
Manipulating a String as an Array to Change the Case of the First Character 151
Ternary Operator 151
Using Them All 152
Try It Out: Hidden and password input 152

The Skeleton Script 160
Default Response 160
Adding Items 160
Summary 161
Chapter 6: Letting the User Edit the Database 163
Preparing the Battlefield 163
Try It Out: Setting Up the Environment 164
Inserting a Simple Record from phpMyAdmin 166
Try It Out: Inserting Simple Data 166

Xii

Contents

Inserting a Record in a Relational Database 169

Try It Out: Inserting a Movie with Known Movie Type and People 170

Deleting a Record 177

Try It Out: Deleting a Single Record 177

Cascade Delete 177

Try It Out: Cascade Delete 177

Editing Data in a Record 182

Try It Out: Editing a Movie 182

Summary 190

Chapter 7: Validating User Input 191

Users Are Users Are Users . . . 191

What Now? 192

Forgot Something? 193

Try It Out: Setting Up the Environment 193

Checking for Format Errors 203

Try It Out: Checking Dates and Numbers 203

Summary 214

Chapter 8: Handling and Avoiding Errors 215

How the Apache Web Server

Deals with Errors 215

Apache’s ErrorDocument Directive 216

Try It Out: Using Apache’s ErrorDocument Method 216

Apache’s ErrorDocument: Advanced Custom Error Page 220

Error Handling and Creating Error Handling Pages with PHP 224

Other Methods of Error Handling 232

Summary 233

Exercises 233
Part Ill: Comic Book Fan Site

Chapter 9: Building Databases 237

Getting Started 237

Nam et Ipsa Scientia Potestas Est! 238

What Is a Relational Database? 238

Keys 239

Relationships 240

Referential Integrity 241

Normalization 241

Xiii

Contents

Designing Your Database
Creating the First Table
What’s So Normal About These Forms?
Standardization
Finalizing the Database Design
Creating a Database in MySQL
Try It Out: Create the Table
Creating the Comic Character Application
Try It Out: The Comic Book Character Site
Summary

Chapter 10: E-mailing with PHP

241
242
245
246
246
247

248
252

253
283

285

Setting Up PHP to Use E-mail
Sending an E-mail
Try It Out: Sending a Simple E-mail
Try It Out: Collecting Data and Sending an E-mail
Dressing Up Your E-mails with HTML
Try It Out: Sending HTML Code in an E-mail
Try It Out: Sending HTML by Using Headers
Multipart Messages
Try It Out: Multipart Messages
Storing Images
Try It Out: Storing Images
Getting Confirmation
Try It Out: Getting Confirmation
Summary

285
286
286
287
291
291
292
294
294
297
297
299
300
315

317

Chapter 11: User Logins, Profiles, and Personalization

The Easiest Way to Protect Your Files
Try It Out: Creating htaccess and htpasswd Files

Friendlier Logins Using PHP’s Session and Cookie Functions

Try It Out: Using PHP for Logins
Using Database-Driven Information
Try It Out: Session Tracking with PHP and MySQL
Try It Out: Cookie Tracking with PHP
Try It Out: Administration Section
Summary

Xiv

317
318
322
322
325
327
345
348
357

Contents

Chapter 12: Building a Content Management System 359

Getting Your Users to Return 359

Content 359

Management 360

System 360

Putting It All Together 360

Getting Started 361

Try It Out: The Content Management System Application 361

Summary 421

Chapter 13: Mailing Lists 423

First Things First 423

What Do You Want to Send Today? 424

Coding the Application 424

Try It Out: Mailing List Administration 424

Sign Me Up! 437

Try It Out: Mailing List Signup 437

Mailing List Ethics 454

A Word About Spam (and SPAM) 454

Opt-In vs. Opt-Out 455

Summary 456

Chapter 14: Online Selling: A Quick Way to E-=Commerce 457
Adding E-Commerce to the

Comic Book Fan Site 458

Something to Sell 458

A Shopping Cart 459

Try It Out: Defining the Database and Tables 460

Try It Out: Adding Your Products 463

Try It Out: Creating the Store Home Page 467

Try It Out: Viewing the Products 469

Try It Out: Creating a Table for the Shopping Cart 471

Try It Out: Adding Products to the Cart 472

Try It Out: Viewing the Shopping Cart 473

Try It Out: Changing Items in the Cart 477

Try It Out: Checking Out: Step One 478

Try It Out: Checking Out: Step Two 483

Try It Out: Checking Out: Step Three 490

XV

Contents

E-Commerce, Any Way You Slice It 497
Information Is Everything 498
Importance of Trust 498
Easy Navigation 500
Competitive Pricing 501
Appropriate Merchandise 501
Timely Delivery 501
Communication 501
Customer Feedback 501

Summary 502

Exercises 502

Chapter 15: Creating a Bulletin Board System 503
History of the Computer Bulletin Board 503
Your Bulletin Board 504

Try It Out: The Bulletin Board Code 505

Try It Out: The Bulletin Board Application 541
setup.php 550
A Last Look at User Authentication 551
admin.php 552
Searching 559
Pagination 561
Breadcrumbs 565
Going Out in Style 567

Afterthoughts 568

Summary 568

Exercises 569

Part IV: Advanced Users

Chapter 16: Using Log Files to Improve Your Site 573

What Is a Log? 574

Where Are These Logs? 574
Apache 574
PHP 576
MySQL 576

Now That | Know What and Where They Are, What Do | Do with Them? 579
Webalizer 579
Analog 580
WebTrends 580

Xvi

Contents

AWStats 583
HTTP Analyze 583
What Do the Reports Mean? 584
User Preferences and Information 585
Number of Hits and Page Views 585
Trends over Time 585
Referring Sites 586
Summary 586
Chapter 17: Troubleshooting 587
Installation Troubleshooting 587
Parse Errors 588
Cleanup on Line 26 . . . Oops, | Mean 94 588
Elementary, My Dear Watson! 588
Empty Variables 589
The Ultimate Bait-and-Switch 589
Consistent and Valid Variable Names 590
Open a New Browser 590
“Headers Already Sent” Error 590
General Debugging Tips 591
Using echo 591
Divide and Conquer 592
Test, Test, Test! 592
Where to Go for Help 593
Wrox.com 593
PHPBuilder.com 593
Source Web Sites 593
Search and Rescue 593
IRC Channels 594
Summary 594
Appendix A: Answers to Exercises 595
Chapter 2 595
Chapter 3 598
Chapter 8 601
Chapter 14 602
Chapter 15 603

Xvii

Contents

Appendix B: PHP Quick Reference 605
PHP Syntax 605
Displaying to Browser 605
Setting a Value to a Variable 605
Passing Variables 606

Through a URL 606

Through Sessions 606

Through a Form 606
if Statements 606
else Statements 607
Nested if Statements 607
Including a File 607
Using Functions 607
Arrays 608
for 608
foreach 609

Appendix C: PHP Functions 611
Apache/PHP Functions 611
Array Functions 612
Date/Time/Calendar Functions 616
Class/0Object/Function Handling Functions 619
Directory and File Functions 620
Error Handling and Logging Functions 624
HTTP Functions 624
Image Functions 624
Mail Functions 629
Mathematical Functions 630
Miscellaneous Functions 631
MySQL Functions 632
Network Functions 634
Output Buffer Functions 636
PHP Configuration Information 636
Program Execution Functions 638
Spelling Functions 638
Session Functions 639
String Functions 640
URL Functions 645
Variable Functions 645

xviii

Contents

Appendix D: MySQL Data Types 647
Appendix E: MySQL Quick Reference 651
Database Manipulation Commands 651
Connecting to the Database 652
Accessing the Database 652
Retrieving Data from the Database 652
Condition Clauses 652
Selecting from Multiple Tables 653
Sorting the Results 653
Limiting the Results 653
Appendix F: Comparison of Text Editors 655
Appendix G: Choosing a Third-Party Host 657
Hosting Options 657
Supported Languages 658
Supported Databases 658
Server Control and Access 658
Administration GUls 659
Bandwidth and Site Usage 659
Pricing 660
Making the Choice 660
Appendix H: An Introduction to PEAR 661
What Is PEAR? 662
Requirements 662

The Packages 662
PEAR DB 663
Other PEAR Packages 666
HTML 666
Authentication 667
Payment 667

Mail 667

Xix

Contents

Appendix I: AMP Installation

669

Installing with Windows
Install Apache
Install PHP
Install MySQL
Installing with Linux
Install MySQL
Install Apache
Install PHP

Index

XX

669
669
670
671
672
672
673
674

677

Introduction

Welcome to Beginning PHP, Apache, MySQL® Web Development, your guide to developing dynamic
Web sites using these popular open source solutions. Consider us your tour guide as we travel
through the various adventures that await you. Okay, so perhaps it won’t be that glamorous or
exciting, but we do promise an enjoyable learning experience.

The main purpose of this book is to provide you with a taste of what can be done with Web devel-
opment using these three modules together. While we’ve given you only the tip of the iceberg, it
will be enough to get you started and to get those creative juices flowing when designing and
developing your own site. Each of these modules is complex in and of itself, and this book merely
covers the basics of all three. This book is not meant to be an in-depth and comprehensive resource
but rather an introduction.

Who’s This Book For?

We assume that anyone reading this book has some experience with Web site development con-
cepts and a basic working knowledge of HTML. Knowledge of other programming languages
besides PHP is not a prerequisite for this book, but certainly any programming experience you
have will help you understand and apply the concepts.

This book is geared toward the “newbie” to these three areas, and we’ve brought many of the con-
cepts and code snippets to the most basic level. As your experience and comfort level grow with
your knowledge and practical applications, you will find more complex and perhaps more effi-
cient ways of doing things. When that happens, you will know that you have come over to the
dark side and joined us as PHP, Apache, and MySQL enthusiasts.

Introduction

What’s Covered in the Book

A variety of topics are covered in this book:

(]

Installation and configuration of PHP, Apache, and MySQL
Basic introduction to each module and how the modules interact with one another
Gathering input from and interacting with your Web site visitors
Handling and avoiding errors and general troubleshooting tips
User registration and logins

E-mailing and setting up e-mail lists using the three modules
Content management systems

Adding e-commerce to a Web site

Incorporating a discussion forum into your site

Using activity logs and error logs to enhance your Web site
Locating a third-party Web host

Finding the text editor that’s right for you

O 000000 U oo 0o

Using PEAR to enhance your Web site

As you read through the chapters and learn about these topics, you will be creating two complete Web
sites. The first is a movie review Web site that displays information about films and their respective
reviews. This project will cover the basics, such as writing PHP code, creating a MySQL database, filling
it with data, and showing it to your visitors based on what they want to see.

The second project is a comic book fan Web site, which acts as a resource for any comic book fan. This
site will be developed in the latter part of the book and will incorporate some of the more complex top-
ics. You will create a truly interactive Web site, where your visitors can interact with you and with other
members of the site.

We take you step by step through the development of each of these sites, and you will continually build
upon them as new concepts are introduced. Note, however, that each of the chapters is a stand-alone chap-
ter, so that if you are not particularly interested in reading a specific one, you won’t be left in the dust.

If you thought the days of the “pop” quiz were over, you might want to think again. We have provided
handy-dandy exercises at the end of some of the chapters to test your knowledge of the chapter topics
and to challenge you to think one step further. Don’t worry, however, as we’ve provided the answers in
Appendix A.

Other general references are provided for your reading pleasure in additional appendixes. These are not
intended to be comprehensive resources, but they are great for referencing the general topics covered in
the meat of the chapters.

Introduction

As any programmer knows, software is constantly being improved and debugged, and while we used
the latest and greatest versions of our modules at the time of publishing, chances are those versions
won’t be around for long. It is important for you to visit the source Web sites for PHP, Apache, and
MySQL (URLs provided frequently for you throughout this book) to get the most updated versions and
recent release notes. When developing Web sites using applications, we recommend that you always use
the most recent stable release. Using software versions that have not been fully tested can be dangerous
to your application and leave bugs in your code. The same is true for the new learner—you should be
learning on a stable release of the application, not on a beta version.

The most recent stable versions that were in effect at the time of this book’s writing were:
Q PHP: Version 4.3.3 (PHP5 is still in beta at this writing, although we do address it and its current
implications)
Q Apache: Version 2.0.47
O MySQL: Version 4.0.15a

Future editions of this book will address changes and improvements in these programs as they become
available.

What You Need to Use This Book

This book is designed to be multiplatform and covers topics and issues for both Windows- and Linux-based
systems. We have provided you with instructions for downloading and installing all three components onto
your machine. Each is an open source program, so you can download and use them free of charge.

The only other external piece of software needed is a text editor. If you're not sure what that is or what
you should be using, don’t worry—we cover that topic, too.

Source Code

We have provided the two applications and accompanying code that are discussed in the text. The com-
plete source code from the book is available for download from www.wrox.com. As PHP5 is in beta pro-
duction at the time this book was written, we will update the code and applications on the companion
Web site with any pertinent changes that come as a result of the stable release of PHP5. We encourage
you to visit the companion site periodically to view these updates. Although all the code you need is
listed in the book, we suggest you download a copy of the code to save yourself a lot of typing.

Conventions

Throughout the book, we have used certain typographic conventions to get our points across. While you
don’t need a secret decoder ring to get the gist of what we mean, knowing how we say what we're saying
will certainly help.

Introduction

Boxes like this one hold important, not-to-be-forgotten, mission-critical information
that is directly relevant to the surrounding text.

Filenames, field names, and commands or functions are shown in monospaced type—for example,
“Open the create.php fileand . . .”

We present code in two ways:
//This is an example of code that is being seen for the first time

//This is an example of code that you have already seen, but is being referenced
later

//or code that we're quoting from another source, such as from a configuration file
Changes to an existing program created earlier in a chapter will be shown in bold:

//This is old code here.
//This is the line we want you to add.

You will be prompted to get your fingers typing and your brain working in our “Try It Out” sections,
which entice you to actually apply the concepts we’re covering and get a firsthand glimpse into coding.
We then follow up with a “How It Works” section to explain what you just accomplished.

Customer Support

We offer source code for download, errata, and technical support from the Wrox Web site at www.wrox
.com. In addition, you can join mailing lists for author and peer discussion at http://p2p.wrox.com
(see the last section in this introduction for more info on the P2P site).

Source Code and Updates

As you work through the examples in this book, you may choose either to type all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www . wrox . com. Once at the site, simply locate the book’s title (either through the
Search utility or by using one of the title lists) and double-click the Download Code link on the book’s
detail page and you can obtain all the source code for the book.

Errata

We have made every effort to ensure that there are no errors in the text or in the code. However, we are
human, so occasionally something will come up that none of us caught prior to publication.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search utility or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you will be
able to view all errata that have been submitted for this book and posted by Wrox editors. You can also
click the Submit Errata link on this page to notify us of any errors that you might have found.

Introduction

While we’re on the subject of submitting errata, we want to hear about any error you find in this book.
Simply e-mail the information to techsupwrox@wrox.com. We'll check the information and, if appropri-
ate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

If you do e-mail us, your e-mail should include the following things:

Q In the Subject field, include the book’s title, the last six digits of the ISBN (557440 for this book),
and the number of the page upon which the error occurs.

Q In the body of the message, tell us your name, contact information, and the problem.

We won’t send you junk mail, we promise. We need these details to help you as quickly as possible.

Note that the Wrox support process can offer support only for issues that are directly
pertinent to the content of our published title. Support for questions that fall out-
side of the scope of normal book support is provided by the community lists of our
http://p2p.wrox.com forums.

p2p.wrox.com

For author and peer discussion, join the P2P mailing lists at wrox.com. Our unique system provides pro-
grammer-to-programmer contact on mailing lists, forums, and newsgroups, all in addition to our one-to-
one e-mail support system discussed in the previous section. Wrox authors and editors and other
industry experts are present on our mailing lists.

Athttp://p2p.wrox.com you will find a number of different lists that will help you, not only while
you read this book but also as you develop your own applications. To subscribe to a mailing list, follow
these steps:

1. Gotohttp://p2p.wrox.comand choose the appropriate category from the left menu bar.

2 Click the link for the mailing list you want to join.

3 Follow the instructions to subscribe and fill in your e-mail address and password.
4. Reply to the confirmation e-mail that you receive.
5

Use the subscription manager to join more lists and set your e-mail preferences.

Part I: Getting Started

Chapter 1: Introduction and Installation Configuration

Introduction and Installation
Configuration

You've spent your hard-earned money and purchased this book, so you undoubtedly know the
enormous benefits of using PHP, Apache, and MySQL together to create your Web site. But in the
event that this book was placed on your desk one Monday morning with a sticky note that read,
“Learn this!” in this chapter we look at the basics of PHP, MySQL, and Apache to show you what
makes the “AMP” combination so popular. We also walk you through the procedure for installing
all three components of the AMP module and advise you on how to best configure the software to
meet your specific needs.

Installation Configuration

You can choose to install one, two, or all three components of the AMP package based on your
specific needs. For example, if you are responsible for providing a company-wide intranet and/or
hosting your own Web site, you should probably install all three. If your site is hosted by a third-
party Web hosting company, however, you do not necessarily need to install all three components
(or, for that matter, any).

Installing the three components, even if you don’t have to, enables you to develop and test your
site in the comfort of your own workspace without having to upload to the file server just to test
at every little step. If you do a lot of off-line testing, however, we highly recommend that you still
perform a complete test once your site is live and running, as your settings may differ from those
on your Web-hosting company’s server. Even a small difference can cause you big headaches.

Over the course of this book, you will develop two complete Web sites:

0 Movie Review Web site. Developing this site introduces you to writing a PHP program,
making your pages look professional, working with variables and includes, and integrat-
ing PHP with MySQL to make your site truly dynamic as pages are created “on the fly”
for your Web-site visitor. You will also get experience in error handling and data valida-
tion while working on this site.

Chapter 1

0O Comic Book Fan Web site. The creation of this Web site takes you through the steps of building
databases from scratch, sending out e-mails using PHP, authenticating users, managing content
through CMS, creating a mailing list, setting up an e-commerce section, and developing and
customizing a discussion forum.

Finally, this chapter covers how to learn about your visitors through the use of log files and how to
troubleshoot common mistakes or problems. The appendixes in this book provide you with the neces-
sary reference materials you'll need to assist you in your Web site development journey, and offer tools
to make you more efficient.

Because PHP5 is in beta release only at the time of this writing, we will touch on how your code may be
affected by upgrading, but we will not discuss PHP5 in depth.

After reading this book, you will be able to create a well-designed, dynamic Web site by utilizing tools

available for free. Although this book is not intended to be a detailed analysis of Apache, PHP, and
MySQL, it points you in the right direction to explore further issues you may wish to delve into.

rief Intro to PHP, Apache,

MySQL, and Open Source

Let’s take a moment to explore the history of each of these three components and how they work
together to help you create a professional, dynamic Web site.

What Is Open Source?

PHP, Apache, and MySQL are all part of the open source group of software programs. The open source
movement is basically a collaboration of some of the finest minds in computer programming. By allow-
ing the open exchange of information, programmers from all over the world contribute to make a truly
powerful and efficient piece of software available to everyone. Through the contributions of many peo-
ple to the publicly available source code, bugs get fixed, improvements are made, and a “good” software
program becomes a “great” one over time.

A Brief History of Open Source Initiatives

10

The term “open source” was coined in 1998 after Netscape decided to publish the source code for its
popular Navigator browser. This announcement prompted a small group of software developers who
had been longtime supporters of the soon-to-be open source ideology to formally develop the Open
Source Initiatives (OSI) and the Open Source Definition.

Although the OSI ideology was initially promoted in the hacker community, upon Netscape’s release of
Navigator’s source code, programmers from all walks of life began to offer suggestions and fixes to
improve the browser’s performance. The OSI mission was off and running, as the mainstream comput-
ing world began to embrace the idea.

Introduction and Installation Configuration

Linux became the first operating system to be called open source (although BSD was a close runner-up,
distributed from Berkeley in 1989), and many programs followed soon thereafter. Large software corpo-
rations, such as Corel, began to offer versions of their programs that worked on Linux machines.

Although there are now numerous classifications of OSI open source licenses, any software that bears
the OSI Certification seal can be considered open source because it has passed the Open Source
Definition list. These programs are available from a multitude of Web sites; the most popular is

www . sourceforge.net, which houses more than 66,000 open source projects.

Why Open Source Rocks

Open source programs are very cool because:

a

They are free. The greatest thing about open source software is that it is free and available to the
general public. Software developers and programmers volunteer their time to improve existing
software and create new programs. Open source software cannot, by definition, require any sort
of licensing or sales fees.

They are cross-platform and “technology-neutral.” By requiring open source software to be
non-platform specific, the open source community has ensured that the programs are usable by vir-
tually everyone. According to the Open Source Definition provided by the Open Source Initiative at
http://opensource.org/docs/definition.php, open source programs must not be depen—
dent on any “individual technology or style of interface” and must be “technology-neutral.” As
long as the software can run on more than one operating system, then it meets the criteria.

They must not restrict other software. This basically means that if an open source program is
distributed along with other programs, those other programs may be open source or commer-
cial in nature. This gives software developers maximum control and flexibility.

They embrace diversity. Diversity of minds and cultures simply produces a better result. For
this reason, open source programs cannot, by definition, discriminate against any person or
group of persons, nor against any “field of endeavor.” (For example, a program designed for
use in the medical profession cannot be limited to that field if someone in another field wants to
take the program and modify it to fit his or her needs.)

For a complete list of the criteria a piece of software must meet before it can be considered “open
source,” or for more information about the OSI or the open source community, visit the OSI Web site
at www . opensource.org.

How the Pieces of the AMP Module
Work Together

Now that we have covered some of the history of open source, it’s important to understand the role each
of these programs (Apache, MySQL, and PHP) plays in creating your Web site.

Imagine that your dynamic Web site is a fancy restaurant. Diners come to your place, and each one
wants something different and specific. They don’t worry so much about how the food is prepared, as

11

Chapter 1

long as it looks and tastes delicious. Unlike a buffet-type spread, where everything is laid out and your
patrons simply choose from what’s available (the analogy being a more static, informational Web site
with little interaction and input from your visitors), a nice restaurant encourages patron/waiter interac-
tion and complete customization for any specific dietary needs (a dynamic Web site where the visitor
can choose what he or she wants to see).

In this scenario, we can attribute the three components of the AMP module as follows:

O Apache: This is your highly trained master of culinary arts, the chef. Whatever people ask for,
she prepares it without complaint. She is quick, flexible, and able to prepare a multitude of dif-
ferent types of foods. Apache acts in much the same way as your HTTP server, parsing files and
passing on the results.

O PHP: This is the waiter. He gets requests from the patron and carries them back to the kitchen
with specific instructions about how the meal should be prepared.

O MySOQL: This is your stockroom of ingredients (or in this case, information).

When a patron (or Web site visitor) comes to your restaurant, he or she sits down and orders a meal with
specific requirements, such as a steak, well done. The waiter (PHP) takes those specific requirements
back to the kitchen and passes them off to the chef (Apache). The chef then goes to the stockroom
(MySQL) to retrieve the ingredients (or data) to prepare the meal and presents the final dish to the
patron, exactly the way he or she ordered the meal.

Apache

12

Apache acts as your Web server. Its main job is to parse any file requested by a browser and display the
correct results according to the code within that file. Apache is quite powerful and can accomplish virtu-
ally any task that you, as a Webmaster, require.

The version of Apache covered in this book is the most recent and stable at the time of this writing:
version 2.0.47. The features and server capabilities available in this version include the following:
0 Password-protected pages for a multitude of users
O Customized error pages

0 Display of code in numerous levels of HTML, and the capability to determine at what level the
browser can accept the content

Usage and error logs in multiple and customizable formats
Virtual hosting for different IP addresses mapped to the same server

Directorylndex directives to multiple files

0O 0 0 O

URL aliasing or rewriting with no fixed limit

According to the Netcraft Web site (www.netcraft.com), at the time of this writing Apache is running
over 27 million Internet servers, more than Microsoft, Sun ONE, and Zeus combined. Its flexibility,
power, and, of course, price make it a popular choice. It can be used to host a Web site to the general
public, or a company-wide intranet, or for simply testing your pages before they are uploaded to a

Introduction and Installation Configuration

secure server on another machine. Later in this chapter, we discuss how to configure your Apache setup
to accommodate all of these options.

PHP

PHP is a server-side scripting language that allows your Web site to be truly dynamic. PHP stands for
PHP: Hypertext Preprocessor (and, yes, we're aware PHP is a “recursive acronym”—probably meant to
confuse the masses). Its flexibility and relatively small learning curve (especially for programmers who
have a background in C, Java, or Perl) make it one of the most popular scripting languages around.
PHP’s popularity continues to increase as businesses and individuals everywhere embrace it as an
alternative to Microsoft’s ASP language and realize that PHP’s benefits most certainly outweigh the
costs (three cheers for open source!). According to Zend Technologies, Ltd., the central source of PHP
improvements and designers of the Zend Engine, which supports PHP applications, PHP code can now
be found in approximately 9 million Web sites.

The version of PHP referenced in this book is the most recent stable release at the time of publication: ver-
sion 4.3.3. Although we discuss several of the most common uses and functions of PHP, you can find a
complete list of PHP functions in Appendix B of this book. As you continue to program in PHP and your
comfort level increases (or the demands of your boss grow), we encourage you to expand your use of
built-in PHP functions to take advantage of its tremendous power. You can download the PHP software
from PHP’s Web site at www.php . net.

MySQL

Another open source favorite, MySQL is the database construct that enables PHP and Apache to work
together to access and display data in a readable format to a browser. It is a Structured Query Language
server designed for heavy loads and processing of complex queries. As a relational database system,
MySQL allows many different tables to be joined together for maximum efficiency and speed.

This book references version 4.0.15a, the most stable release of MySQL at the time of publication. While a
complete list of features can be found at the MySQL Web site (www .mysqgl . com), some of the more popular
features of this program are as follows:

0 Multiple CPUs usable through kernel threads.
QO Multi-platform operation.

0O Numerous column types cover virtually every type of data.

Q Group functions for mathematical calculations and sorting.

QO Commands that allow information about the databases to be easily and succinctly shown to the
administrator.

(]

Function names that do not affect table or column names.

(]

A password and user verification system for added security.

0 Up to 32 indexes per table permitted; this feature has been successfully implemented at levels of
60,000 tables and 5,000,000,000 rows.

Q International error reporting usable in many different countries.

13

Chapter 1

MySQL is the perfect choice for providing data via the Internet because of its ability to handle heavy
loads and its advanced security measures.

For more information on how MySQL was developed, or other specific information not covered in this
book, visit the resource Web site at www .mysql . com.

PHP5: The Future of PHP

At the time of this writing, PHP5, the newest version of PHP, is in the beta-testing phase. While we can’t
speculate on which changes, if any, will be made to the final release, we would be negligent if we did not
prepare you for some changes that will most likely be in store for those who choose to upgrade. Knowledge
of these changes is especially important for those of you who have your Web sites hosted by a third-party
hosting company; if that company decides to upgrade, you will be along for the ride. Like it or not, their
decisions ultimately affect how you code your programs.

Throughout this book, we draw attention to concepts or syntax that will change in PHP5. This informa-
tion is for your benefit only and does not affect the PHP version most commonly used today, the one dis-
cussed in this book.

A Brief Overview of PHP5

With the development of PHP5, Zend brings some new methodologies to the PHP table. The biggest
change to note is the switch in focus from procedural programming to OOP (object oriented program-
ming). While procedural programming has served PHP well thus far, large and complex programs are
much better served with OOP. Currently, PHP4 passes variables by value instead of reference. PHP5
changes all that. The new PHP5 provides for improved error handling and integration of objects from
external sources, such as Java.

How Changing to PHP5 Affects This Book

PHP5 will change the way you do some things, and although it’s still in beta testing at the time of this
writing, we have tried to isolate specific code and circumstances that are most likely to need alteration if
and when you upgrade to PHP5. In each chapter that covers a topic that may be affected should the
upgrade take place, we will bring this information to your attention.

Installation Configuration of Apache

For the purposes of working through this book, we assume that you have installed Apache on your com-
puter. If you haven’t done so but would like to, you can find detailed installation instructions in
Appendix I.

Before you begin configuring and customizing your installation, take a minute to make sure you have
installed everything correctly.

14

Introduction and Installation Configuration

You can access the Apache executable file in three ways:

0O Open Windows Explorer and go to the directory where you have installed Apache, the default
being c:\program files\ Apache Group\ Apache2\; click Apache . exe to start your Apache
HTTP server.

Q At the DOS prompt, change directories to the location where the Apache file has been loaded,
and type apache. This starts the server.

Q During installation, the default option is to add Apache to your Start menu, so unless you dis-
abled this, you can locate the Apache HTTP Server listing directly from your Start button. This
gives you shortcuts to starting the server and to testing and configuring features, as well.

To test installation of your Apache server, open your Web browser and type the following;:
http://localhost/

If your installation was successful, you will see an Apache “success” page in your browser. If not, check

your error log by opening the error. txt file, which you can find in c:\program files\ ApacheGroup\

Apache2\logs\. This gives you an indication of where your installation went wrong.

If you had installation problems, note that you might experience problems if Apache is trying to share
port 80 with another Web server or application, such as a firewall.

Customizing Your Installation

Now that you know that everything works okay, you can adjust the configuration file to better suit your
needs. The main configuration file you use to make changes is httpd. conf; this is found in the c:\pro-
gram files\ Apache group\ Apache2\conf directory by default or wherever you have installed Apache.
This file can be opened with any common text editor, such as Notepad.

Adding PHP to the Equation

In order for Apache to recognize a PHP file as one that needs to be parsed with the PHP engine, you
need to add the following two lines to your httpd. conf file:

AddType application/x-httpd-php .php3 .php
AddType application/x-httpd-php-source .phps

While you can add these lines anywhere in the program, we recommend that you scroll down through
the program to find the correct “AddType application” section to avoid human error.

Now add the PHP module into your httpd.conf program so that Apache can properly parse PHP.
In your program, add the following line:
LoadModule php4_module c:/php/sapi/phpdapache2.dll

Make sure your path matches the location of this file.

15

Chapter 1

Document Root

By default, the directory under which Apache looks for files is c:\program files\ ApacheGroup\ Apache2\
htdocs\. You can change this to whatever is applicable for your directory structure, but for the purposes
of this discussion, let’s create a directory named c:\program files\ Apache Group\ Apache2\test\ where
you can put files to test them.

In order to point Apache to the new directory, you must change the document root in your httpd. conf
file by following these steps:

1. Locate the section of the file that resembles this text:

#

DocumentRoot: The directory out of which you will serve your

documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.

#

DocumentRoot "C:/Program Files/Apache Group/Apache2/htdocs"

2. Change the last line of this section to:

DocumentRoot "C:/Program Files/Apache Group/Apache2/test"

Notice that this uses forward slashes instead of backslashes.

3. Locate the section of the file that resembles this text:

Note that from this point forward you must specifically allow
particular features to be enabled - so if something's not working as
you might expect, make sure that you have specifically enabled it
below.

H o o I

#
This should be changed to whatever you set DocumentRoot to.
#
<Directory "C:/Program Files/Apache Group/Apache2/htdocs">
4, Change the last line of this section to:

<Directory "C:/Program Files/Apache Group/Apache2/test">
5. Save your file and restart Apache so it can recognize the changes you made to the config file.
Now create a small “test” program to make sure Apache can find your directory.
Open Notepad and type the following:
<HTML>
<HEAD>
<TITLE>Apache testing</TITLE>

</HEAD>
<BODY>

16

Introduction and Installation Configuration

If this works, we did it!
</BODY>
</HTML>

Save this as index.html in the “test” directory you created. Now open your browser, and type
http://localhost. You should see the screen shown in Figure 1-1.

[ET Apache testing - Microsoft Internet Explarer E@
Eile Edit View Favorites Tools Help i
QB&:& > lﬂ g _;_ /.) search -E'_'..I-'Fa\:uites A vedia £4) 2 f = L) é% @

Adiress |] hitps flocatbiest v Ble ks

I this wotles, we did it!

Qj Do SJ Localintranet:

Figure 1-1

Installation Configuration of PHP

Once PHP has been installed on your computer, you can customize it to fit your needs. Although some
of the configuration settings deal with how the information is shown through the browser, a great many
of the settings relate to how the server handles errors and how those errors are displayed to you and
your users. You will also be able to have some control over how PHP interacts with MySQL.

17

Chapter 1

Testing Your Installation

To ensure that both PHP and Apache have been installed together, write another test program. Open
Notepad and type the following program:

<HTML>

<HEAD>

<TITLE>PHP Testing</TITLE>

</HEAD>

<BODY>

<?php

echo "If this works, we <i>really</i> did it!";
?>

</BODY>

</HTML>

Save this file as phptest . php. Open your browser and type http://localhost/phptest.php and you
should see the screen shown in Figure 1-2.

; S|
File Edit Miew Favorites Tools Help W
Qs - @ ¥ A G Psaer Joraots @rede @ (22 B - | I P
;‘.era.;c!.g] hittp: fflccahost EBGO Links *

I this wotkes, we really did it!

8] Dore SJ Localintranet:

Figure 1-2

18

Introduction and Installation Configuration

Customizing Your Installation

The configuration file that holds the key to how PHP runs on your computer is named php. ini; it can
be found in the root directory where you extracted your installation files. For the purposes of our discus-
sion, we assume that you extracted the files to c:\ and then renamed the installation directory to
c:\php\.

The php. ini file includes a brief explanation of each of the configuration settings, which are beyond the
scope of this discussion. However, you are encouraged to read through the entire introduction of the
php. ini file before you begin making changes. In the table that follows, we touch on some of the more
commonly changed settings.

Setting

short_open_tag

asp_tags

precision

output_buffering

max_execution_time

max_input_time

memory limit

error_reporting

display_errors

log_errors

error_log

What It Does

Allows short tags to be parsed (<? and »> as opposed to <?php and
?>)

Allows ASP-style tags to be parsed (<% and %>)

Determines the number of digits to be displayed in floating point
numbers. Default is 12, and this should suffice for most applications.

Allows header lines to be sent after HTML has already been sent to
the server. The default is “Off,” and most third-party hosts maintain
this default. It is not advisable to change this setting, especially if you
depend on a third-party host.

Sets the limit for how long a script can take to run. Expressed in
seconds.

Sets the limit for how long a script can take to parse the data.
Expressed in seconds.

Sets the limit for how much memory a script can use to run.
Expressed in MB.

There are many levels you can use to set what errors will be shown to
you, but for the purposes of our book, we assume that error_reporting
is set to E_ALL. When set to E_ALL, all errors and warnings are shown.

Determines whether or not errors will be printed. Let’s leave this fea-
ture on while you develop your site and you learn PHP, but once the
site is ready to go live, we recommend that this setting be switched to
“off” for security purposes.

Allows errors to be written into a log file for future reference. We rec-
ommend that you switch this setting to “on.”

Points to the name of your PHP error log file.

Table continued on following page

19

Chapter 1

Setting

variables_order

register_globals

file_uploads
upload max_filesize

mysgl.allow
persistent

mysql.max_
persistent

mysqgl .max_links

session.save_path

What It Does

Determines the order in which variables are registered. The default is
EGPCS, which translates into Environment, GET, POST, COOKIE,
and Built-in variables. We recommend that you leave this as the
default setting until you are more familiar with PHP and the way
variables work. In addition, your third-party host will most likely
keep the default setting. This setting applies to all variables on all
PHP pages, which we discuss in greater detail in Chapter 2.

Determines whether variables sent through forms are available glob-
ally. This was a recent change from “on” to “off” as the default, and
we recommend you leave this set to “off.” You can read more about
register_globals in Chapter 2.

Enables Web site visitors to upload files to your server.
Sets the limit for how large a file that is uploaded may be.

Determines whether or not a persistent connection can be established
with the MySQL server.

Sets the limit of how many persistent connections are allowed. For no
limit, set this to -1.

Sets the limit of how many total links are allowed (persistent and
non-persistent together). For no limit, set this to -1.

Determines where session information will be stored on your com-

puter. You must specify a valid path, such as c:\php\sess\tmp or
c:\tmp if you are using Windows. You must also create this directory
beforehand, as PHP will not set this up for you.

There are numerous other var.ables in your file that can be altered; we encourage you to work with the
defaults until you feel more comfortable with PHP and your Web site setup. Changing these defaults can
raise functionality, security, and performance issues, adversely affecting your site.

Installation Configuration of MySQL

MySQL needs TCP/IP protocols to run properly, regardless of the Windows environment. You must
install this before you can continue if it is not already on your computer. (Most computers have this set
up already by default.)

Testing Your Installation

As before, it’s a good idea to test your installation. You can do this from a DOS prompt so that you can
view any error messages your MySQL server encounters.

20

Introduction and Installation Configuration

Follow these steps to test your installation:

1. For Windows 95/98/Me, at the DOS prompt, change directories until you are in the MySQL
server main directory (the default is c:\mysql\bin\). Then type:
c:\mysqgl\bin>mysqgld
2. For Windows 2000/XP/NT, at the DOS prompt, change directories until you are in the MySQL
server main directory and type:

C:\>C:\mysagl\bin\mysgld —install

You should see a screen that looks similar to the one shown in Figure 1-3.

B8 Command Prompt -10| x|

C:N>c:\mysqlibin\mysqld ——install
Service successfully installed.

Ci\>

Figure 1-3

3. To start the MySQL server, type the following:

c:\>NET START MySQL

Your screen will look like the one shown in Figure 1-4.

21

Chapter 1

BN Command Prompt ;5_"_|J__>_<J

sqlsbinsmysgld —install
ervice successfully installed.

C:\>NET START MySQL

he MySqgl service was started successfully.

N

Figure 1-4
4. To stop the server from running, type the following:
c:\>NET STOP MySQL

5. Let’s test to make sure your MySQL server is running. While there are many possible com-
mands to test the server, to keep things simple, let’s use the following:

C:\>c:\mysgl\bin\mysgl test

Your screen should look something like the one shown in Figure 1-5.

B Command Prompt - c\mysqllbin\mysgl test
nstall
led.
HyS4QL

The HySql scrvice w tarted successfully.

Figure 1-5

6. To return to the DOS prompt, enter the following:

mysgl>exit

or

mysgl>quit

22

Introduction and Installation Configuration

7. Toshut down the MySQL service, type:

C:\>c:\mysgl\bin\mysgladmin -u root shutdown

It’s time to configure your system to improve security, set up some user permissions, and alter your set-
tings according to your preferences.

Configuring Your Installation

Before you configure any of your settings, start the MySQL service again.

1. Enter the following:

c:\>c:\mysgl\bin\mysqgl mysqgl

And now your screen should look like Figure 1-6.

@ Command Prompt

\mysqlibinimysql mysql =10] =

Figure 1-6

2. By default, MySQL on Windows sets up all users with all privileges. In order to change this,
enter the following:

mysgl> DELETE FROM user WHERE Host='localhost' AND User='"';

You will get a response from MySQL that states:
Query OK, 1 row affected (0.46 sec)
The time it takes to process the query may differ based on the speed of your computer, but the
important thing here is that you get the “OK” from the MySQL gods.
3. Then get out of MySQL again and reset the users by entering the following:

mysgl> quit
c:\>c:\mysgl\bin\mysgladmin reload
c:\>c:\mysqgl\bin\mysgladmin -u root password choose_a_password

4. Insert whatever password you would like for your root access; in our example, we chose mysql-
P y Y p ysq
pass, as shown in Figure 1-7.

23

Chapter 1

Th

24

B Command Prompt =

Figure 1-7

5. To reconnect to the server, try your new password:
C:\>c:\mysqgl\bin\mysgl -h localhost -u root -p
You will be prompted for your password; in this case, we entered “mysqlpass,” but you should

enter whatever you chose for your root password; you should then see the prompt shown in
Figure 1-8.

B3 Command Prompt - c:imysglibin'mysql -h localhost -u root -p = |00 %|

Figure 1-8

e my.cnf File

The my . enf file, which can be opened with any text editor, such as Notepad, is the main file that MySQL
uses to read configuration options you have set up in your installation. You may alter this file at any
time to tweak your configuration down the road.

By default, the installation of MySQL provides us with four sample my . cnf configuration files to use as
examples: my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge. cnf. If you used the default
directory during installation, these were all saved under the c:\mysql\ directory.

The difference in these files is presumably the amount of space you have on your computer dedicated to pro-
cessing query requests and so on. For the purposes of the Web sites used in this book, the my-medium.cnf
file will suffice, so save it to your root c:\ directory so it can be accessed by the MySQL server. Be sure to
rename this file my . enf so the server can find it.

Introduction and Installation Configuration

Your my . cnf file looks like this:

Example mysqgl config file.
Copy this file to c:\my.cnf to set global options

One can use all long options that the program supports.
Run the program with —help to get a list of available options

HH o H H

This will be passed to all mysgl clients
[client]

#password=my_password

port=3306

#socket=MySQL

Here is entries for some specific programs

The following values assume you have at least 32M ram
The MySQL server

[mysqgld]

port=3306

#socket=MySQL

skip-locking

set-variable = key_buffer=16M
set-variable = max_allowed_packet=1M
set-variable = table_cache=64
set-variable = sort_buffer=512K
set-variable = net_buffer_ length=8K
set-variable = myisam_sort_buffer_ size=8M
server-id =1

Uncomment the following if you want to log updates
#log-bin

Uncomment the following rows if you move the MySQL
distribution to another

location

#basedir = d:/mysql/

#datadir = d:/mysqgl/data/

Uncomment the following if you are NOT using BDB tables
#skip-bdb

Uncomment the following if you are using BDB tables
#set-variable = bdb_cache_size=4M
#set-variable = bdb_max_lock=10000

Uncomment the following if you are using Innobase tables
#innodb_data_file_path = ibdatal:400M
#innodb_data_home_dir = c:\ibdata
#innodb_log_group_home_dir = c:\iblogs
#innodb_log_arch_dir = c:\iblogs

#set-variable = innodb_mirrored_log_groups=1

#set-variable = innodb_log_files_in_group=3

#set-variable = innodb_log_file_size=5M

25

Chapter 1

26

#set-variable = innodb_log_buffer_size=8M
#innodb_flush_log_ at_trx_commit=1
#innodb_log_archive=0

#set-variable = innodb_buffer_pool_size=16M
#set-variable = innodb_additional_mem_pool_size=2M
#set-variable = innodb_file_io_threads=4
#set-variable = innodb_lock wait_timeout=50

[mysgldump]
quick
set-variable = max_allowed_packet=16M

[mysql]

no-auto-rehash

Remove the next comment character if you are not familiar with SQL
#safe-updates

[isamchk]

set-variable = key_buffer=20M
set-variable = sort_buffer=20M
set-variable = read_buffer=2M
set-variable = write_buffer=2M
[myisamchk]

set-variable = key_buffer=20M
set-variable = sort_buffer=20M
set-variable = read_buffer=2M
set-variable = write_buffer=2M
[mysglhotcopy]

interactive-timeout

While you can find a complete reference of configuration at the source (www.mysqgl . com), the options a
beginner will be most concerned with follow. To set any of these options, simply type the appropriate
line directly in your my . cnf file under the appropriate section.

First, let’s discuss the local-infile option, which can be found in the my . enf file as follows:
[mysqgld]

local-infile =1

This allows you to load large amounts of data from a tab-delimited file or .csv file directly into your
MySQL database. While this option can be very helpful if you are running your own Web site, or if you
are the only one accessing the MySQL configurations, many third-party hosts have this set to 0 to block
their MySQL hosts from accessing this command, primarily for security reasons. If you are contemplat-
ing having your Web site hosted by a third party and you will need this feature, you may want to verify
that they have this setting enabled to save yourself some major headaches later on, such as having to
manually input large amounts of data a bit at a time, or having to write a subroutine that inputs the data
for you. If you haven’t yet chosen your third-party host, this will be an important selling point.

Introduction and Installation Configuration

Second, let’s discuss altering the 1og-bin configuration option that can be found in the following sec-
tion of the my . cnf file:

Uncomment the following if you want to log updates
#log-bin

This is very important if you care at all about monitoring which updates are made to your MySQL tables
(and you should). This logs all activity to the tables, and this topic is covered in greater detail in Chapter
16. We recommend that you uncomment the 1og-bin line to at least make the data available. Whether
or not you do anything with it is another story.

Setting Up Users and Privileges

Hackers (or the malicious breed known as “crackers”) can be quite crafty in the ways in which they break
into your system, especially if you are directly connected to the Internet. MySQL allows you to pick and
choose what user is allowed to perform what function based on the “privileges” that you establish. All
user privilege information is stored in a database called mysql, which is located, by default, in your
c:\mysql\data directory.

If you're the only one accessing the MySQL database, you may not have to worry about adding users.
However, what if you have, say, an Aunt Edna who is going to help you out by inputting some back-
logged information? You want her to be able to go into the tables and look at things, and even insert
some information. But you probably don’t want her to be able to delete your entire database. By restrict-
ing her privileges as a user, you help to protect your data.

Try It Out Setting Up Privileges

In order to set up the initial privileges parameters, you need to make sure you're logged on as “root.”
Then you're going to GRANT Aunt Edna some privileges as a new user, so type the following:

mysgl> GRANT SELECT, INSERT, UPDATE
-> ON * . *
-> TO edna@localhost
-> IDENTIFIED BY 'ednapass';

How It Works

You have now established that “edna” is a valid user who will be allowed access to your MySQL system,
provided two things:

Q She attempts her connection from the “localhost” host—not a different connection from some-
where else.
Q She supplies the correct password: “ednapass”.
Your Aunt Edna will now be allowed to select information from the database, insert new information in

the database, and update old information in the database. By giving her access to all the tables in the
database (via the use of ON *.*), we have allowed her to modify any table in existence.

27

Chapter 1

As you become more familiar with working with tables and MySQL commands, modifying privileges or
user information will become easier for you, as the information is all stored in a table (just like every-
thing else in MySQL).

A complete list of privileges that you can grant is available at the MySQL Web site, www .mysgl . com.

Where to Go for Help and
Other Valuable Resources

While we’ve certainly tried to make this as easy as possible for you, there are so many different variables
in computers and their setups that it is virtually impossible to cover every possible situation. Anyone
who works with computers on a regular basis is surely aware that, while in theory everything seems rel-
atively simple, things don’t always go as planned (or as we think they should). To your advantage, there
are several avenues for help should you find yourself in a difficult situation.

Help within the Programs

Before getting online and searching for help, you may try looking for answers to your problems within
the programs themselves.

In Apache, the manual was installed with the standard installation and can be accessed in c:\program
files\apache group\apache2\manual. A check of your error log will be most helpful as well.

In MySQL, you can enter this realm by typing the following at your DOS prompt:
c:\>c:\mysgl\bin\mysgl —help
This provides a multitude of commands that will help you find what you need, or at the very least, pro-

vide a valuable “cheat sheet” for administering your MySQL server. In addition, this will allow you to see
the current settings for your server at a glance so you can potentially troubleshoot any problem spots.

Source Web Sites

28

You undoubtedly know where to find these by now, but just in case, the Web sites associated with each
of our three components have incredibly detailed information to help you work out any issues, or report
any bugs you may find in the programs:

0 For Apache questions and information: www . apache.org

0 For PHP questions and information: www . php .net

0O For MySQL questions and information: www.mysgl . com

Introduction and Installation Configuration

AMP Installers

Now that we’ve taken your entire Saturday afternoon to install and configure each of these components,
we can tell you about some third-party software programs that will complete the installation for you.
You can find an extended list of these types of installers at www.hotscripts.com.

Foxserv

This is an Apache/MySQL/PHP installer that can be found at www. foxserv.net. It is offered as an open
source program and is free to the general public. Foxserv allows you to customize your configuration files
during installation and also allows for PEAR modules to be downloaded. (You can read more about the
use of PEAR in Appendix H.) This installer is compatible with both Windows and Linux systems.

PHPTriad

This is another open source installer that is available at no charge. It is available for download at http: //
sourceforge.net/projects/phptriad/ but is currently applicable to Windows systems only. Along

with Apache, PHP, and MySQL, the package includes Perl and phpMyAdmin (another powerful database
administration system we discuss in Chapter 3).

NuSphere Technology Platform

The creators of the popular PHP editing program PHPEd have also developed an AMP installer, which
they provide as a free download on their Web site at www.nusphere. com. This installer covers Apache,
MySQL, PHP, and PERL, and offers downloads for both Windows and Linux systems.

Summary

By now, you should be well versed in AMP and open source. You know that the abbreviation AMP refers
to Apache, MySQL, and PHP, all of which work together to help you develop dynamic Web sites.

So now you’ve installed, configured, and tested the installation for Apache, MySQL, and PHP and
should be ready to start making some Web sites!

29

Part Il: Movie Review
Web Site

Chapter 2: Creating PHP Pages

Chapter 3: Using PHP with MySQL

Chapter 4: Using Tables to Display Data

Chapter 5: Form Elements: Letting the User Work with Data
Chapter 6: Letting the User Edit the Database

Chapter 7: Validating User Input

Chapter 8: Handling and Avoiding Errors

Creating PHP Pages

In this chapter, we discuss the basics of PHP and start you on your way to creating your first com-
plete Web site, one featuring movie reviews. After you complete your Web site, your visitors will
be able to locate information about a particular movie, and you will be able to program in PHP.

In this chapter, we cover the following basic PHP commands and structures:

(]

Using echo to display text

Formatting text with both HTML and PHP
Constants and variables

Using a URL to pass variable values
Sessions and cookies

HTML forms

if/else statements

Includes

Functions

U 00 UJuU 00U U

Arrays and foreach

while and do/while

U

By the end of this chapter, if you actually try all the “Try It Out” exercises, you will be able to cre-
ate a simple login form, give your users an option to either see a review of your favorite movie or
see a list of your top favorite movies, and offer them a numbered list of your movies based on how
many they decide they want to see. You can even alphabetize the list for them, if so desired.

Chapter 2

Overview of PHP Structure and Syntax

PHP programs are written using a text editor, such as Notepad or WordPad, just like HTML pages.
However, PHP pages, for the most part, end in a .php extension. This extension signifies to the server that
it needs to parse the PHP code before sending the resulting HTML code to the viewer’s Web browser.

In a five-star restaurant, patrons see just a plate full of beautiful food served up just for them. They don’t
see where the food comes from, nor how it was prepared. In a similar fashion, PHP fits right into your
HTML code and is invisible to the people visiting your site.

How PHP Fits with HTML

We assume that you know some HTML before you embark on your PHP/ Apache/MySQL journey,

and you’ve undoubtedly seen how JavaScript code and other languages can be interspersed within the
HTML code in an HTML page. What makes PHP so different is that it not only allows HTML pages to

be zcreated on the fly; it is invisible to your Web site visitors. The only thing they see when they view the
source of your code is the resulting HTML output. This gives you more security for your PHP code and
more flexibility in writing it.

HTML can also be written inside the PHP section of your page; this allows you to format text while
keeping blocks of code together. This will also help you write organized, efficient code, and the browser
(and, more important, the viewer) won’t know the difference.

PHP can also be written as a standalone program, with no HTML at all. This is helpful for storing your
connection variables, redirecting your visitors to another page of your site, or performing other func-
tions that we discuss in this book.

The Rules of PHP Syntax

34

One of the benefits of using PHP is that it is relatively simple and straightforward. As with any com-
puter language, there is usually more than one way to perform the same function. Once you feel com-
fortable writing some PHP programs, you can research shortcuts to make yourself and your code more
efficient. For the sake of simplicity, we cover only the most common uses, rules, and functions of PHP.

You should always keep in mind these two basic rules of PHP:

0 PHP is denoted in the page with opening and closing tags as follows:

<?php
?>

0 PHP lines end with a semicolon, generally speaking:

<?php

// First line of code goes here;

// Second line of code goes here;
// Third line of code goes here;

?>

Creating PHP Pages

Comments can be added into your program as we just did through double slashes (//) for one-liners
or /*and */ for opening and closing comment tags that may extend over several lines of code. Indents
don’t matter, and, generally speaking, neither do line returns. This gives you freedom as a programmer,
but a little freedom can be a dangerous thing, as we discuss in the next section.

And there you have it! Now you're an expert. Okay—there might be a few more things you need to
learn, but this gets you started.

The Importance of Coding Practices

Before we jump in, it is important to realize how the structure of your code can affect your program.

As far as the Web server parsing the PHP code, the structure of your code really doesn’t matter. To the
server, your code will show up as one continuous line regardless of tabs, indents, and line returns. But to
the human eye, how well your code is organized can really make a difference.

Take a look at the following examples:

<?php
if ($_POST["fname"] == "Joe") {
echo "<p>Hi $_POST['fname']</p>;
}
else {
echo "<h2>Your name's not Joe, so you can't enter the Web site.</h2>"

}

//check to make sure the first name is equal to Joe before granting access
if ($_POST["fname"] == "Joe")

{

echo "<p>";

echo "Hi ";

echo $_POST['fname'];

echo "</p>";

}

else
{
echo "<h2>";
echo "Your name's not Joe, so you can't enter the Web site!";
echo "</h2>";

?>

You can see that although it involves more typing, it will be much easier to spot any missing syntax or a
specific portion of the code for troubleshooting purposes.

What Makes a Great Program?

Truly professional code follows three general guidelines:

0 Consistency: Blocks of well-written code always look the same and have the same indents and
ways of coding, such as syntax shortcuts that use bracket placement and formatting styles con-
sistently throughout the program. The great thing about PHP is that it really doesn’t care about
tabs or indents, so you are free to create a style all your own, one that works best for you.

35

Chapter 2

In addition, while there may be more than one syntax for accomplishing the same goal, good
coders will be consistent throughout their code with whichever method they choose. For exam-
ple, as far as PHP is concerned, the following two snippets of code mean the same thing:

<?php
// php code goes here;
?>

<?
// php code goes here;
?>

You should simply pick one and stick with it throughout your program.

QO Frequent comments: The more you use comments throughout your code, the better off you will
be. While it’s not so important in smaller, simpler programs, when your programs become more
and more complex, it will be hard for you to remember what you did, where you did it, and
why you did it the way you did.

O The use of line numbers: Some text editors insert line numbers for you, but others do not. We
discuss text editors later in this chapter, but you should know that it is important to denote line
numbers somehow in your code, if they are not provided for you, because PHP lets you know
when your program generates errors, and it notifies you of the line number in which the error
occurs. If you have to count the lines manually every time you encounter an error, you can
imagine how time consuming and inefficient your debugging will be.

Why Should You Care About What Your Code Looks Like?

C

36

It’s important to follow good coding practices for three reasons:

0 For efficiency: The easier your code is to read and follow, the easier it will be to keep track of
where you are with your code, and the quicker it will be to pick up where you left off after a
break.

0 For debugging: Knowing where your problem lies is a major debugging tool. If you have used
comments, you can easily follow your own logic, and if you have line numbers and consistent
formatting, you can easily scan your document to pinpoint a trouble area.

O For future expansions and modifications: Utilizing comments in your code is especially impor-
tant for future changes, as not all of us can remember the logic behind code that was written
years or even just months ago. Also, if you are working on code that involves a team, if every-
one is utilizing the same coding styles, it will be much easier to make changes or additions to
someone else’s work down the road.

Okay, enough preaching about good code—let’s get to it.

reating Your First Program

You can’t get much simpler than this first program, but try it out to get a feel for what the results look
like. The PHP function echo, seen in the material that follows, is one of the most commonly used PHP
functions and one that, undoubtedly, you will become intimate with. It is used to send text (or variable
values or a variety of other things) to the browser.

Creating PHP Pages

Try ItOut " Using echo

Try using echo to see what results you achieve:

1. Enter the following program in your favorite text editor (Notepad, WordPad, or whatever), and
save it as firstprog.php.

Make sure you save it in a “plain text” format to avoid parsing problems, and double-check to
ensure that the file is not saved as firstprog.php. txt by default.

<HTML>

<HEAD>

<TITLE>My First PHP Program</TITLE>
</HEAD>

<BODY>

<?php

echo "I'm a lumberjack.";

?>

</BODY>

</HTML>

2. Open this program using your browser.

Your resulting screen should look like the one in Figure 2-1.

File Edit View Favorites Tools Help f 4
Ot O B @ G s Frrorne @rote B 2-BE L A D

ngdre:s|§ http: {fiecshost Frstprog php | Ede ks ®
T a humberjack,

| pore 8 Local intranet

Figure 2-1 37

Chapter 2

Now view the source of the HTML code so you can see what happened with the PHP portions of the
code. As you can see, the PHP portion of the code has vanished, leaving only the resulting HTML code.

Now add the line noted in bold text so you can get a better feel for how your PHP code will be parsed.

<HTML>

<HEAD>

<TITLE>My First PHP Program</TITLE>
</HEAD>

<BODY>

<?php

echo "I'm a lumberjack.";
echo "And I'm okay.";

?>

</BODY>

</HTML>

Save the revised file and open it in your browser. As you can see, the line runs together without a line
break, even though you had your PHP code on two different lines.

How It Works

When a browser calls a PHP program, it first searches through the entire code line by line to locate all
PHP sections (those encased in the appropriate tags) and it then processes them one at a time. To the
server, all PHP code is treated as one line, which is why your two lines of code were shown as one con-
tinuous line on the screen. After the PHP code has been parsed accordingly, the server goes back and
gobbles up the remaining HTML and spits it out to the browser, PHP sections included.

While the .php extension commands the server to check for and parse any PHP code contained in the
program, if you are running your own Web site or if you have access to your own httpd. conf file,
you can change what file extensions are able to parse PHP code. For example, if you have an existing
Web site and you simply want to add a small PHP section to your HTML page, you can revise the fol-
lowing line in your httpd. conf file to include .html or .htm files on your server so that they are con-
sidered to be PHP files:

AddType application/x-httpd-php .php3 .php .html .htm
AddType application/x-httpd-php-source .phps

This can also cause a heavy load on your server, so we recommend that you create your site in such a
way that only .php files are parsed.

Using HTML to Spice Up Your Pages

38

From the previous example, you can see that it is wise to use HTML to make your pages look more pro-
fessional and less utilitarian. HTML can be inserted within your PHP block of code using the echo func-
tion. Anything you can code in HTML, from frames, to tables, to font characteristics, can be inserted
within a PHP section of code.

Creating PHP Pages

Integrating HTML with PHP

You will be better able to see how easily we can use HTML in the PHP program with the following prac-
tical example.

Try It Out Using PHP within HTML

Let’s modify the following lines to the current program, as shown in bold:

<HTML>

<HEAD>

<TITLE>My First PHP Program</TITLE>
</HEAD>

<BODY>

<?php

echo "<hl>I'm a lumberjack.</hl>";
echo "<h2>And I'm okay.";
2>

</BODY>

</HTML>

Your screen now looks something like the one in Figure 2-2.

My First PHP Program - Microsoft Internet Explorer — - S E— — S _'Eﬂ@
File Edit Wiew Favorites Tools Help i
Qs+ © [N @G P o @ @ 3 %) B D

fddress |) hikpe fiacabost Frstprog.php v Ede ks ®

I'm a lumberjack

And I'm okay.

8] Dore S Localintranet

Figure 2-2

39

Chapter 2

You can see that by inserting some HTML code within the PHP section of the program, you accomplish
two things:

0 You can improve the look of your site.

O You can keep PHP lines of code together without having to jump back and forth between HTML
and PHP.

If you view the source of your HTML code you will see the HTML code you inserted using the echo
function displayed just as you intended.

Considerations with HTML Inside PHP

Let’s discuss some pitfalls commonly seen with the practice of inserting HTML inside PHP.

0 You'll have to check for double quotes. As you may have noted when you worked through the
previous example, using the echo function involves the use of double quotation marks. Because
HTML also uses double quotes, you can do one of two things to avoid problems:

Q Use single quotes inside your HTML.
Q Escape your HTML double quotes with a backslash, as in the following:

echo "";

This is especially useful if you want to display double quotes in your text, such as:

echo "He was about 6'5\" tall.";

0 Remember that you still have to follow PHP rules, even though you're coding in HTML.
Sometimes when you begin to code in HTML within your PHP section, you can temporarily for-
get that you need to follow PHP guidelines and end your sentences with a semicolon, as well as
closing all quotes at the end of your echo statements.

QO Don't try to cram too much HTML into your PHP sections. If you find yourself in the middle
of a PHP portion of your program, and your HTML is becoming increasingly complex or
lengthy, consider ending the PHP section and coding strictly in HTML. Consider the following
examples:

<?php
echo "<table width='100%' border='2"' bgcolor='#FFFFFF'>";
echo "<tr>";
echo "<td width='50%"'>";
echo "";
echo "First Name:";
echo "</td">;
echo "<td width='50%'>";
echo "";
echo $_POST["fname"]
echo "</td>";
echo "</tr>";

40

Creating PHP Pages

echo "</table>";

2>
<table width="100%" border="2" bgcolor="#FFFFFF">;
<tr>
<td width="50%">

First Name:

</td>
<td width="50%">

<?php
echo $_POST["fname"];
?>

</td>
</tr>
</table>

Although we have not yet discussed variables, you can see in the first example that the only thing PHP
was really needed for was to give us the value held in the variable fname and display it on the screen.
The rest of the related code was in HTML. In this type of instance, you're better off just staying in HTML
and pulling out the PHP line when you need it, instead of coding the HTML inside the PHP. While it
really doesn’t matter to the server, it makes for easier formatting, easier debugging, and less typing
(which is always a good thing!). In essence, it is up to you to balance your HTML with PHP and discover
what works best for your coding style.

Using Constants and Variables
to Spice Up Your Pages

We’ve covered the basics of using the echo function to display text the way you want it. Really, this
works no differently from coding an HTML page. However, utilizing constants and variables allows you
to take advantage of the power of PHP.

Overview of Constants

A constant is a placeholder for a value that you reference within your code. Constants are typically
named with capital letters (so you can easily find them within your code), and the values are usually
formally defined before using them. Constant names must begin with a letter or underscore and cannot
begin with a number. Names are also case-sensitive.

The values assigned to constants are defined with the PHP function define (). Once they’ve been
defined, they can’t be changed or undefined.

41

Chapter 2

_ Using Constants

Let’s see how you can use constants in your program.

1. Open your text editor and type the following program:

<HTML>

<HEAD>

<TITLE>My Movie Site</TITLE>

</HEAD>

<BODY>

<?php
define ("FAVMOVIE", "The Life of Brian");
echo "My favorite movie is ";
echo FAVMOVIE;

?>

</BODY>

</HTML>

2. Save this file as moviesite.php and open it in your browser. You should see the text shown in

Figure 2-3.
File Edit View Favorites Tools Help Q‘
Qe - @ - [¥] [@0 P Slpraones @mesn @) 2l [FH) S @
Address |@:—.}ua:ma:a|ﬁmuiesite.pm v By e tnks ®

My favorite movie is The Life of Brian

E Done .g Local intranet
Figure 2-3

42

Creating PHP Pages

How It Works

By defining the constant known as FAVMOVIE, you have set the value as “The Life of Brian,” which can
be recalled and displayed later on. While this constant can’t be changed or reset throughout your pro-
gram, it is available for use by any part of your program.

Overview of Variables

Unlike constants, variables are obviously meant to be variable—they are meant to change or be changed
at some point in your program. Variables also do not need to be defined or declared and can simply be
assigned when needed.

Variables are denoted with a dollar sign ($) and are not case-sensitive as are constants. The first letter of
the variable name must be an underscore or letter and cannot be a number.

In PHP4, by default, variables are not passed by reference unless you preface them with an ampersand
to force use of that practice. In PHP5, all variables will be passed by reference with no additional syntax
required. This significantly increases the speed and power of your PHP programs.

Try It Out Using Variables

Let’s use variables in the program.

1. Open your text editor and make the following changes to your moviesite.php file (noted in
bold text):

<HTML>
<HEAD>
<TITLE>My Movie Site</TITLE>
</HEAD>
<BODY>
<?php
define ("FAVMOVIE", "The Life of Brian");
echo "My favorite movie is ";
echo FAVMOVIE;
echo "
";
$movierate=5;
echo "My movie rating for this movie is: ";
echo $movierate;
?>
</BODY>
</HTML>

2. Save the changes and access the file in your browser. Your screen should now look like the one
in Figure 2-4.

43

Chapter 2

S|
File Edit Miew Favorites Tools Help e
Qo ~ @ - ¥ @ @ P Ygrawies @rete & 2v2[FH) L3P
fddress |) hitkp fiocshostimovissite,hp Eﬁco Links ™|

My favorite movie is The Life of Brian
My movie rating for this mowe i 5

8] Dore SJ Localintranet:

Figure 2-4

How It Works

The value “5” is assigned to the variable movierate, and it is assigned as an integer value instead of a
string. The following line of code would cause the value of “5” to be seen as a string:

Smovierate="5";

By keeping this as an integer, you can then perform mathematical calculations on this number later on
(such as giving the viewer the average movie rate), as in this example:

<?php
Sbobsmovierate=5;
$joesmovierate=7;
Sgrahamsmovierate=2;
$zabbysmovierate=1;
Savgmovierate= ((Sbobsmovierate+$joesmovierate+$grahamsmovierate
+$zabbysmovierate) /4) ;
echo "The average movie rating for this movie is: ";
echo $avgmovierate;
?>

44

Creating PHP Pages

PHP also has numerous built-in mathematical functions such as:

rand([min],[max]): Generates a random integer.
ceil(number): Rounds a decimal up to the next highest integer.

a
Q
Q floor(number): Rounds a decimal down to the next lowest integer.

0O number_format(number [,dec places] [,dec point] [,thousands]): Formats the number based on
the chosen number of decimal places, and uses the designated decimal point and thousands

separator, if applicable.
max(argumentl, argument2, ...): Returns the maximum value of the supplied arguments.

min(argumentl, argument2, . ..): Returns the minimum value of the supplied arguments.

For a complete listing of PHP’s mathematical functions, please refer to Appendix C.

Passing Variables Between Pages

We've talked about how to use variables in code, but wouldn't it be great if you could move the variable
value from page to page? There are basically three ways to accomplish this task, and the method you
choose is based on the situation and what best fits your needs at the time.

A Word About register_globals

Before we begin discussing the three methods of parsing variables between pages, it is important under-
stand a little concept we call register_globals. This is a configuration setting in your php.ini file that,
when turned off, prevents the variable value from being falsely inserted by an outside source (because
PHP doesn’t require variable initialization). While previous versions of PHP set the default setting in
php.ini to “on,” ever since version 4.2 the default has been switched to “off.” This was the cause of
many a programmer’s sleepless night, as you must refer to your variables differently if
register_globals is turned off, or else find all your variables’ values coming up empty.

While many third-party Web hosts have turned on register_globals, for security reasons not every-
one does; thus the decision was made to make the assumption that register_globals is off for the
purposes of our tutorial. Coding with the assumption that register_globals has been turned off is
the safest way to code because your program will work regardless of the server’s setting.

Instead of calling variable values by the standard $varname syntax, when register_globals is “off”
and you need to pass variables across pages, in the receiving page only you need to refer to them in a
different way. You will see this in action in the next “Try It Out” section, but the various ways to refer to
variables depend on how they are being sent.

Syntax When to Use It

$_GET['varname'] When the method of passing the variable is the "GET" method in
HTML forms

$_POST['varname'] When the method of passing the variable is the "POST" method in
HTML forms

Table continued on following page

45

Chapter 2

Syntax When to Use It

$_SESSION|['varname'] When the variable has been assigned the value from a particular
session

$_COOKIE['varname'] When the variable has been assigned a value from a cookie

$_REQUEST['varname'] When it doesn’t matter ($_REQUEST includes variables passed
from any of the above methods)

$_SERVER|['varname'] When the variable has been assigned a value from the server

$_FILES['varname'] When the variable has been assigned a value from a file upload

$_ENV ['varname'] When the variable has been assigned a value from the operating
environment

If you do not retrieve the variables using this syntax, the variable value will appear to be empty in your
program and can cause you much grief in debugging!

Passing Variables Through a URL

46

The first method of passing variables between pages is through the page’s URL. You've undoubtedly
seen URLs such as this:

http://www.mydomain.com/news/articles/showart.php?id=12345

This is an example of passing variable values through the URL. In the preceding example, we are
requesting that the article with the ID number of “12345” be chosen for the showart . php program. The
text after the URL is called the query string.

You can also combine variables in a URL by using an ampersand (&), as in this example:
http://www.mydomain.com/news/articles/showart.php?id=12345&lang=en

This asks to retrieve the file with an ID of “12345” and the language presumably equal to “en,” for
English.

There are a few disadvantages to passing variables through a URL:
0 Everyone can see the values of the variables, so passing sensitive information isn’t really very
secure using this method.

O The user can change the variable value in the URL, leaving your site potentially open to show-
ing something you’d rather not show.

QO A user might also pull up inaccurate or old information using a saved URL with older variables
embedded in it.

Creating PHP Pages

Try It Out Using URL Variables

Let’s modify your program to show the URL variables in action.

1. Modify your moviesite.php file as follows (changes are in bold text):

<HTML>
<HEAD>

<TITLE>My Movie Site - <?php echo $favmovie ?></TITLE>
</HEAD>
<BODY>
<?php
//delete this line: define ("FAVMOVIE", "The Life of Brian");
echo "My favorite movie is ";
echo $favmovie;
echo "
";
Smovierate=5;
echo "My movie rating for this movie is: ";
echo $movierate;
?>
</BODY>
</HTML>

2. Save your moviesite.php file and start a new document in your text editor.

3. Type the following code:

<HTML>

<HEAD>

<TITLE>Find my Favorite Movie!</TITLE>

</HEAD>

<BODY>

<?php
echo "";
echo "Click here to see information about my favorite movie!";
echo "";

?>

</BODY>

</HTML>

4. Save this file as moviel . php and open it in your browser. Your screen should look like the one
in Figure 2-5.

5. Now click the link and see what you get (see Figure 2-6).

47

Chapter 2

[ET Find y Favorite Moviel - Micrasafl Internet Explorer oed
File Edit Miew Favorites Tools Help w
Qe - © - ¥ @ @ P Jromts @rese @ - 2F [J R P

fddress |] hitkp: iocshostimoviel php | Ede nis ®

Clicle hete to zee information about my favorts mowmel

&) Do

SJ Localintranet:

Figure 2-5

You see the value for $ favmovie as “Stripes” in the URL, as shown in Figure 2-6, but notice there is
nothing shown for the value in the body of your page, nor in the title as it’s supposed to be.

What went wrong? You guessed correctly if you said “register_globals”! This is a prime example of how
not retrieving the variables in the correct way can leave your pages not working and you perplexed.
Let’s modify the moviesite.php file to fix the mistake.

1. Edit the following lines in your program (as shown in bold text):

48

<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST['favmovie']l ?></TITLE>
</HEAD>
<BODY>

Creating PHP Pages

<?php
echo "My favorite movie is ";
echo $_REQUESTI['favmovie'];
echo "
";
Smovierate=5;
echo "My movie rating for this movie is: ";
echo $movierate;

?>
</BODY>
</HTML>

2. Now save your file and reopen moviel.php. The link should now work fine, and your screen
should look like the one in Figure 2-7.

Eile Edit View Favorites Tools Help o
Qe - @ - [¥] B @ POseorsn slormones @rede &) - [FH L, 2@
fddress |) hitkp: fiocshostjmoviesite. php?favmovis=Strip | Ede ks ®

My favorite movie is
My movie rating for this mewie is: 5

ﬂ Done .:I Local intranst

Figure 2-6

49

Chapter 2

y Movie Site - Stripes - Microsoft Intemet Explorer SE=]|
File Edit Miew Favorites Tools Help i
@Back > | |ﬂ .ﬂ _} ,. Search }'i'_‘l-'Fa\:uItes A vedia £4) o b _i = L ﬁ @
Address [{B] httpfflocabost moviesite phpZfavmovie=Strip | Ede ks ®

My favorite movie is Stripes
My movie rating for this mowe i 5

&) Do

SJ Localintranet:

Figure 2-7

How It Works

A few notes about your program we should point out:

Q

50

As you can see from the “Title” section of your program, PHP code can be inserted in a straight
line in the midst of your HTML code. This is helpful when you just need to insert one tidbit of
information grabbed from PHP.

Also from that same line, you can insert PHP information anywhere in your HTML program,
including the title.

You saw firsthand the effects of not taking into account register_globals when accessing a
variable from another page, but did you notice that when we referred to $movierate, we did
not have to include the register_globals syntax? This is because we kept the variable’s value
within our page and did not get the information from another page or source.

We chose $_REQUEST for our variable syntax because it really didn’t matter to us in our example
where the value for $ favmovie came from. We were not trying to validate anything or prevent
an unauthorized user from entering this page of the site: We simply wanted to pass the value
across.

Creating PHP Pages

Special Characters in URLs

Passing variables through a URL poses an interesting problem if there are spaces, ampersands, or other spe-
cial characters in the value of your variable. Luckily, there are substitutes for special characters that maintain
the integrity of the variables’ values. There is a special function to use when passing these values through a
URL called urlencode (). If you wanted to change your favorite movie from “Stripes” to “Life of Brian,”
you would use urlencode () to encode the value and insert the proper HTML special characters.

To try this out, perform these steps:

1. Add the following line in your moviel.php file:

Smyfavmovie=urlencode ("Life of Brian");

2. Change this line:

echo "";

3. Save the file and open it again in your browser. Clicking the link now displays the page shown
in Figure 2-8.

ly Movie Site - Life of Brian - Microsoft Internet Explorer E@
File Edit View Favorites Tools Help &
Q Back -) Iﬂ lﬂ -_;_ } Search 'E'_:__(Fawrrtes @ reda L2 - '_i =1 ﬁ @
Lﬂl‘.ra-:c;.é}h}h—\-u'u.«hu iesite php?F: jo=Life-+of+Eri EGO Links ®
My favorite movie is Life of Brian
My movie rating for this mewie is: 5
8] Dore SJ Localintranet:

Figure 2-8

51

Chapter 2

Passing Through Sessions

As mentioned before, passing a value through a URL is fine if the information is not of a particularly
sensitive nature or if it is relatively static and there is no danger of a user pulling up old information
from a previously saved page. If you are transmitting information such as usernames or passwords,
however, or personal information such as addresses and phone numbers, there are better methods for
passing the information while keeping it private.

What Is a Session?

A session is basically a temporary set of variables that exists only until the browser has shut down (unless
you set this up differently in your php.ini file, which is another story altogether). Examples of session
information include a session ID, and whether or not an authorized person has “logged in” to the site.
This information is stored temporarily for your PHP programs to refer back to whenever needed.

Every session is assigned a unique session ID, which keeps all the current information together. Your
session ID can either be passed through the URL or through the use of cookies. Although for security
reasons, it is preferable to pass the session ID through a cookie so that it is hidden from the human eye,
if cookies are not enabled, the backup method is through the URL.

This setting is determined in your php. ini file. If you would like to force the user to pass variables
through cookies (instead of allowing a backup plan), you would set the following line in your file:

session.use_only_cookies = 1

To begin a session, use the function session_start (). Because we have register_globals set to
“off,” you should not use the session_register () function you may have seen in other PHP scripts.
Make sure before using sessions that your php.ini file has been modified to show a valid path in the
session.save_path variable, as described in Chapter 1.

First, you need to decide what information will be stored in your session. Anything that has been stored
in a database can be retrieved and stored temporarily along with your session information. Usually, it is
information such as username and login information, but it can also be preferences that have been set at
some point by the user. An SID (session ID) will also be stored in the session array of variables.

Try It Out Passing the Visitor's Username

52

Let’s say you want to pass your visitor’s username and whether or not he or she has authentically
logged into the site between the first page and the second page. Because we won't discuss the use of
forms until later in this chapter, we'll fake it for now.

Follow these steps:

1. Change your moviel.php file to include the following lines (shown in bold).

<?php

session_start();
$_SESSION|['username']="Joel2345";
$_SESSION['authuser']=1;

Creating PHP Pages

2
3

4,

?>

<HTML>

<HEAD>

<TITLE>Find my Favorite Movie!</TITLE>

</HEAD>

<BODY>

<?php
Smyfavmovie=urlencode("Life of Brian");
echo "";
echo "Click here to see information about my favorite movie!";
echo "";

?>

</BODY>

</HTML>

. Now save your moviel.php file.
. Openmoviesite.php to make the following changes (shown in bold text).

<?php
session_start();
//check to see if user has logged in with a valid password
if ($_SESSIONI['authuser']!=1) {
echo "Sorry, but you don't have permission to view this page, you loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST['favmovie'] ?></TITLE>
</HEAD>
<BODY>

<?php
echo "Welcome to our site, ";
echo $_SESSION|['username'];
echo "!
";
echo "My favorite movie is ";
echo $_REQUEST['favmovie'];
echo "
";
Smovierate=5;
echo "My movie rating for this movie is: ";
echo $movierate;

?>
</BODY>
</HTML>

Click the link in moviel.php, and you should see the text for moviesite.php shown in
Figure 2-9.

53

Chapter 2

Wy Movie Site - Life of Brian - Microsoft Internet Explorer PO
Eile Edit View Favorites Tools Help W
Qs - © - H @G P raons @rete @3- % B L B D
Address i) httpsfflocahost moviesite. php2favmovie=Life-+of 4Bri | Ee ks

Welcome to our site, Joe 123451
My favorite movie is Life of Brian
My movie rating for this mowe i 5

8] Dore SJ Localintranet:

Figure 2-9

How It Works

There are a few important things to point out about this procedure:

Q All the session information is at the top of the page, before any HTML code. This is very important!
If there is even a leading space before the PHP code at the top of the page, you will get this error:

Warning: session_start(): Cannot send session cache limiter - headers already sent
(output started at c:\program files\Apache Group\Apache2\test\moviesite.php:1) in
c:\program files\Apache Group\Apache2\test\moviesite.php on line 2

There are some other situations that will give you the “headers already sent” error, which we
discuss in Chapter 17.

0 Refer to the session variables using the register_globals syntax, $_SESSION['varname'];if you
don’t, the variables will contain empty values.

0 You must use the function session_start () at the beginning of every page that references the
session variables.

0O Weused an if statement, which we delve into later in this chapter. It’s a good idea to take a
quick glance at this syntax, just to familiarize yourself with it.

54

Creating PHP Pages

What Is a Cookie?

Cookies are tiny bits of information stored on your Web site visitor’s computer. There appears to be
some sort of paranoia about using cookies; thus, many people choose to disable this feature in their Web
browsers. While cookies can, in theory, be intercepted to gain information such as a person’s IP address
and operating system, cookies are primarily used for storing information only. There are also a few ad
campaigns that have developed technology to utilize cookies to track your browsing habits, and many
people see this as an invasion of privacy. Also, because cookies are stored in a commonly named direc-
tory, anyone with access to someone else’s computer (either via a hack or physical location) can poten-
tially open cookie files and glean information about the owner. Because of these possibilities it’s not a
good idea to store any potentially private information on a computer.

For more information on cookies and the potential security risks (however minute), you are encouraged
to visit the W3 Security FAQ Web site at www.w3 .org/Security/faq/wwws£2.html.

All that being said, because your visitors may either have cookies turned off or may physically delete
cookies from their computers, relying on cookie information from a Web development standpoint proba-
bly isn’t the brightest idea.

So why do developers use cookies, anyway? The advantage to storing information in a cookie versus a ses-
sion is longevity. Sessions alone can’t store information for more than the length of time the browser win-
dow is open. Like the elusive and mean-spirited video game that loses all high scores once it’s unplugged,
once a browser closes, all session information is lost. Cookies, on the other hand, can live on a person’s
computer until the developer has decided it’s been long enough and they automatically “die.” It is because
of this longevity that cookies are fabulous for storing information such as a visitor’s username or language
preferences. These are the pieces of information that users won’t have to retype every time they visit your
site, but if for some reason someone did get wind of the information, it wouldn’t be the end of the world.

We mentioned earlier that sessions alone can’t store information for very long. However, we can alter
this limitation if we use sessions in conjunction with cookies. If your sessions are passing variables using
cookies, you can set the life of these cookies to longer than the life of the browser using the
session.cookie_lifetime configuration in your php.ini file. Keep in mind, however, that not only
will the session information be stored on the person’s computer; the session ID will be stored, and that
can cause you problems later on.

To set a cookie, you use the appropriately named setcookie () function. When setting a cookie, you can
determine that the following information be set along with it:

Q Cookie name (this is mandatory).

Q Value of the cookie (such as the person’s username).

Q Time in seconds when the cookie will expire. (Based on a UNIX timestamp, but you can set it
using the following syntax: time () +60*60*24*365 keeps the cookie alive for a year. This is
optional, but if it is not set, the cookie will expire when browser is closed.)

Q Path (the directory where the cookie will be saved—default is usually sufficient; this is optional).
QO Domain (domains that may access this cookie—this is optional).

a Whether a cookie must have a secure connection to be set (defaults to 0; to enable this feature
set this to 1).

55

Chapter 2

You make each of these settings as follows:
setcookie('cookiename', 'value', 'expiration time', 'path', 'domain',
'secure connection');

As you know by now, those values will be referenced in the script as $_COOKIE[' cookiename'].

Try It Out Setting a Cookie

Let’s have the Web site set a cookie on Joe’s machine so that he (theoretically) doesn’t have to type his
username (Joe12345) every time he comes back to visit. To do this, follow these steps:

1. Modify your moviel.php file as shown:

<?php

setcookie('username', 'Joe', time()+60);
session_start();

//delete this line: $_SESSION['username']="Joel2345";
$_SESSION['authuser']=1;

?>

<HTML>

<HEAD>

<TITLE>Find my Favorite Movie!</TITLE>

</HEAD>

<BODY>

<?php
Smyfavmovie=urlencode ("Life of Brian");
echo "";
echo "Click here to see information about my favorite movie!";
echo "";

?>

</BODY>

</HTML>

2. Save the file.
3. Make the following changes to your moviesite.php file:

<?php
session_start();
//check to see if user has logged in with a valid password
if ($_SESSION['authuser']!=1) {
echo "Sorry, but you don't have permission to view this
page, you loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST['favmovie'] ?></TITLE>
</HEAD>
<BODY>

56

Creating PHP Pages

<?php
echo "Welcome to our site, ";
echo $_COOKIE['username'];
echo "!
";
echo "My favorite movie is ";
echo $_REQUEST['favmovie'];
echo "
";
Smovierate=5;
echo "My movie rating for this movie is: ";
echo $movierate;

?>
</BODY>
</HTML>

4, Save the file.

5. Open a new browser window (in case we have any session information from the previous
example lingering about) and open the moviel .php file. Your screen should look like the one in

Figure 2-10.
¥ Mavie Site - Lite of Brian - nternet Explorer BEE|
File Edit Miew Favorites Tools Help ﬂ"
O - @ [¥ @ @ P Yrovones @rete &) 2z B |] 3D
;‘«er'.k:ﬂ!.éjh}h-\-u'u.-ﬂ-u issite.php?f: je=Lifa+of+EHi Eﬁso Links ®

Welcome to our site, Joe!
My favorite movie is Life of Brian
My mowie rating for thiz mowe is: 5

é] Done ‘J Local intranet

Figure 2-10

57

Chapter 2

How It Works

When using cookies, remember the following:

0 Like sessions, cookies must be placed at the very tip-top of the page, before your first <HTML>
line. Otherwise, you get the ol” “headers already sent” error.

0 If you didn’t notice, we changed the username from Joe12345 when we were using sessions, to
Joe when we were using cookies. This was to double-check that the information was coming
from the cookie and not the session.

0 We set the expire time for the cookie to 60 seconds so we could play with and test our cookies
without having to wait around for them to kick off. For a normal application storing usernames,
it would be logical to set this higher.

0 Unlike sessions, cookie information can’t be accessed in the current page where the cookies
have been set. You have to move on to the next page for the cookie to be set and accessible to
your program.

Passing Through Forms

Up until now, we’ve passed information among pages successfully, but we’ve been the ones to supply all
the information, not the visitor. While it would be a great world if we really knew that much about our
Web site visitors, it might get a little labor-intensive on our part. What do you say we let them supply us
with information for a change?

If you've never filled out a form online, then you have probably been living in a cave somewhere with
no Internet access. Forms are the great Venus Fly Traps just lying in wait to gobble up useful information
from Web site visitors. Forms allow your Web site to be truly interactive; they take data from the user
and send it off somewhere where it gets massaged, manipulated, perhaps stored, and then some result is
sent back to the user. While we discuss forms in greater detail in Chapter 5, we will briefly touch on
them here so you get a basic understanding of how they work.

Fast Primer on Forms
In case you are a bit rusty on the syntax of forms, or if you just need a quick reference, here is a quick,
down-and-dirty discussion of forms.
Forms are coded in HTML and stay in HTML.

A form is made up of four parts:

O Opening tag line, indicated by <FORM> tag. This tag line must include an action and a method.
An action gives the form a URL or path to another program that will take the data included in
the form and carry it from there. A method (GET or POST) tells the form how the data is to be
carried. (POST is, generally speaking, the preferred method because it’s more secure.)

0O Content of the form, including input fields. Input fields are the areas where the user types in
the information (or selects it in the case of a checkbox or radio button). An input field must
include a type and a name, and can include other parameters, such as maxlength.

58

Creating PHP Pages

The type of input field can be one of many different selections, the most common being:

O Text. Used for collecting from 2 characters up to 2,000 characters. The parameter used to
limit the number of accepted characters for a particular input field is maxlength. For
large input fields (such as comments) the input field text area is recommended over
text.

O Checkbox. Used to allow users to make a selection from a list of choices; also permits
users to make more than one choice. Individual choices must be indicated with a value
parameter.

0 Radio. Also known as radio buttons. Used for allowing users to choose from a list, but they
permit only one choice. Individual choices must be indicated with a value parameter.

0 Options. Also known as drop-down boxes. Used for allowing users to choose from a
list, Individual choices must be indicated with a value parameter.

O Password. Hides what the user is typing behind asterisks, but does not compromise the
value of the variable.

The name of the input field will be known as your variable name in your PHP program. In
order to avoid issues with PHP parsing, you should name your input fields according to the
PHP variable naming guidelines covered earlier in this chapter.

0 Action button(s) or images typically submit/clear or user-defined button, technically consid-
ered input types as well. These are indicated with the input types submit, reset, and image
for user-created buttons.

0 Closing tag line, indicated with </FORM> tag.

Got it?

Try It Out Using Forms to Get Information

Because our program is slowly increasing in size, for this section switch to a text editor that will add line
numbers to your document. If you are using a text editor that inserts these line numbers already, you do
not need to worry about adding these in. Otherwise, you may want to add periodic line numbers as
comments to help you keep track. Besides adding line numbers to our program, you are also going to
insert comments to help you keep track of what is going on.

Now let’s look at how to use forms to get information from visitors:

1. Open your moviel.php file and make the following changes:

<?php

//delete this line: setcookie('username', 'Joe', time()+60);
session_start();

$_SESSION['username']=$_POST['user'];
$_SESSION['userpass']=$_POST['pass'];

59

Chapter 2

$_SESSION['authuser']=0;

//Check username and password information

if (($_SESSION['username']== 'Joe') AND
($_SESSION['userpass']== '12345"))

{

$_SESSION['authuser']=1;

}

else

{

echo "Sorry, but you don't have permission to view this
page, you loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php

Smyfavmovie=urlencode("Life of Brian");
echo "";
echo "Click here to see information about my favorite movie!";
echo "";

?>

</BODY>

</HTML>

2. Now make these changes to your moviesite.php file.

<?php
session_start();
//check to see if user has logged in with a valid password
if ($_SESSION['authuser']!=1) {
echo "Sorry, but you don't have permission to view this
page, you loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST['favmovie'] ?></TITLE>
</HEAD>
<BODY>
<?php
echo "Welcome to our site, ";
//delete this line: echo $_COOKIE['username'];

60

Creating PHP Pages

echo $_SESSION|['username'];

echo "!
";

echo "My favorite movie is ";

echo $_REQUEST['favmovie'];

echo "
";

Smovierate=5;

echo "My movie rating for this movie is: ";
echo Smovierate;

?>
</BODY>
</HTML>

3. Startanew file:

<?php
session_unset () ;

?>

<html>

<head>

<title>Please Log In</title>
</head>

<body>
<form method="post" action="http://localhost/moviel.php">
<p>Enter your username:
<input type="text" name="user">
</p>
<p>Enter your password:
<input type="password" name="pass">
</p>
<p>
<input type="submit" name="Submit" value="Submit">
</p>
</form>
</body>
</html>

4. Save this file as 1login.php.

5. Load this file into your browser and login with the username of Joe12345 and the password
12345.

Let’s see what happens; if the authorization script works, the screen you should see looks like the one
shown in Figure 2-11.

Now try logging in with the correct Username=]Joe/Password=12345 combination. Your moviel.php
site should load as it did before, and the link should take you to the moviesite.php page.

61

Chapter 2

http:/localhost/moviel.php - Microsoft Intemet Explorer ’ @
File Edit View Favorites Tools Help i
Qe - © - [¥] B @ Osearch Slormones @mede &) 2 [H L, S @
fddress |] htp focshostimoviel php | Ede ks ®

Sotry, but you don't have permission to view this page, you loser!

-'é‘l Do SJ Localintranet:

Figure 2-11

How It Works

In login.php, we first release any variables from sessions that may be lingering around with the com-
mand session_unset (). Then we ask for two variables from the user: username and password (vari-
able names user and pass, respectively). These are submitted to moviel.php (the “action” in the form)
via the POST method (the “method” in the form). This is why we have to refer to them using the $_posT
syntax beginning of moviel.php.

Our file moviel. php actually accomplishes several things. It:

0 Starts the session and, by default, registers the variables. Values are set based on the information
sent from the form in login.php.

O Checks to see if the username and password are acceptable. In real life we would match this
information to a database for authentication and verification.

O Sets the authuser to 1 if the acceptable username/password combination has been supplied, which
grants the user permission to then proceed to other pages in the site, such asmoviesite.php.

Q If the username/password combination is not acceptable, a tactful error message is displayed to
the user.

62

Creating PHP Pages

As the information is passed on to moviesite.php as before, the only thing moviesite.php has to
check for is that the user is authorized through the authuser variable.

Using if/else Arguments

You've just seen how if/else arguments can be used to set variables and display messages; you will
find this an invaluable tool for doing many other things. Like a big floppy-eared, slobbery hound dog,
if and 1f/else statements can be a programmer’s best friend.

Using if Statements

Unlike with some other programming languages, in PHP, the i f statement can be used alone. The syn-
tax is as follows:

if (conditionl operator condition2) action to be taken if true;
As in this example:
if ($stockmarket >= 10000) echo "Hooray! Time to Party!";

If you are creating more than a simple statement that will easily fit on one line, you must use brackets
({}) to enclose your “action to be taken if true” section:

if ($stockmarket >= 10000) ¢
echo "Hooray! Time to Party!";
Smood = "happy";
Sretirement = "potentially obtainable";

}

Operators

The operators used to compare the two conditions are similar to those you're likely to be familiar with.
Alist of these operators follows. Please note that these are only for use within the if statement itself and
are not to be used when assigning values to variables.

Operator Appropriate Syntax
equal to ==

not equal to I=or <>

greater than >

less than <

greater than or equal to >=

less than or equal to <=

equal to, and data types match ===

63

Chapter 2

Special Syntax Considerations

You should pay special attention to the use of semicolons in if statements. Please note semicolons are
needed in individual lines within the i f statement, but not at the end of the if statement itself. Also,
please take special note of the use of the double equals sign when comparing condition1 and condition2.
This takes some getting used to for the newbie and can slip you up if you're not careful.

The way you indent your lines does not matter to PHP, but it matters to the human eye, so if possible,
try to keep your indents consistent and easy to read.

Try It Out Using if

Let’s start off by trying a brief program to illustrate i f by itself.

1. Open your text editor and type the following program:

<html>

<head>

<title>How many days in this month?</title>
</head>

<body>

<?php

Smonth=date("n") ;

if (Smonth==1) echo "31";
if ($month==2) echo "28 (unless it's a leap year)";
if ($month==3) echo "31";
if (Smonth==4) echo "30";
if (Smonth==5) echo "31";
if ($month==6) echo "30";
if (Smonth==7) echo "31";
if (Smonth==8) echo "31";
if ($month==9) echo "30";
if (Smonth==10) echo "31";
if ($Smonth==11) echo "30";
if ($month==12) echo "31";
?>

</body>

</html>

2. Save this as date.php and open it in your browser.

The result should display the number of days in the current month.

How It Works

64

We get the value for variable $month by tapping in to one of PHP’s numerous built-in date functions;
date("n") returns a value equal to the numerical equivalent of the month as set in your server, such as
1 for January, 2 for February, and so on. (We talk more about date () in Appendix C.)

Then we test the i f statements on each potential value for $month until we get the right answer. If the first
if statement is false, the program immediately goes to the next line and executes it. When it gets to the
right month, it carries out the rest of the statement in the line, and then goes to the next line and executes

it as well. It does not stop once it comes across a true statement, but continues on as if nothing happened.

Creating PHP Pages

Using if and else Together

Using if by itself is fine and dandy in some cases, but there are other times when the 1f/else combina-
tion is more appropriate. For example, suppose you want to show a certain message on your site, but
have a holiday message you’d like shown for the month of December? Or suppose that on your movie
review site you want to show an abbreviated version of a movie review for those who haven’t yet seen the
movie? It’s these “either/or” cases where you need to whip out the all-powerful if/else combination.

Try It Out Using if and else

Let’s keep with the date theme to let the user know whether or not the current year is a leap year.
Follow these steps to accomplish this:

1. Open your text editor and enter the following code:

<html>

<head>

<title>Is it a leap year?</title>

</head><body>

<?php

$leapyear=date("L") ;

if ($leapyear==1) echo "Hooray! It's a leap year!";
else echo "Aww, sorry, mate. No leap year this year.";
?>

</body>

</html>

2. Save this file as leapyear.php and open it in your browser.

You should now see a statement based on whether or not the current year is a leap year.

How It Works

When the program evaluates the if statement, if it is false, it jumps down to the next line of code as in
the previous example. When the program reads the else part of that statement, it executes it and moves
down to the next line. This part is basically the same as when 1if is used alone. However, when the i £
statement is true, the rest of the line is executed and the program jumps down to the next line. Upon
seeing the else statement, it skips over that and continues on with the program.

If you were to take out the word else and leave the rest of the statement, the “Aww, sorry, mate”
message would appear every time, which is something we don’t want to happen.

Using Includes for Efficient Code

Are you getting sick of typing the same things over and over again? The makers of PHP have blessed us
frustrated developers with a little time-saving device called “includes” that save you from reentering
frequently used text over and over.

65

Chapter 2

Includes are PHP files tucked into other PHP files. Imagine that you wanted to type the same message on
every page of your site. Perhaps it is your company’s name and address, or maybe today’s date. If you
are coding each page of your site from scratch, this is not very efficient for a couple of reasons:

O You are typing the same information over and over again, which is never good.

O Inthe case of an update or a change, you have to make the change in every single page of your
site. Again, this is redundant and time consuming, and it elevates the potential for human error.

A solution to this problem is to use an include. Includes can use any extension, but are sometimes refer-
enced as .inc files. If you are adding potentially sensitive information, for example server variables such
as passwords, then it is advisable to save these in .php files so they are never accessible to anyone
because the information is parsed before it is sent to the browser. An “include” is included in another file
while it is being parsed, and then the final output is sent to the browser. You can add an include in any
other file, and it doesn’t have to be inserted all the time.

Try It Out Adding a Welcome Message

Let’s say we want every page in the movie review site to show a welcome message and perhaps today’s
date. We want to create a file that includes this information, so follow these steps:

1. Open your text editor and type the following:

<div align="center">Welcome to my movie review site!

<?php

echo "Today is ";

echo date("F d");

echo ", ";

echo date("Y");

?>

</div>

2. Save this file as header . php.

3. Toinclude this file in the three existent movie Web site files, add the following line in the begin-
ning of the <body> section of the HTML to login.php, moviel.php, and moviesite.php:

<?php include "header.php" ?>
4. Save your files.
Let’s look at the files again. If you open login.php, you should see the screen shown in Figure 2-12.

You will see the same two lines on every page where you have included the header . php file.

66

Creating PHP Pages

[ET Please Log In - Microsoft Internet Explorer

O[]

Eile Edit View Favorites Tools Help i

Q- © [N @ G P Ycraies @ @ 3 %) B P

fddress |] hitp: fiocshostlogin php v Ele ks ®

Welcome to my movie review site!
Taoday iz August 01, 2003
Enter your usermarme;
Enter your password: |
Submit

8] Dore %J Localintranet:
Figure 2-12

How It Works

When PHP comes across an include line in a script, it stops working on the current program and imme-
diately shoots on over to whatever file it’s told to include. The server parses that second file and carries
the results back to the original file, where the parsing continues from where it left off.

Suppose we decided we didn’t really want the date to be shown with the trailing zeroes. Luckily, PHP

has a solution for that when formatting the date function. Make the following change to your
header .php file and see what happens:

<div align="center">Welcome to my movie review site!

<?php

67

Chapter 2

echo "Today is ";
echo date("F j");
echo ", ";

echo date("Y");
?>

</div>

Your problem is fixed, and it’s fixed in all the pages in your site, in one fell swoop.

Using Functions for Efficient Code

As with includes, using functions makes your code (and your typing) more efficient and easier to debug.

Functions are blocks of code that can be called from anywhere in your program. They enable you to exe-
cute lines of code without having to retype them every time you want to use them. Functions can help
set or update variables, and can be nested. You can also set a function to execute only if a certain crite-
rion has been fulfilled.

Functions are mini-programs within themselves. They don’t know about any other variables around
them unless you let the other variables outside the function in through a door called “global.” We use
the global $varname command to make an outside variable’s value accessible to the function. This
does not apply to any variables passed with any variables that are global by default, such as $_posT,
$_GET, and so on.

Your function can be located anywhere within your program and can be called from anywhere within
your program (this is a change from PHP3). Therefore, you can list all your commonly used functions at
the top of your program, and they can all be kept together for easier debugging. Better yet, you can put
all your functions in a file and include them in your programs. Now we’re rolling!

PHP provides you with a comprehensive set of built-in functions (which can be found in Appendix C),
but sometimes you need to create your own customized functions.

Try It Out Working with Functions

68

Let’s see functions in action by following these steps:

1. Open yourmoviel.php page and modify it as shown in bold text:

<TITLE>Find my Favorite Movie!</TITLE>

</HEAD>

<BODY>

<?php include "header.php"; ?>

<?php
Smyfavmovie=urlencode("Life of Brian");
echo "";
echo "Click here to see information about my favorite movie!";
echo "";
echo "
";
echo "";
echo "Click here to see my top 5 movies.";

Creating PHP Pages

echo "";
echo "
";
echo "";
echo "Click here to see my top 10 movies.";
echo "";
?>
</BODY>
</HTML>

2. Now modify moviesite.php as shown:

<?php
session_start();
//check to see if user has logged in with a valid password
if ($_SESSION['authuser']!=1) {
echo "Sorry, but you don't have permission to view this
page, you loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST['favmovie'] ?></TITLE>
</HEAD>

<BODY>

<?php include "header.php"; ?>
<?php

function listmovies_1()

{

echo "1. Life of Brian
";
echo "2. Stripes
";

echo "3. Office Space
";
echo "4. The Holy Grail
";
echo "5. Matrix
";

}
function listmovies_2()
{
echo "6. Terminator 2
";
echo "7. Star Wars
";
echo "8. Close Encounters of the Third Kind
";
echo "9. Sixteen Candles
";
echo "10. Caddyshack
";
}

if (ISSET($_REQUEST['favmovie'])) {
echo "Welcome to our site, ";
echo $_SESSION|['username'];
echo "!
";
echo "My favorite movie is ";
echo $_REQUEST['favmovie'];
echo "
";
Smovierate=5;
echo "My movie rating for this movie is: ";
echo Smovierate;

69

Chapter 2

}
else {
echo "My top ";
echo $_REQUEST['movienum'];
echo " movies are:";
echo "
";
listmovies_1();
If ($_REQUEST['movienum'] == 10) listmovies_2();
}
?>
</BODY>
</HTML>

3. Now you must go through the login.php file before you can see your changes. Log in as Joe
and use the password 12345. Your moviel . php page should look like the one in Figure 2-13.

4. Click the “5 Movies” link. Your screen should look like Figure 2-14.

5. Goback and click the “Top 10” link; your screen will look like the one in Figure 2-15.

Thd iy Favorits Moviel - MicrosoR Intermet Explorer =0
File Edit Miew Favorites Tools Help @
ggmﬁ:- (5] Eﬂ éﬂ 73 }ﬁsumh'ﬁ?ﬁmmms @ reda £ ?3":;i:; J J%)]

Addr .-s:-i_-é_]htl‘n:!.ﬂocmnmvlel.nm |:] Elce ks ®

Welcome to my movie review site!
Today is August 1, 2003
Clicl: here to gee information about my favonts mowe|
Click here to see my top 5 movies
Click here to see my top 10 mowies.

8] Dore SJ Localintranet:

Figure 2-13

70

Creating PHP Pages

y Movie Sita - MicrosoR Internat Explorer BEE|
Eile Edit VWiew Favorites Tools Help i
@M - 9 E] I_;j 7N):" Search ¢ Favorites @ Hedia) :._?:_;. _;F = a% €}]

Address L,e__‘] http: [fiocahost

v Be ke

Welcome to my movie review site!
Today is August 1, 2003
My top 5 movies are;
1. Life of Brian
2, Stripes
3. Office Space
4. The Holy Grail
5. Matrix

8] Dore SJ Localintranet:

Figure 2-14

How It Works

This has been a rudimentary look at how to use functions, but you can see how they work. The
moviel.php page gave users the option of looking at five or ten of our favorite movies. Whichever link
they choose sets the value for $movienum.

In addition, moviesite.php accomplishes several other tasks:

Q Itsets up the functions 1istmovies_1 () and listmovies_2 (), which prints a portion of the
total top 10 list.

Q We also added this line:

if (isset($S_REQUEST]['favmovie'])) {

71

Chapter 2

The isset function checks to see if a variable has been set yet (this doesn’t check the value, just
whether or not it has been used). We didn’t want to show users the information about our
favorite movie if they didn’t click on the link to see it, so we 1£/else’d it right outta there. If
the variable favmovie has not yet been sent, the program jumps on down to the else portion.

QO The program performs another if statement to check the value of movienum to run the correct
corresponding functions.

O Italso references the movienum variable for the title of our list, so the program displays the cor-
rect number of movies in the list.

As you get more advanced in your PHP programming skills, you might store a list of all your favorite
movies in a database and reference them that way, changing your listmovies () function to list only
one movie at a time and running the function movienum a number of times. You could also give your
users the option of choosing how many movies they want displayed, perhaps through a drop-down box
or radio buttons. That would be your new movienum variable.

£] My Movie Site - - Microsoft Internet Explorer N— — - N— - =Ex|
Eile Edit View Favorites Tools Help '&'
Qe -) - [¥] [B) (| Osenh formotes @medn &8 | (3 o 53| ar% @

Addr .-::-i_-é_]htl‘n:I.Nocatm.ﬂm\-leslte.phwmovla'wn:IU |ﬂ Elce ik ®

Welcome to my movie review site!
Today is August 1, 2003

My top 10 movies are:
1. Life of Brian
2. Stripes
3 Office Space
4. The Holy Grail
5. Matrix
6. Terminator 2
7. Star Wars
8 Cloge Encounters of the Third Kind
9. Siaeen Candles
10, Caddyshack

8] Dore SJ Localintranet:

Figure 2-15

72

Creating PHP Pages

A Word About Arrays

We’ve talked about variables and how they are used, but what if we had more than one value assigned
to that variable? That, my friends, is a good old-fashioned array. Arrays are nothing more than lists of
bits of information mapped with keys and stored under one variable name. For example, you can store
a person’s name and address or a list of states in one variable.

Array Syntax

Let’s store a person’s name and age under one variable name. We can do this as follows:

<?php
Sname = array("firstname"=>"Albert", "lastname"=>"Einstein", "age"="124");

echo $name["firstname"];

?>
This gives you an output of “Albert” and all the values are still stored in the variable name name. You
can also see how we keep track of the information inside the variable with the use of keys such as

“firstname” and “lastname.”

You can also set an array value in the following way:

<?php

Sname["firstname"] = "Albert";
Sname["lastname"] = "Einstein";
Sname["age"] = 124;

?>

This is the equivalent of the preceding example.

If you wanted to simply store a list and not worry about the particular order, or what each value should
be mapped to (such as a list of states or flavors of shaved ice), you don’t need to explicitly name the keys
and PHP will assign invisible internal keys for processing. This would be set up as follows:

<?php

S$flavor[] = "blue raspberry";
$flavor[] = "root beer";
sflavor([] = "pineapple";

?>

Sorting Arrays

PHP gives us many easy ways to sort array values. We've listed some of the more common array-sorting
functions in the table that follows, although a more extensive list can be found in Appendix C.

73

Chapter 2

Function Description

arsort (array) Sorts the array in descending value and maintains the
key/value relationship

asort (array) Sorts the array in ascending value and maintains the
key/value relationship

rsort (array) Sorts the array in descending value

sort (array) Sorts the array in ascending value

Try It Out Sorting Arrays

Before we go further, let’s do a quick test on sorting arrays so you can see how the array acts when it is
sorted. Type the following program in your text editor and call it sorting.php.

<?php

$flavor[] = "blue raspberry";
Sflavor[] = "root beer";
$flavor[] = "pineapple";

sort ($flavor) ;
print_r($flavor) ;
?>

How It Works

Notice anything weird in the preceding code? Yes, we’ve introduced a new function: print_r. This sim-
ply prints out information about a variable so that people can read it. It is frequently used to check array
values, specifically. So the output would look like that in Figure 2-16.

You can see that the sort () function has done what it’s supposed to and sorted the values in ascending
alphabetical order. You can also see the invisible keys that have been assigned to each value (and reassigned
in this case).

foreach Constructs

There exists a foreach command that will apply a set of statements for each value in an array. What an
appropriate name, eh? It works only on arrays, however, and will give you a big old error if you try to
use it with another type of variable.

Your syntax for the foreach command looks like this:

<?php

$flavor[] = "blue raspberry";
$flavor[] = "root beer";
Sflavor[] = "pineapple";

echo "My favorite flavors are:
";

foreach ($flavor, as S$Scurrentvalue) {
//these lines will execute as long as there is a value in S$flavor
echo $currentvalue "
\n";

74

Creating PHP Pages

: TEa
Eile Edit View Favorites Tools Help L
@m - l\‘) @ @ .{)b /"_jsean:h *kaes e‘medla @ ':3' »_;, |:_- Lo é% L"
Address @htm:;hmlwnnq.dp v Be ke

Array ([0] == blue raspberry [1] == pineapple [2] == root beer)

EDA‘J\G ‘j Local intranst

Figure 2-16

This produces a list of each of the flavors in whatever order they appear in your array.

TryltOut | Adding Arrays

Let’s see what happens when we add arrays to the moviesite.php file. Let’s also sort them and use the
foreach construct. Changes are in bold:

<?php
session_start();
//check to see if user has logged in with a valid password
if ($_SESSION['authuser']!=1) {
echo "Sorry, but you don't have permission to view this
page, you loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST['favmovie'] ?></TITLE>
</HEAD>

75

Chapter 2

<BODY>

<?php include "header.php"; ?>

<?php

$favmovies = array("Life of Brian","Stripes","Office Space","The Holy Grail",
"Matrix", "Terminator 2", "Star Wars", "Close Encounters of the Third Kind",
"Sixteen Candles", "Caddyshack");

//delete these lines:

function listmovies_1()

{
echo "1. Life of Brian
";
echo "2. Stripes
";
echo "3. Office Space
";
echo "4. The Holy Grail
";
echo "5. Matrix
";

function listmovies_2()
{
echo "6. Terminator 2
";
echo "7. Star Wars
";
echo "8. Close Encounters of the Third Kind
";
echo "9. Sixteen Candles
";
echo "10. Caddyshack
";
}
//end of deleted lines

if (ISSET(S_REQUEST['favmovie'])) {
echo "Welcome to our site, ";
echo $_SESSION|['username'];
echo "!
";
echo "My favorite movie is ";
echo $_REQUEST['favmovie'];
echo "
";
Smovierate=5;
echo "My movie rating for this movie is: ";
echo S$movierate;

else {
echo "My top 10 movies are:
";

if (ISSET($_REQUEST['sorted'])) {
sort ($favmovies);

}

//delete these lines

echo $_REQUEST['movienum'];
echo " movies are:";

echo "
";

listmovies_1();
If ($_REQUEST['movienum'] == 10) listmovies_2();

76

Creating PHP Pages

//end of deleted lines

foreach ($favmovies as $currentvalue) {
echo $currentvalue;
echo "
\n";

}

?>
</BODY>
</HTML>

And let’s change moviel.php as shown here:

<?php

session_start();
$_SESSION['username']=$_POST['user'];
$_SESSION['userpass']=$_POST['pass'];
$_SESSIONI['authuser']=0;

//Check username and password information

if (($_SESSION['username']== 'Joe') AND
($_SESSION['userpass']== '12345'))
{
$_SESSIONI['authuser']=1;
}
else
{
echo "Sorry, but you don't have permission to view this page, you
loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php include "header.php" ?>
<?php

Smyfavmovie=urlencode("Life of Brian");
echo "";
echo "Click here to see information about my favorite movie!";
echo "";
echo "
";
//delete these lines
echo "";
echo "Click here to see my top 5 movies.";
echo "";
echo "
";
//end of deleted lines

77

Chapter 2

echo "";
echo "Click here to see my top 10 movies.";

echo "";

echo "
";

echo "";
echo "Click here to see my top 10 movies, sorted alphabetically.";
echo "";

?>

</BODY>
</HTML>

Now let’s log in with the 1ogin. php file (logging in as Joe, with password 12345), and when we get the
choice, let’s click both links that list the top 10 movies.

How It Works
Your screens should look like Figures 2-17 and 2-18.

SO

File Edit View Favorites Tools Help b

QM - 9 E] I__éj ;‘ j._"search 5.7 Favorites @ reda £ _jv _; =L a%)]

Address :_-E_] http: [flocahost fmoviesite php |ﬂ Go ks

£

Welcome to my movie review site!
Today is August 1, 2003
Iy top 10 movies are:
Life of Brian
Stripes
Office Space
The Holy Grail
Mdatriz
Terminator 2
Star Wars
Close Encounters of the Third ind
Soiteen Candles
Caddyshack

8] Dore SJ Localintranet:

Figure 2-17

78

Creating PHP Pages

[ET Wy Movie Site - - Microsoft Internet Explorer me|
File Edit View Favorites Tools Help i
Qs+ © A @G Lo Joraons @ @ 2~ % F[J) B P

addiess |] http: flocahostmoviesite, php?sorted=trus |ﬂ G0 Links |

Welcome to my movie review site!
Today is August 1, 2003
My top 10 movies are:
Caddyshack
Close Encounters of the Third Kind
Life of Brian
Matrix
Office Space
Soiteen Candles
Star Wars
Sipes
Terminator 2
The Holy Grail

-é} Dane SJ Localintranet:

Figure 2-18

We first put the movie list in one variable, $ favmovies, with the array function. Then we were able to
list them individually using the foreach construct in moviesite.php. We also added a link that would
allow users to show the list sorted alphabetically, by adding a variable named $_REQUEST [sorted].
When this variable was set to “true,” the sort () function would execute, and we passed that “true”
variable through the URL in the link.

You may have noticed a shortcoming in the program . . . okay, you may have noticed many shortcom-
ings, but one in particular stands out. We can no longer control how many movies are shown in our list.
We are stuck with showing the total number of movies in our array. There’s a way to fix that, which we
talk about next.

While You’re Here . . .

If you've had any background in programming, you’ve undoubtedly had some experience with a while
or do/while function. Just in case you've never heard of this (and maybe been living on Mars or some-
thing), let’s give a brief synopsis of this concept. A while command simply tells the server to execute a
command or block of commands repeatedly, as long as the given condition equals “true.”

79

Chapter 2

while checks for the condition at the beginning of the block of code, but do/while checks for the
condition at the end of the block, guaranteeing that the block executes at least once.

The following is an example of the while and do/while commands:

Snum = 1;

while ($num <= 5) {
echo $num;
echo "
";
Snum = Snum + 1;

Snum = 1;
do {
echo $num;
echo "
";
Snum = Snum + 1
} while ($num <= 5);

Both of the preceding snippets of code print the numbers 1 through 5, each on a separate line.

Try It Out Using the while Function

Let’s allow users to tell us how many movies they want to see, and let’s number the list as we did before,
using the while function.

Make the following changes to your moviel . php program:

<?php

session_start();

$_SESSION|['username']=$_POST['user'];
$_SESSION|['userpass']=$_POST['pass'];
$_SESSION['authuser']=0;

//Check username and password information

if ((S_SESSION['username']== 'Joe') AND
($_SESSION['userpass']== '12345"))
{
$_SESSION['authuser']=1;
}
else
{
echo "Sorry, but you don't have permission to view this
page, you loser!";
exit();
}
?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>

80

Creating PHP Pages

<?php include "header.php" ?>
<?php

smyfavmovie=urlencode("Life of Brian");

echo "";
echo "Click here to see information about my favorite movie!";

echo "";

echo "
";

//delete these lines

echo "";

echo "Click here to see my top 10 movies.";

echo "";

echo "
";

echo "";

echo "Click here to see my top 10 movies, sorted alphabetically.";
echo "";

//end of deleted lines

echo "Or choose how many movies you would like to see:";
echo "";
echo "
";
?>
<form method="post" action="http://localhost/moviesite.php">
<p>Enter number of movies (up to 10):
<input type="text" name="num">

Check here if you want the list sorted alphabetically:
<input type="checkbox" name="sorted">
</p>
<input type="submit" name="Submit" value="Submit">
</form>
</BODY>
</HTML>

And make the following changes to moviesite.php:

<?php
session_start();
//check to see if user has logged in with a valid password

if ($_SESSION|['authuser']!=1) {

echo "Sorry, but you don't have permission to view this

page, you loser!";

exit();

}
?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST['favmovie'] ?></TITLE>
</HEAD>
<BODY>
<?php include "header.php"; ?>
<?php
Sfavmovies = array("Life of Brian","Stripes","Office Space", "The Holy Grail",

81

Chapter 2

"Matrix", "Terminator 2", "Star Wars", "Close Encounters of the Third Kind",
"Sixteen Candles", "Caddyshack");

if (ISSET($_REQUEST['favmovie'])) {
echo "Welcome to our site, ";
echo $_SESSION['username'];
echo "!
";
echo "My favorite movie is ";
echo $_REQUEST['favmovie'];
echo "
";
Smovierate=5;
echo "My movie rating for this movie is: ";
echo $movierate;

else {
echo "My top ". $_POST["num"]. " movies are:
";

if (ISSET(S_REQUEST['sorted']l)) {
sort ($favmovies) ;

}

//1list the movies
$numlist = 1;
while ($numlist <= $ POST["num"]) {
echo $numlist;
echo ". ";
echo pos($favmovies);
next ($favmovies) ;
echo "
\n";
$numlist = $numlist + 1;

}

//delete these lines
foreach ($favmovies as S$Scurrentvalue) {
echo S$currentvalue;
echo "
\n";
}
//end of deleted lines
}
?>
</BODY>
</HTML>

Now let’s play around with our new moviel.php and moviesite.php files.

How It Works

Your code should show a list of the top movies based on how many you as the user chose to see and
whether or not you wanted them listed alphabetically.

82

Creating PHP Pages

You'll notice several things in our code:

0O We added a little trick to our normal echo statement: the use of periods to amend the statement
as such:

echo "My top ". $_POST["num"]. " movies are:
";

This way we can slip in and out of quotes virtually undetected.
O Weset $snumlist to 1, and this will keep track of what number we’re on.

Q We are using the variable $_POST ["num"] to place a limit on the number of movies to be listed;
this is the number the user input from the form in moviel.php.

Q The function pos ($favmovies) is also a new one for you. This function returns the current
value where the array “pointer” is (starts at the beginning). We echo’d this function because we
wanted to see the current value.

O The function next ($ favmovies) is another new array function that moves the array pointer to
the next value in line. This gets us ready for the next iteration of while statements.

Now see, that wasn’t so hard, was it? We're really cooking now!

Alternate Syntax for PHP

As a programmer, it’s always great when you can find a quicker and easier way to make something hap-
pen. We have included some useful shortcuts or alternate syntax for tasks you are already familiar with.

Alternates to the <?php and ?> php Tags

You can denote PHP code in your HTML documents in other ways:

0 <?and ?>. This must be turned on in your php. ini file with the short open tags configuration.
QO <% and %>. This must be turned on in your php. ini file with the ASP tags configuration.

Q <script language="PHP”> and </script>. These are available without changing your php. ini file.

Alternates to the echo Command

You already got a taste of print_r (), but you can also use the print () command to display text or
variable values in your page. The difference between echo () and print () is that when using print (),
a value of 1 or 0 will also be returned upon the success or failure of the print command. In other words,
you would be able to tell if something didn’t print using the print () command, whereas echo () just
does what it’s told without letting you know whether or not it worked properly. For all other intents and
purposes, the two are equal.

83

Chapter 2

Alternates to Logical Operators

You may remember that and and or are obvious logical operators we use when comparing two values,
but there are other ways to express these operators:

0 && canbe used in place of and, the only difference being the order in which the operator is eval-
uated during a mathematical function.

QO || can be used in place of or, the only difference being the order in which the operator is evalu-
ated during a mathematical function.

Alternates to Double Quotes: Using heredoc

Besides using double quotes to block off a value, you can also use the heredoc syntax:
Svalue = <<<ABC
This is the text that will be included in the value variable.
ABC;
This is especially helpful if you have double quotes and single quotes within a block of text, such as:
Svalue = <<<ABC
Last time I checked, I was 6'-5" tall.

ABC;

This keeps us from having to escape those characters out, and keeps things much simpler. Your “ABC”
syntax can consist of any characters.

Alternates to Incrementing Values

You can have variable values incremented automatically in two different ways:
Svalue = $value+l

or
Svalue++

These are equivalent and both add 1 to the current value of $value.

Summary

Although we’ve covered many different topics in this chapter, our goal was to give you enough ammu-
nition to get started on your own Web site. Our hope is that you are beginning to realize the power of
PHP and how easy it is to jump in and get started. As we talk about database connectivity in Chapter 3,
you will start to see how PHP can work with a database to give you a very impressive site.

84

Creating PHP Pages

PHP is straightforward, powerful, and flexible. There are numerous built-in functions that can save you
hours of work (date () for example, which takes one line to show the current date). You can find a com-
plete list of PHP functions in Appendix B; browse that list to find bits and pieces you can use in your
own site development.

Exercises

To build your skills even further, here is an exercise you can use to test yourself. The answers are provided
in Appendix A, but keep in mind that there is always more than one way to accomplish a given task, so if
you choose to do things a different way, and the results display the way you want, more power to you.

Try modifying your PHP files in the following ways:

1.

Go back to your date.php file and instead of displaying only the number of days in the current
month, add a few lines that say:

The month is
There are days in this month.
There are months left in the current year.

On your movie Web site, write a file that displays the following line at the bottom center of
every page of your site, with a link to your e-mail address. Set your font size to 1.

This site developed by: ENTER YOUR NAME HERE.

Write a program that displays a different message based on the time of day. For example, if it is
in the morning, have the site display “Good Morning!”

Write a program that formats a block of text (to be input by the user) based on preferences cho-
sen by the user. Give your user options for color of text, font choice, and size. Display the output
on a new page.

In the program you created in Step 4, allow your users the option of saving the information for
the next time they visit, and if they choose “yes,” save the information in a cookie.

Using functions, write a program that keeps track of how many times a visitor has loaded the
page.

85

Using PHP with MySQL

So now that you’ve done some really cool stuff with PHP in Chapter 2, such as using includes and
functions, it’s time to make your site truly “dynamic” and show users some real data. You may or
may not have had experience with databases, so we’ll take a look at what MySQL is and how PHP
can tap into the data. We will also show you what a MySQL database looks like in terms of the dif-
ferent tables and fields, and give you some quickie shortcuts to make your life much easier (you
can thank us later for those).

By the end of this chapter, you will be able to:

0 Understand a MySQL database

0 View data contained in the MySQL database

0 Connect to the database from your Web site

Q Pull specific information out of the database, right from your Web site
0 Use third-party software to easily manage tables

Q Use the source Web site to troubleshoot problems you may encounter

Although some of this information is expanded upon in later chapters, this chapter lays the
groundwork for more complex issues.

Overview of MySQL Structure and Syntax

MySQL is a relational database system, which basically means that it can store bits of information
in separate areas and link those areas together. You can store virtually anything in a database.
Information such as the contents of an address book, product catalog, or even a wish list of things
you want for your birthday can be stored in your database.

In the sites you create as you work through this book, you are storing information pertinent to a
movie review site (such as movie titles and years of release) and comic book fan information (such
as a list of authentic users/comic book fans and their passwords).

Chapter 3

MySQL commands can be issued through the command prompt, as you did in Chapter 1 when you
were installing it and granting permissions to users, or through PHP. We primarily use PHP to issue
commands in this book and will discuss more about this shortly.

MySQL Structure

Because MySQL is a relational database management system, it allows you to separate information into
tables or “areas of pertinent information.” In nonrelational database systems, all the information is
stored in one big area, which makes it much more difficult and cumbersome to sort and extract only the
data you want. In MySQL, each table consists of separate fields, which represent each bit of information.
For example, one field could contain a customer’s first name, and another field could contain his last
name. Fields can hold different types of data, such as text, numbers, dates, and so on.

You create database tables based on what type of information you want to store in them. The separate
“areas” or tables of MySQL are then linked together with some common denominator, where the values
of the common field are the same.

For an example of this structure, imagine a table that includes a customer’s name, address, and ID num-
ber, and another table that includes the customer’s ID number and past orders he has placed. The com-
mon field is the customer’s ID number, and the information stored in the two separate tables would be
linked together via fields where this number is equal. This enables you to see all the information related
to this customer at one time.

Let’s take a look at the ways in which you can tailor database tables to fit your needs.

Field Types

When you create a table initially, you need to tell MySQL server what types of information will be stored
in each field. The different types of fields and some examples are listed in the table that follows.

MySQL Field Type Description Example

char (length) Any character can be in this field, but Customer’s State field
the field will have a fixed length. always has two characters.

varchar (length) Any character can be in this field, and Customer’s Address field
the data can vary in length from 1 to will has letters and numbers
255 characters. Maximum length of and varies in length.

field is denoted in parentheses.

int (length) Numeric field that stores integers Quantity of a product
that can range from -2147483648 to on hand.
+2147483647, but can be limited with
the length parameter. The length
parameter limits the number of
characters that can be shown, not the
value. Mathematical functions can be
performed on data in this field.

88

Using PHP with MySQL

MySQL Field Type

int (length) unsigned

text

decimal (length, dec)

enum ("optionl",
"option2", . . .)

date

time

datetime

Description

Numeric field that stores positive
integers (and zero) up to 4294967295.
The length parameter limits the
number of characters that can be
displayed. Mathematical functions can
be performed on data in this field.

Any character can be in this field, and
the maximum size of the data is 65536
characters.

Numeric field that can store decimals.
The length parameter limits the
number of characters that will be
displayed, and the dec parameter limits
the number of decimal places that can
be stored. For example, a price field
that would store prices up to 999.99
would be defined as decimal (6,2).

Allows only certain values to be stored
in this field, such as “true” and “false,”
or a list of states. 65535 different options
are allowed.

Stores a date as yyyy-mm-dd.

Stores time as hh:mm:ss.

Multipurpose field that stores date and
time as yyyy-mm-dd hh:mm:ss.

Example

Customer ID (if entirely
numerical).

Comments field that
allows longer text to be
stored, without limiting
field to 255 characters.

Prices.

Gender field for your users
will have a value of either
“male” or “female.”

Date of order, birthday, date
joined as a registered user.

Time a news article was
added to the Web site.

Last date and time a user
visited your Web page.

While the preceding field types should suffice for most needs, we’ve listed some perhaps less-often-used

types in the table that follows.

MySQL Field Type

tinyint (length)

smallint (length)

mediumint (length)

Description

Numeric field that stores integers from -128 to 127. (Adding the
unsigned parameter allows storage of 0 to 255.)

Numeric field that stores integers from -32768 to 32767. (Adding the
unsigned parameter allows storage of 0 to 65535.)

Numeric field that stores integers from -8388608 to 8388607. (Adding the
unsigned parameter allows storage of 0 to 16777215.)

Table continued on following page

89

Chapter 3

MySOQL Field Type

bigint (length)

tinytext
mediumtext
longtext

blob

tinyblob

mediumblob

longblob

year (length)

Description

Numeric field that stores integers from -9223372036854775808 to
9223372036854775807. (Adding the unsigned parameter allows storage
of 0 to 18446744073709551615.)

Allows storage of up to 255 characters.
Allows storage of up to 1677215 characters.
Allows storage of up to 4294967295 characters.

Equal to a text field, except it is case-sensitive when sorting and compar-
ing. Stores up to 65535 characters.

Equal to the tinytext field, except it is case-sensitive when sorting and
comparing.

Equal to the mediumtext field except it is case-sensitive when sorting
and comparing.

Equal to the longtext field except it is case-sensitive when sorting and
comparing.

Stores a year in four-character format (by default). It is possible to specify
a two-year format by signifying that with the 1ength parameter.

Believe it or not, there are even more data types supported by MySQL; a comprehensive list of them can

be found in Appendix D.

Checklist for Choosing the Right Field Type

Although you won't actually be creating a database from scratch just yet, it’s important to understand how
to figure out what field type will best serve your needs. We’ve put together a list of questions about fields
that you can ask yourself before your database tables have been created. As you answer each of these ques-
tions, keep in mind the potential values that could exist for the particular field you're setting up.

20

Will the field contain letters and numbers both?

QO Yes (look at char, varchar, text, tinytext, mediumtext, longtext, blob, tinyblob, mediumblob,

longblob).

0O How many characters will need to be stored? Will it vary from entry to entry?

O Less than 255 characters, fixed length: Use char.

Q 1-255 characters, variable length: Use varchar if you want to delete any trailing
spaces, or if you want to set a default value. Use tinytext if you don’t care about trail-
ing spaces or a default value or if your text does not need to be case-sensitive. Use
tinyblob if you don’t care about trailing spaces or a default value, but your text does
need to be case-sensitive.

Q 256-65536 characters: Use text if your text does not need to be case-sensitive in searches,
sorts, or comparisons, use blob if your text is case-sensitive.

Using PHP with MySQL

0 65537-1677215 characters: Use mediumtext if your text does not need to be case-
sensitive, use mediumblob if your text is case-sensitive.

0 1677216-4294967295 characters: Use longtext if your text does not need to be case-
sensitive, use longblob if your text is case-sensitive.

0 Yes. It may contain letters or numbers, but it must be one of a finite number of values. Use enu.
O No. It will consist of dates and/or times.

Use timestamp if you need to store the time and date the information was entered or updated.
Any other, date only: use date. If you need to store date and time both, use datetime. If you
need only the year, use year.

Q No. It will consist only of numbers, and mathematical functions will be performed on this field.
Integers from -127 to 127, use tinyint.

Integers from -32768 to 32767, use smallint.

Integers from -8388608 to 8388607, use mediumint.

Integers from -2147483648 to 2147483647, use int.

Integers from -9223372036854775808 to 9223372036854775807, use bigint.
Integers from 0 to 255, use tinyint unsigned.

Integers from 0 to 65535, use smallint unsigned.

Integers from 0 to 16777215, use mediumint unsigned.

Integers from 0 to 4294967295, use int unsigned.

Integers from 0 to 18446744073709551615, use bigint unsigned.

I T T 5 I I R B T N = |

Decimals with fixed decimal places, use dec.
Q No. It will consist of only numbers, but mathematical functions will not be performed on this

field. Use the preceding guidelines for text/number mix in the field.

If your field requirements do not fall into any of the previous categories, check Appendix D for a com-
plete list of all available field types. If you are still unsure about what type of field you need, you can
also check the documentation at the MySQL source Web site, www.mysqgl . com.

null/not null

Your MySQL server also wants to know whether or not the field can be empty. You do this with the null
or not null option. null tells MySQL that it is okay if nothing is stored in the field, and not null tells
MySQL to require something, anything, to be stored there. If a field has been defined as not null and
nothing is entered by the user, an error pops up.

Don’t forget that a number zero is different from a null entry.

Indexes

MySQL uses indexes to expedite the process of searching for a particular row of information. Here’s how
indexes work: Imagine you have a room full of stacks and stacks of receipts from everything you have

91

Chapter 3

ever bought in your life. Then you find you have to return some zippered parachute pants you bought
in 1984, but unfortunately you need the receipt. So you start sifting through the massive stacks of
papers. Lo and behold, five days later you find the receipt in the last pile in the room. After cursing to
yourself that perhaps you should get a little more organized, you realize you could at least group them
by year of purchase. And then you start getting really organized and group them further into categories,
such as apparel, 8-track tapes, and so on. So the next time you need to return something you purchased
many years ago, you can at least jump to the correct pile and even know what category to look in. Makes
sense, right?

Now imagine that your data is stored willy-nilly in your table so that every time you wanted to search
for something, it would start at the first record and make its way down through all the rows until it
found what it was looking for. What if you had 10,000 rows and the one you happened to be looking for
was at the very end? Pull up your chair and take your shoes off, because it could be a while.

By using an internal filing system, MySQL can jump to the approximate location of your data much
more quickly. It does this through the use of indexes, also known as keys. In our preceding “receipt”
example, you decided to group your receipts by year, so if your receipts were stored in a database, an
index entry would be “year.” You also decided to further group your receipts, so another index would
be “category.”

MySQL requires at least one index on every table, so that it has something to go by. Normally, you would
use a primary key, or unique identifier that helps keep the data separate. This field must be “not null”
and “unique”; an example would be a customer ID number to keep your customers separate. (You could
easily have two “John Smiths,” so you need a way to tell the difference.) In your “receipts” table exam-
ple, you would create a primary key and assign each receipt its own identifying number so you can tell
each receipt apart.

MySQL also provides a feature that allows a value in a field to be automatically incremented by one.
This auto_increment parameter is useful for making sure your primary key is being populated with
unique numbers.

Unique

We all like to think we’re unique, but when this parameter is turned on, MySQL makes sure that abso-
lutely no duplicates exist for a particular field. Typically, this is used for only the primary key in your
table, but it can be used with any field.

For example, what if you ran a contest in which only the first person from every state who visited would
be allowed to join your Web site? You could use the unigue parameter; then anyone who tries to insert
data into your database from a state where someone has already filled the slot will get an error message.

Auto Increment

92

Say you have a field that you want to automatically increase by one whenever a new record is added.
This can be a quite useful function when assigning ID numbers. You don’t have to worry about what the
last ID number was; the field automatically keeps track for you.

You can designate a field to be auto incremented by simply adding this command when setting up your
table. You can also determine what the first number in the count will be, if you don’t want it to be 1. You
will see this in action later in the chapter.

Using PHP with MySQL

Other Parameters

There are other specifications you can make when creating your database, but these are for more
advanced MySQL users. For a complete list of these parameters, we encourage you to visit the source:
www . mysgl . com.

Types of MySQL Tables

Now that you understand some of the general features of tables, you should know that there are
different types of tables. There are five main types of tables in the current version of MySQL:

0 MyISAM
a ISAM

Q HEAP

4 InnoDB
O BDB

A brief summary of each of these types follows, but if you would like to find out more about them, we
encourage you to visit the source at www.mysgl . com.

MyISAM

This is the default table and will usually be sufficient for the average user’s needs. It supports all the
field types, parameters, and functions we’ve talked about.

ISAM

This is basically the same as the MyISAM table, except that it can’t handle data larger than 4GB and the
data is stored in a machine-specific format; this means it isn’t portable across operating systems. The
maximum key length is 256, which means that blob and text fields can’t be indexed.

There are other differences that you can read about at the mysql.com Web site.

This table type will no longer be available in PHPS5.

HEAP

These are mostly used for temporary tables because of their incredible speed, but they don’t support a
lot of the common features of the MyISAM table, such as auto_increment and blob/text columns.
This type should be used in unique circumstances only. You might use it, for example, if you were work-
ing with user logs and you wanted to store the information in a temporary table to massage the data, but
you didn’t necessarily need to keep the data long-term.

InnoDB

This type, along with the BDB type, is considered to be “transaction safe,” which means that you can
recover data from crashes. It is meant for extremely large and frequently accessed applications. It fea-
tures a “row-locking” mechanism to prevent users from attempting to change or add the same row to

93

Chapter 3

the table. According to the source Web site, one instance of this type of table has been shown to support
800 inserts and updates per second—not too shabby! You can also read more about this type at its own
Web site: www . innodb. com.

BDB

BDB, or BerkeleyDB, is the other type of table that is “transaction safe.” It is actually its own entity that
works closely with the MySQL server and can be downloaded from www. sleepycat.com. Like InnoDB
tables, it is meant to support very large applications with literally thousands of users attempting to
insert and update the same data at the same time. There is a complete reference manual available at its
source Web site, which we invite you to read.

MySQL Syntax and Commands

Although it is quite possible to access MySQL directly through a shell command prompt, for the pur-
poses of this book, we are going to access it through PHP. Regardless of the mode by which the MySQL
server gets its information and requests, the syntax is basically the same.

Typically, you keep the MySQL commands in all caps, although this is not necessary. The purpose of this
is to help keep the MySQL syntax separate from the variables and table or database names.

Common commands we will be using in this book include:

CREATE: Creates (duh) new databases and tables

ALTER: Modifies existing tables

SELECT: Chooses the data you want

DELETE: Erases the data from your table

DESCRIBE: Lets you know the structure and specifics of the table
INSERT INTO tablename VALUES: Puts values into the table
UPDATE: Lets you modify data already in a table

O 0000000

DROP: Deletes an entire table or database

How PHP Fits with MySQL

94

You can use MySQL commands within PHP code almost as seamlessly as you do with HTML. There are
numerous PHP functions that work specifically with MySQL to make your life easier, a comprehensive
list of which can be found in Appendix C.

Some of the more commonly used functions are:

0O mysql_connect ("hostname", "user", "pass"): Connects to the MySQL server.

0O mysql_select_db("database name"): Equivalent to the MySQL command USE; makes the
selected database the active one.

Using PHP with MySQL

QO mysql_query("query"): Used to send any type of MySQL command to the server.

0O mysql_fetch_rows("results variable from query"): Used to return a row of the entire results of a
database query.

Q mysql_fetch_array("results variable from query"): Used to return several rows of the entire
results of a database query.

QO mysql_error(): Shows the error message that has been returned directly from the MySQL server.
You will most likely become very familiar with these commands, and many more!

You can also send any MySQL command to the server through PHP and the mysql_query command,
as in the preceding example. You do this by sending the straight text through PHP either through a vari-
able or through the mysgl_query command directly, like this:

Squery = "SELECT * from TABLE";
Sresults = mysql_query($Squery) ;

or
Sresults = mysqgl_query ("SELECT * from TABLE");

The results of your query are then put into a temporary array known as $results, which you'll learn
more about later.

Connecting to the MySQL Server

Before you can do anything with MySQL, you must first connect to the MySQL server using your spe-
cific connection variables. Connection variables consist of the following parameters, which you must
know before you can connect successfully:

0 Host name. In our case, it’s the local host because we’ve installed everything locally. You will
need to change this to whatever host is acting as your MySQL server.

0 User name. We've used just the root user for simplicity’s sake, but you may have another user
name that you'll need to insert to access your specific server.

0 User name’s password. Again, we've used the password that we set up in Chapter 1, but you
need to use your own password.

We issue this connection command with the PHP function called mysqgl_connect. As with all of our
PHP/MySQL statements, you can either put the information into variables, or leave them as text in
your MySQL query.

Both of the following snippets have the same effect; first:
$host = "localhost";
Suser = "root";

Spass = "mysglpass";
Sconnect = mysgl_connect (Shost, S$user, S$pass);

95

Chapter 3

then:

Sconnect = mysgl_connect ("localhost", "root", "mysglpass");
For the most part, your specific needs and the way you are designing your table dictate what piece of
code you use. Most people use the first method, for security’s sake, and they may even put those vari-

ables in a different file and include them wherever they need to, to make a connection to the database.

So now that we’ve hooked you up with the server, whaddya say we actually do something with a
database?

Looking at a Ready-Made Database

Let’s create the database that you will be using for your movie site. It consists of three tables:

0 movie table, which stores the names of the movies and information about them
0 movietype table, which stores the different categories of movies

O people table, which stores the names of the actors and directors in the movies

Try It Out Creating a Database

96

Perform the following steps to create the database and tables:

1. Open your browser and type the following code. This creates our database and the tables you
need to hold the data.

<?php
//connect to MySQL; note we've used our own parameters- you should use
//your own for hostname, user, and password
Sconnect = mysqgl_connect ("localhost", "root", "mysglpass") or
die ("Hey loser, check your server connection.");

//create the main database
mysgl_create_db("wiley")
or die(mysqgl_error());

//make sure our recently created database is the active one
mysgl_select_db ("wiley");

//create "movie" table

Smovie = "CREATE TABLE movie (
movie_id int(11) NOT NULL auto_increment,
movie_name varchar (255) NOT NULL,
movie_type tinyint(2) NOT NULL default O,
movie_year int(4) NOT NULL default O,
movie_leadactor int(11l) NOT NULL default O,
movie_director int(11) NOT NULL default O,
PRIMARY KEY (movie_id),
KEY movie_type (movie_type,movie_year)

Using PHP with MySQL

) TYPE=MyISAM AUTO_INCREMENT=4 ";

Sresults = mysqgl_gquery (Smovie)
or die (mysqgl_error());

//create "movietype" table

Smovietype = "CREATE TABLE movietype (
movietype_id int(11) NOT NULL auto_increment,
movietype_label varchar (100) NOT NULL,
PRIMARY KEY (movietype_id)

) TYPE=MyISAM AUTO_INCREMENT=9"

Sresults = mysqgl_query ($Smovietype)
or die(mysqgl_error());

//create "people" table

Speople = "CREATE TABLE people (
people_id int(11) NOT NULL auto_increment,
people_fullname varchar (255) NOT NULL,
people_isactor tinyint(l) NOT NULL default 0,
people_isdirector tinyint(l) NOT NULL default 0,
PRIMARY KEY (people_id)

) TYPE=MyISAM AUTO_INCREMENT=7";

Sresults = mysqgl_query ($people)
or die(mysqgl_error());

echo "Movie Database successfully created!";
?>

2. Save this file as createmovie.php.

3. Fill the database with this file, which you should save as moviedata.php:

<?php
//connect to MySQL
Sconnect = mysgl_connect ("localhost", "root", "mysglpass") or

die ("Hey loser, check your server connection.");

//make sure we're using the right database
mysqgl_select_db ("wiley");

//insert data into "movie" table
Sinsert="INSERT INTO movie (movie_id, movie_name, movie_type, movie_year,
movie_leadactor, movie_director)
VALUES (1, 'Bruce Almighty', 5, 2003, 1, 2),
(2, 'Office Space', 5, 1999, 5, 6),
(3, 'Grand Canyon', 2, 1991, 4, 3)";
Sresults = mysqgl_query ($insert)
or die(mysqgl_error());

//insert data into "movietype" table

Stype="INSERT INTO movietype (movietype_id, movietype_label)
VALUES (1,'Sci Fi'),

97

Chapter 3

2, 'Drama'),

3, 'Adventure'),

4, 'War'),

5, 'Comedy')

6, 'Horror'),

7, '"Action'),
(8, 'Kids')" ;

Sresults=mysqgl_query (Stype)
or die(mysqgl_error());

//insert data into "people" table
Speople="INSERT INTO people
(people_id, people_fullname, people_isactor, people_isdirector)

VALUES (1, 'Jim Carrey', 1, 0),
2, 'Tom Shadyac', 0, 1),
3, 'Lawrence Kasdan', 0, 1),
4, 'Kevin Kline', 1, 0),
5, 'Ron Livingston', 1, 0),

(6, 'Mike Judge', 0, 1)";
Sresults=mysql_query (Speople)

or die(mysqgl_error());

(
(
(
(

echo "Data inserted successfully!";
?>

4. First, run createmovie.php from your browser; then run moviedata.php.

How It Works

98

We hope you didn’t have too many errors when running the previous files and you saw the two “suc-
cess” statements. Although we tried to insert useful comments throughout the code, let’s dissect this
thing one step at a time.

First, we connected to the MySQL server so that we could begin sending MySQL commands and work-
ing with the database and tables. We also wanted to be told if there was an error, and we wanted our
program to immediately stop running. We did this in the first few lines of code:

<?php
//connect to MySQL; note we've used our own parameters- you should use
//your own for hostname, user, and password
Sconnect = mysqgl_connect ("localhost", "root", "mysglpass") or
die ("Hey loser, check your server connection.");

Then we actually created the database itself, and if for some reason the database could not be created,
we told the server to stop running and show us what the problem was:

//create the main database
mysqgl_create_db("wiley")
or die(mysqgl_error());

We also made sure to select our database so the server would know which database we would be work-
ing with next:

Using PHP with MySQL

//make sure our recently created database is the active one
mysgl_select_db ("wiley");

Then we began making our individual tables, starting with the movie table. We defined the individual
field names and set up their parameters. We also set the database type and started the table auto incre-
menting of the movie_id at 4 (because we will be entering records 1-3 with the moviedata.php file).
We discuss much more about this feature later on in this chapter, but this gives you a glimpse of things
to come:

//create "movie" table

Smovie = "CREATE TABLE movie (
movie_id int(11) NOT NULL auto_increment,
movie_name varchar (255) NOT NULL,
movie_type tinyint(2) NOT NULL default O,
movie_year int(4) NOT NULL default 0,
movie_leadactor int(11l) NOT NULL default 0,
movie_director int(11l) NOT NULL default 0,
PRIMARY KEY (movie_id),
KEY movie_type (movie_type,movie_year)

) TYPE=MyISAM AUTO_INCREMENT=4 ";

Once we had our MySQL statement ready to go, we just had to send it to the server with the
mysqgl_guery command. Again, we told the server to stop executing the program and let us know what
the error was, if there was one:

Sresults = mysqgl_query (Smovie)
or die (mysqgl_error());

We also created a movie type and people tables in much the same way:

//create "movietype" table

Smovietype = "CREATE TABLE movietype (
movietype_id int(11) NOT NULL auto_increment,
movietype_label varchar (100) NOT NULL,
PRIMARY KEY (movietype_id)

) TYPE=MyISAM AUTO_INCREMENT=9"

Sresults = mysqgl_query ($Smovietype)
or die(mysqgl_error());

//create "people" table

Speople = "CREATE TABLE people (
people_id int(11) NOT NULL auto_increment,
people_fullname varchar (255) NOT NULL,
people_isactor tinyint(l) NOT NULL default O,
people_isdirector tinyint(l) NOT NULL default 0,
PRIMARY KEY (people_id)

) TYPE=MyISAM AUTO_INCREMENT=7";

Sresults = mysqgl_query ($people)
or die(mysqgl_error());

99

Chapter 3

We assume that everything was successful if our program runs all the way to the end, so we echoed our-
selves a success statement, just so we know:

echo "Movie Database successfully created!";

?>

With our moviedata.php file, we populated the tables with information. As always, we have to connect
to the MySQL server and select the database. (Hint: Wouldn't this be great as an included file?!)

<?php
//connect to MySQL
Sconnect = mysqgl_connect ("localhost", "root", "mysglpass") or

die ("Hey loser, check your server connection.");

//make sure we're using the right database
mysqgl_select_db ("wiley");

Then we began by inserting data into the movie table. We first listed the columns we would be access-
ing. We then listed the values for each record, as follows:

//insert data into "movie" table
$insert="INSERT INTO movie (movie_id, movie_name, movie_type, movie_year,
movie_leadactor, movie_director)
VALUES (1, 'Bruce Almighty', 5, 2003, 1, 2),
(2, 'Office Space', 5, 1999, 5, 6),
(3, 'Grand Canyon', 2, 1991, 4, 3)";
Sresults = mysqgl_query(Sinsert)
or die(mysqgl_error());

We did the same with the other tables, movie type, and people.

//insert data into "movietype" table

Stype="INSERT INTO movietype (movietype_id, movietype_label)
VALUES (1,'Sci Fi'),

2, 'Drama'),

3, 'Adventure'),

4, 'War'),

5, 'Comedy')

6, 'Horror'),

7, '"Action'),
(8, 'Kids')" ;

Sresults=mysqgl_query (Stype)
or die(mysqgl_error());

(
(
(
(
(
(

//insert data into "people" table
Speople="INSERT INTO people
(people_id, people_fullname, people_isactor, people_isdirector)
VALUES (1, 'Jim Carrey', 1, 0),
2, 'Tom Shadyac', 0, 1),
3, 'Lawrence Kasdan', 0, 1),
4, 'Kevin Kline', 1, 0),
5, 'Ron Livingston', 1, 0),

(
(
(
(

100

Using PHP with MySQL

(6, 'Mike Judge', 0, 1)";
Sresults=mysqgl_query (Speople)
or die(mysqgl_error());

Then, because we instructed our program to die if there is any error, we echoed a success statement to
ourselves to let us know that the entire program executed and we received no errors:

echo "Data inserted successfully!";
?>

Querying the Database

Once you have some data in the database, you may want to actually retrieve it once in a while. You use
the SELECT statement to choose data that fits your criteria.

Typical syntax for this command is as follows:

SELECT [fieldnames]
AS [alias]
FROM [tablename]
WHERE [criterial
ORDER BY [fieldname to sort on] [DESC]
LIMIT [offset, maxrows]

You can set numerous other parameters, but these are the most commonly used:
Q SELECT [fieldnames]: First decide what specific fieldnames you want to retrieve; if you want
to see them all, you simply insert *.

QO AS: You use the alias to group two or more fieldnames together so that you can reference them
later as one giant variable. An example would be:

SELECT first_name, last_name AS full name. . . ORDER BY full_name .

You cannot use the AS parameter with the WHERE parameter, as this is a limitation of MySQL. When the
WHERE clause is executed, the column value may not be known.

Q FROM: This is pretty self-explanatory: You just need to name the table or tables you are pulling
the data from.
QO WHERE: List your criteria for filtering out the data.

0 ORDER BY: Use this parameter if you want the data sorted on a particular field; if you want the
results returned in descending order, add DESC.

Q LIMIT: This enables you to limit the number of results returned and offset the first record
returned to whatever number you choose. An example would be:

LIMIT 9, 10

101

Chapter 3

This would show records 10-19. This is a useful feature for showing only a certain number of records on
a page, and then allowing the user to click a “next page” link to see more.

For a complete reference, you are advised to—yet again—visit the source at www.mysql . com.

WHERE, oh WHERE

The beast clause called WHERE deserves its own little section because it’s really the meat of the query. (No
offense to the other guys, but they are pretty much “no brainers.”) WHERE is like a cool big brother that
can really do some interesting stuff:

0O Comparison operators are the heart of the WHERE clause, and they include the following;:
a =<>,<=>=5 1=

Q LIKE and %: Oh how we like LIKE. LIKE lets you compare a piece of text or number
and gives you the % as a wildcard.

Example:
SELECT * FROM products WHERE description LIKE "$shirt%"

This gives you any records that have the word or text pattern of “shirt” in the descrip-
tion. Fabulous. (Like, totally.)

O Logical operators are also accepted in the WHERE clause:
SELECT * FROM products WHERE description LIKE "$shirt%" AND price < 25

This gives you all the products that have the word or text pattern of “shirt” in the description
and that have a price of less than $25.

Now that you have the SELECT query down to a science, let’s look at this baby in action, shall we?

Try It Out Using the SELECT Query

Open your text editor and save this file as select . php:

<?php
//connect to MySQL
Sconnect = mysgl_connect ("localhost", "root", "mysglpass") or

die ("Hey loser, check your server connection.");

//make sure we're using the right database
mysqgl_select_db ("wiley");

Squery="SELECT movie_name, movie_type
FROM movie
WHERE movie_year>1990
ORDER BY movie_type";
Sresults=mysqgl_query (Squery)

102

Using PHP with MySQL

or die(mysqgl_error());

while (Srows=mysqgl_fetch_array(Sresults)) {
extract (Srows) ;
echo $movie_name;
echo " - ";
echo Smovie_type;
echo "
";

}

?>

How It Works

You should see the screen shown in Figure 3-1 after running select.php.

http:/localhost’select.php - Microsoft Internet Explorer [:@
Eile Edit View Favorites Tools Help

Qe - @ - [¥] [B) €0 Osearch Slormones @rede &) -2 FH | [P

fddress |] https fflocabostfsslect php

EGO Links *|

Grand Canyon - 2
EBruce Almighty - 5
Office Space - 5

8] Do
Figure 3-1

SJ Localintranet:

First, as always, we had to connect to the MySQL server and the specific database. Next we plan out our
query and assign it to the $query variable.

103

Chapter 3

We wanted to choose only the fieldnames movie_name and movie_type because we decided we didn’t
care about seeing the rest of the information contained in the table at this time. If we wanted to retrieve
everything, we simply would have written:

SELECT * FROM ...
but instead we wrote:

Squery="SELECT movie_name, movie_type

Next, we told the server from what table we want to retrieve the information.

FROM movie

Then we gave it the conditions of our query. In this case, we wanted to see only movies made since 1990,
SO we wrote:

WHERE movie_year>1990
And we asked the server to sort the results by movie type and ended our query and the PHP line:
ORDER BY movie_type";

Pretty easy, eh? Let’s try using the foreach function instead of the while function and see how it
works.

Working with PHP and Arrays of Data: foreach

We touched upon arrays in the previous chapter, but there is a handy-dandy PHP function we didn’t
discuss. It’s the foreach function, and it is quite helpful when working with arrays of data from the
database.

The foreach function is similar to the while function if you're using while to scroll down through a
list of results from your query. Its purpose is to apply a block of commands to every row in your results
set. It is used in this way:

foreach (Srow as S$value) {
echo $value;
echo "
";

}

The preceding code would take all the variables in the $row array and list each value with a line break in
between them. You can see this in action in Chapters 4 and 5 and get a better idea of how it can be used.

Try It Out Using foreach

In your select.php file, make the following changes (shown in bold).

<?php
//connect to MySQL
Sconnect = mysgl_connect ("localhost", "root", "mysglpass") or

104

Using PHP with MySQL

die ("Hey loser, check your server connection.");

//make sure we're using the right database
mysql_select_db ("wiley");

Squery="SELECT movie_name, movie_type
FROM movie
WHERE movie_year>1990
ORDER BY movie_type";
Sresults=mysql_query (Squery)
or die(mysqgl_error());

while ($rows=mysqgl_fetch_ assoc($results)) {
foreach($rows as $vall) {
echo $vall;

echo " ";
}

echo "
";

}

2>

You should see the same results as before, except that there is now no dash between the elements. Pretty
sneaky, huh? Because using mysql_fetch_array actually returns two sets of arrays (one with associa-
tive indices, one with number indices), you see duplicate values if you use this function without clarify-
ing. You can therefore either use mysql_fetch_array (MYSQL_ASSOC) or mysgl_fetch_assoc to
perform the same thing and return only one array at a time. We still need to use the while function to
proceed through the selected rows one at a time, but you can see that using foreach applies the same
sets of commands to each value in the array regardless of their contents.

Sometimes you will need to have more control over a specific value, and can’t apply the same formatting
rules to each value in the array, but the foreach function can also come in handy when using formatting
functions such as creating tables. Let’s create another version of the select.php program that illustrates
this.

Open your text editor and save the following as select2.php:

<?php
//connect to MySQL
Sconnect = mysgl_connect ("localhost", "root", "mysglpass") or

die ("Hey loser, check your server connection.");

//make sure we're using the right database
mysql_select_db ("wiley");

Squery="SELECT *
FROM movie
WHERE movie_year>1990
ORDER BY movie_type";
Sresults=mysqgl_query (Squery)
or die(mysqgl_error());
echo "<table border='1l'>\n";
while (Srows=mysqgl_ fetch_assoc (Sresults)) {

105

Chapter 3

echo "<tr>\n";
foreach ($rows as S$value) {
echo "<td>\n";
echo $value;
echo "</td>\n";
}
echo "</tr>
\n";
}
echo "</table>\n";
?>

You can see that this would easily show a long string of array variables with a few lines of code, whereas
if we had to echo out each separate variable with the accompanying HTML code, this script would be
quite lengthy.

A Tale of Two Tables

The preceding code is all nice and neat and pretty, but it doesn’t do you a whole lot of good if you don’t
have a secret decoder ring to tell you what those cryptic “movie type” numbers correspond to in plain
English. That information is all stored in a separate table, the movietype table. So how do we get this
information?

There are two ways to get information from more than one table:

QO Reference the individual tables in your query

Q Join the individual tables in your query

Let’s try out these methods and then talk about each of them in more detail.

Try It Out Referencing Individual Tables

You can distinguish between two tables in your database by referencing them in the SELECT statement
as follows:

Squery = "SELECT tablel.fieldl, table2.field2
FROM tablel, table2
WHERE tablel.fieldl = table2.field3

Change your select2.php program as shown here in bold:

<?php
//connect to MySQL
Sconnect = mysgl_connect ("localhost", "root", "mysglpass") or

die ("Hey loser, check your server connection.");

//make sure we're using the right database
mysgl_select_db ("wiley");

Squery="SELECT movie.movie name, movietype.movietype_ label
FROM movie, movietype

106

Using PHP with MySQL

WHERE movie.movie_type = movietype.movietype id
AND movie.movie_year>1990

ORDER BY movie_type";
Sresults=mysqgl_query (Squery)

or die(mysqgl_error());
echo "<table border='1l'>\n";
while (Srows=mysqgl_fetch_assoc ($Sresults)) {
echo "<tr>\n";

foreach($rows as S$value) {

echo "<td>\n";

echo S$value;

echo "</td>\n";

}
echo "</tr>
\n";
}
echo "</table>\n";
?>

How It Works

You should now see a table with the movie names and actual words for the type of movie instead of our
cryptic code. The common fields were linked in the WHERE portion of the statement. ID numbers from
the two different tables (fieldname movie_type in the movie table and fieldname movietype_id in
the movietype table) represented the same thing, so that’s where we linked them together.

Try It Out Joining Two Tables

In life as in code, regardless of the circumstances under which two things join together, it is rarely a sim-
ple thing, and more often than not, it comes with conditions and consequences.

In the world of MySQL, joins are also complex things that we discuss in greater detail later; mean-
while, we walk you through a very simple and commonly used join so you can get a taste of what join-
ing is all about.

Make the following changes to select2.php, as shown in bold:

<?php
//connect to MySQL
Sconnect = mysgl_connect ("localhost", "root", "mysglpass") or

die ("Hey loser, check your server connection.");

//make sure we're using the right database
mysql_select_db ("wiley");

Squery="SELECT movie_name, movietype_ label

FROM movie

LEFT JOIN movietype

ON movie_type = movietype_id

WHERE movie.movie_year>1990

ORDER BY movie_type";
Sresults=mysql_query (Squery)

or die(mysqgl_error());

107

Chapter 3

echo "<table border='1l'>\n";
while (Srows=mysqgl_fetch_assoc(Sresults)) {
echo "<tr>\n";
foreach($Srows as S$value) {
echo "<td>\n";
echo $value;
echo "</td>\n";
}
echo "</tr>
\n";
}
echo "</table>\n";
?>

How It Works

You should see the same result as in the previous example. As you can see, we simply listed all the fields
we wanted to see, regardless of the table they were in. (MySQL will find them as long as the tablename
is referenced there somewhere.) We did this in the first line of the SELECT statement:

SELECT movie_ name, movietype_ label

Then we told MySQL what tables we wanted to access and what type of join should be used to bring
them together in these statements:

FROM movie
LEFT JOIN movietype

We used the most common LEFT join statement in this case. Although there are other things that go
along with this, the LEFT join in layman’s terms simply means that the second table (movietype in our
example) is dependent on the first table (movie). We are getting the main information from movie, and
“looking up” a bit of information from movietype.

We then told the server which field to use to join them together in this line:

ON movie_type = movietype_id

Again, we don’t need to clarify which table is being used, but if you have overlapping fieldnames across
tables, you can add this if you like, to avoid confusion.

We kept our condition about only showing the movies that were made after 1990, and sorted them by
numerical movie type with these lines:

WHERE movie.movie_year>1990
ORDER BY movie_type";

And the rest of the code is the same. See, joining wasn’t that bad, was it?

108

Using PHP with MySQL

Helpful Tips and Suggestions

Now and then, we all get into a little trouble. Instead of sitting in the corner and sucking your thumb, or
banging your fist against your keyboard (as seen in the infamous “bad day” mpeg floating around the
Internet), relax! We are here to help.

Documentation

The guys over there at MySQL have provided wonderfully thorough documentation covering more than
you ever wanted to know about its capabilities, quirks, and plans for the future. We have stated this time
and time again, but the source Web site really can provide you with the most up-to-date and accurate
information.

You can search the documentation, or even add your own comments if you've discovered something
especially helpful that might help out other folks just like you. Because this is all open source, you really
do get a community feeling when you read through the documentation.

Once again, the manual can be found at www.mysqgl . com.

Using PHPMyAdmin

Okay, now that we’ve given you the task of learning MySQL and PHP on your own from scratch, we're
going to let you in on a dirty little secret: It’s called PHPMyAdmin and it will probably be your new best
friend.

PHPMyAdmin is another wonderful open source project that enables you to access your MySQL databases
through a GUL. It’s easy to set up and manage, and it makes administering your databases, tables, and data
a breeze. It does have some limitations, but for the most part, it will make you a lot more efficient.

With this software, you can easily:

Q Drop and create databases
Create, edit, and delete tables
Create, edit, and delete fields
Enter any MySQL statements
View and print table structure

Generate PHP code

U 00U oo

View data in table format

You can download the software by visiting the source Web site at www . phpmyadmin.net. This software
works whether your MySQL server is on your local machine, or if it is hosted by a third party.

109

Chapter 3

Summary

We've covered some pretty fundamental programming concepts here and delve more into those in
future chapters. But for now you should have a pretty good handle on the basics, anyway.

You should have a good understanding of databases and tables and how to insert and retrieve informa-
tion stored within those tables. You should also have a good understanding of how MySQL works with
PHP to make dynamic pages in your Web site. In the next few chapters, we build on this knowledge to
create more complex applications.

Exercises

We have started you on the MySQL/PHP journey, and in the next few chapters we take you places
you've never dreamed of. To fine-tune your skills, here are a few exercises to really make sure you know
your stuff.

1. Create a PHP program that prints the lead actor and director for each movie in the database.

2. Pick only comedies from the movie table, and show the movie name and year it was produced.
Sort the list alphabetically.

3. Show each movie in the database on its own page, and give the user links in a “page 1, page 2.. . . “
type navigation system.

110

Using Tables to Display Data

So now that you can successfully marry PHP and MySQL to produce dynamic pages, what hap-
pens when you have rows and rows of data that you need to display? You need to have some
mechanism for your viewers to easily read the data, and it needs to be in a nice, neat, organized
fashion. The easiest way to do this is to use tables.

In this chapter, we cover the following;:

Q Creating a table to hold the data from the database

Q Creating column headings automatically

0 Populating the table with the results of a basic MySQL query

0 Populating the table with the results of more complex MySQL queries
0 Making the output user-friendly

Creating a Table

Before you can list your data, you need to set up the structure, column headings, and format of
your table.

_ Defining the Table Headings

Let’s define the table headings for our table.

1. Open your favorite text/HTML editor and enter the following code.

<?php
Smovie=<<<EOD
<h2><center>Movie Review Database</center></h2>
<table width='70%' border='1l' cellpadding="'2"
cellspacing='2"' align='center'>
<tr>
<th>Movie Title</th>

Chapter 4

<th>Year of Release</th>
<th>Movie Director</th>
<th>Movie Lead Actor</th>
<th>Movie Type</th>

</tr>
</table>
EOD;
echo Smovie;
?>

2. Save this file as tablel . php and upload it to your Web server.
3. Load your favorite browser and view the page that you have just uploaded.

Your table should look like the one shown in Figure 4-1.

http:/localhost/tablel.php - Microsoft Internet Explorer - — = — -@
File Edit Miew Favorites Tools Help i
Qe - @ - [¥] B @] POsearch Slormotes @rede &) 2~ [H . S @
fddress |] hikpe fiocabostkable . php Eco Links **

Movie Review Database

Movie Title Year of Release Movie Director Movie Lead Actor | Movie Type |

-@ Done SJ Localintranet:

Figure 4-1

How It works

All the code between <<<EOD and EOD; is held in the variable $table, so instead of printing each ele-
ment of the HTML table, we are adding that element to the variable $table. Incidentally, we have left
the border on just to show ourselves that it is actually working.

112

Using Tables to Display Data

Then we simply echo the contents of $table. And finally, we close the PHP script using the »> tag.

By using these two tags, we can use raw HTML code (that is, HTML code that does not need any modifi-
cation at all).

As you may recall from Chapter 2 in the discussion regarding using heredoc, we can change the text
“EOD” to whatever we’d like, but the beginning and ending tags must match. For example, this will
work fine:

Stable =<<<HAHAHA

code here
HAHAHA ;

but this:
Stable =<<<HAHAHA
code here

BOOHOO;

will not work. You will receive an error such as the one shown in Figure 4-2.

Eile Edit View Favorites Tools Help -4
Qe - © - [¥] B @ Pseorsn sloraones @rede & - [H L, L@
fddress |) hitp fiocahostkabled. php | Ede ks

Parse ervor: parse error, unexpected fend in C:\Program Files'\Apache Group'Apache2'testitablel.php on line 17

a Done ._ﬂ Local intranst

Figure 4-2

113

Chapter 4

Note that there must be 70 spaces after the =<<<EOD and the EOD; tags. In addition, there can be no lead-
ing space, indents, or any other characters on the closing tag line (semicolons are permissible). If there is
even one space, you'll receive an error. (You can potentially spend hours trying to fix an error as a result
of having a single space after these tags!) Always remember to delete all spaces after these tags.

Now that you can create a table, let’s fill it with some data from your movie review database. After all,
that’s what you're here for!

Populating the Table

Looking at our empty skeleton of a table gives us the blueprint for how our data will be laid out once it
is retrieved from the database.

Try It Out Filling the Table with Data

As this is quite a large piece of code, we’ll explain what’s going on as we go through it. All changes are in
bold. A few things are taken out from the original script (we’ll soon see who has been paying attention).

1. Open the file tablel .php, and with your favorite text/HTML editor make the following
changes to the existing code. We use the databases created in Chapter 3 for the purposes of the
example here.

Renmnﬂxxtorepbceservername,username,userpassword,anddatabasenamexvﬁhyour
own values.

<?php

$link = mysql_ connect ("servername", "username", "userpassword") or
die(mysql_error());

mysgl_select_db("wiley") or die (mysgl_error());

2. Start by making a connection to the database. (You have remembered to change the settings to
reflect your own, haven’t you? Good.)

Squery = "SELECT
movie_name,
movie_director,
movie_leadactor
FROM
movie";

Sresult = mysqgl_query(Squery, $link) or die(mysqgl_error());
Snum_movies = mysqgl_num_rows (Sresult) ;

3. RunaSQL query against the database and get the results. And while you are at it, count how
many records were returned from the query.

As we discuss in Chapter 3, weve put the SQL words in capital letters. This is good practice, as it
allows you to easily identify what words are field names and which ones are SQL keywords. It is also
good practice to make your SQL query as easy to read as possible. That is why we have written the SQL
query over several lines.

114

Using Tables to Display Data

Smovie_header =<<<EOD
<h2><center>Movie Review Database</center></h2>
<table width='70%' border='1' cellpadding='2' cellspacing='2"' align='center'>
<tr>
<th align='left'>Movie Title</th>
<th align='left'>Movie Director</th>
<th align='left'>Movie Lead Actor</th>
</tr>
EOD;

4. Then enter the block of code that was originally there (minus the echo statement).
Pay attention to the fact that it’s called $movie_header, not $movie (as it was in the first example).

while (Srow = mysqgl_fetch_array(Sresult))

{
Smovie_name = S$Srow['movie_name'];
Smovie_director = S$row|'movie_director'];
Smovie leadactor = Srow['movie_ leadactor'];

Smovie_details .=<<<EOD

<tr>
<td>S$movie_name</td>
<td>$movie_director</td>
<td>S$movie_ leadactor</td>

</tr>

EOD;
}

Smovie_details .=<<<EOD

<tr>
<td> </td>
</tr>
<tr>
<td>Total :S$num_movies Movies</td>
</tr>
EOD;

How It Works

The preceding code does quite a lot of work for us, so let’s look at it in more detail.

As you know, the while { } statement loops through the records that have been returned. For each record,
it executes the block of code that is between the brackets. Don’t worry; PHP is smart enough to know how
many records there are and what record number is currently on in this case. There is no danger of having
the wrong values assigned to the wrong record.

The first line within the while loop (after the {) tells the script to pull out the value of the field movie_name

in the current record and put it into a variable called $movie_name. The next four lines do the same thing
(well, almost the same—they simply assign different field values to differently named variables).

115

Chapter 4

Then you come across the familiar tag that you saw at the beginning of this chapter. It’s not quite the
same as the one before because this one has . =<<<EOD instead of just =<<<EOD. So instead of just having
one record’s values, $movie_details contains all of the record values that have been returned. Then at
the end we have included the total number of movies in our database.

By adding a period (.) in front of =<<<EOD, you are adding the current value to the existing values. If
you forget to add the period (.) then all you will get is the last record’s values. That’s because in PHP
$var = "1" means “make $var become equal to the value of 1.”

In the preceding example, notice that we’ve assigned the name of the movie to the variable
$movie_name and then used $movie_name instead of doing the following.

while($Srow = mysqgl_fetch_row(Sresult))
{
Smovie_details .=<<<EOD
<tr>
<td>Srow|['movie_name']</td>
</tr>
EOD;
}

The preceding snippet does exactly the same thing, but it would then limit you if you wanted to do any
formatting on the variable’s values (you’ll see what we mean a bit later on).

Try It Out Putting it All Together

The data has now been retrieved, but we need to send it all to the browser so it will display in the table.

1. Weassign the $movie_footer variable by entering the following:
Smovie_footer ="</table>";
Smovie =<<<MOVIE
Smovie header
Smovie_details

Smovie_footer
MOVIE;

print "There are S$num_movies movies in our database";
print $movie;
?>
2. Save this file as table2 . php and upload it to your Web server.
3. Load that page into your Web browser.

You should see something similar to the screen shown in Figure 4-3.

116

Using Tables to Display Data

Tip - Micross et Explorer SE]
File Edit View Favorites Tools Help 5"
Que © B B G Lo Frroenn @ns @2 B H L) & D
fddress |) hikpe fiocabosttable2. php | Ede ks ®
There are 3 movies in our database
Movie Review Database
Movie Title | Movie Director | Movie Lead Actor
Bruce Almehty 2 [1
Office Space |6 |5
Grand Canyon |3 |4
Total :3 Movies
é] Done ‘J Local intranet

Figure 4-3

TryltOut | Improving Our Table

The table may look pretty, but as in Chapter 3, it doesn’t do us much good if we don’t have our secret
decoder ring to decipher what actors and directors were associated with our movies. You need to link
your tables to pull this information.

1. Modify your table2.php file as shown in bold text:

<?php
$link = mysgl_connect ("localhost", "root", "mysglpass") or die(mysqgl_error());
mysqgl_select_db("wiley") or die (mysqgl_error()):;

Squery = "SELECT
movie_name,
movie_director,
movie_leadactor
FROM

117

Chapter 4

movie";

Sresult = mysql_query(Squery, $link) or die(mysql_error());
Snum_movies = mysqgl_num_rows (Sresult) ;

Smovie_header=<<<EOD
<h2><center>Movie Review Database</center></h2>
<table width='70%' border='1l' cellpadding='2"
cellspacing='2"' align='center'>
<tr>
<th>Movie Title</th>
<th>Movie Director</th>
<th>Movie Lead Actor</th>
</tr>

EOD;

function get_director() {
global $movie_director;
global $director;

$query d = "SELECT people_fullname
FROM people
WHERE people_id='$movie_director' ";
$results_d = mysql_query($query d) or die(mysql_error()):;
$row d = mysql_fetch_array($results_d);
extract ($row 4);
$director = $people_fullname;

function get_leadactor() {
global $movie_leadactor;
global $leadactor;

$query a = "SELECT people_fullname
FROM people
WHERE people_id='$movie_leadactor'";
$results_a = mysql_query($query a) or die(mysql_error());
$row_a = mysql_ fetch array($results_a);
extract ($row_a);
$leadactor = $people_fullname;

while(Srow = mysqgl_fetch_array (Sresult))

{
Smovie_name = Srow['movie_name'];
Smovie_director = S$row['movie_director'];

118

Using Tables to Display Data

Smovie_leadactor = Srow['movie_leadactor'];

//get director's name from people table
get_director($movie_director);

//get lead actor's name from people table
get_leadactor ($movie_leadactor);

Smovie_details .=<<<EOD

<tr>
<td>S$movie_name</td>
<td>$director</td>
<td>$leadactor</td>

</tr>

EOD;
}

Smovie_details .=<<<EOD
<tr>
<td>Total :$num movies Movies</td>
</tr>
EOD;

Smovie_footer ="</table>";

Smovie =<<<MOVIE
Smovie_header
Smovie_details
Smovie_footer
MOVIE;

print "There are $num_movies movies in our database";
print Smovie;
?>

2. Save your file and reload it in your browser. Your screen should now look like that in Figure 4-4.

How It Works

With the functions get_director and get_leadactor added, the script requests that specific informa-
tion be requested from the server for each separate row in the table. This enables you to pull the infor-
mation you want without muddling up your original query. You also cleaned up the formatting for the
last two rows with the change in code near the end of the script.

Congratulations! You have successfully developed a powerful script that will query a database and put

its contents into an HTML table. Give yourself a pat on the back. But like all good explorers, onward we
must go.

119

Chapter 4

.php - Mics v
Eile Edit View Favorites Tools Help

SO
~

Qs - © M BB P Forors @ree @ 2-SE KD

Aliress | €] hitpifiocabost rablez. php B

Lirks

There are 3 movies in our database

Movie Review Database

Movie Title | Movie Director Movie Lead Actor
| Bruce Alrmghty Tom Shadyac Jim Carrey
Cffice Space ke Judge Ron Limngston
| Grand Canyon |Lawrence Easdan Eevin Kline
Total :3 Movies

8] Dore
Figure 4-4

‘J Local intranet

Who’s the Master?

Now let’s build on the good work that you’ve done so far and add more information and functionality
to your table.

TryltOut | Adding Links to the Table

The steps in this section will enable you to load extra information depending on the movie that you
click. This requires you to do the following:

1. Open table2.php in your favorite text/HTML editor and add the lines of code that appear
in bold.

We haven't displayed the whole page of code, as we're sure you know it by heart already.

Squery = "SELECT
movie_id,
movie_name,
movie_director,
movie_leadactor
FROM

120

Using Tables to Display Data

movie";

Sresult = mysqgl_query(Squery, $link) or die(mysgl_error());
Snum_movies = mysqgl_num_rows (Sresult) ;

while ($row = mysqgl_fetch_array($result))

{
$movie_id = $row['movie id'];
Smovie name = S$Srow['movie_name'];
Smovie_director = $row|'movie_director'];
Smovie_leadactor = Srow['movie_leadactor'];

//get director's name from people table
get_director (Smovie_director) ;

//get lead actor's name from people table
get_leadactor (Smovie_leadactor) ;

Smovie_details .=<<<EOD
<tr>
<td><a href='movie_details.php?movie_id=$movie_id'title=
'Find out more about $movie_name'>Smovie_name</td>
<td>$director</td>
<td>$leadactor</td>
</tr>
EOD;
}

2. Save the file as table3 . php, upload the file to your Web server, and open the page with your
browser.

Your screen should look like that in Figure 4-5.

How It Works

You should notice a change between Figure 4-4 (table2.php) and Figure 4-5 (table3.php). You now
have links to more detailed information about each movie for your visitor to click.

The first change made in the previous section altered the MySQL query to include the $movie_id field.

Then we added the new field to the results set returned from the query. (Otherwise, we’d just be selecting a
field and not actually doing anything with it, and what’s the point of that?)

The final change created the HTML code that produces a hyperlink on the movie name. We’ve also
added a nice little touch with the inclusion of “tooltips” for each of the movies in the list. Unfortunately,
some Web browsers don’t support this (apologies to those of you who have such browsers).

So now that the changes have been made, what does it actually do?

Place your mouse over some hyperlinks, and if you view your status bar, you'll see that each link is
unique and is created dynamically.

This page is known as the “master page,” and the page that we are going to link to is known as the
“child page.”

121

Chapter 4

Good, eh? No more having to type lots of different hyperlinks (what a bore that used to be).

p:ilocalhostitabled.php - Microsoft Internet Explorer [SE=|
File Edit View Favorites Tools Help b
Q Bk v () IE‘J I-é.j ! ;‘ /._) search ;'(Fanvorites emedm &) '_: - ._‘f =im é% Q’
addr :s:-i_.é_]htl‘n:.l’.ﬂocm!tahles.phn v Be ke
There are 3 movies in our database
Movie Review Database
Movie Title Movie Director Movie Lead Actor
Bruce Abr Totn Shadyac Jim Carrey
Office Space Mike Judge Ron Livingston
Grand Canyon Lawrence Easdan Eevin Elne
Total :3 Movies
8] SJ Localintranet
Figure 4-5

Try It Out Adding Data to the Table

Before you can go any further, you need to add some data to your existing database that you can use for
your movie details. If you recall from Chapter 3, for each movie, you currently have the movie name,
director, lead actor, type, and year of release. Let’s also add the running time, how much the movie
made, and how much it cost to produce. For all you sticklers out there, a word of warning: the dollar
amounts we are using are for instructional purposes only. In fact, we have no idea how much money these
movies actually made, nor how much they cost to produce. Work with us on this one, okay?

1. Open your text editor and type the following code:
<?php

$link = mysqgl_connect ("localhost", "root", "mysglpass")

or die(mysqgl_error());
mysgl_select_db("wiley") or die

(mysgl_error());

//alter "movie" table to include running time/cost/takings fields
Sadd = "ALTER TABLE movie ADD COLUMN (

movie_running time int NULL,
movie_cost int NULL,

122

Using Tables to Display Data

movie_takings int NULL)";
Sresults = mysqgl_gquery ($Sadd)
or die(mysqgl_error());

//insert new data into "movie" table for each movie
Supdate="UPDATE movie SET
movie_running time=102,
movie_cost=10,
movie_takings=15
WHERE movie_id = 1";
Sresults = mysqgl_query (Supdate)
or die(mysqgl_error());

Supdate="UPDATE movie SET
movie_running_ time=90,
movie_cost=3,
movie_takings=90

WHERE movie_id = 2";

Sresults = mysqgl_query (Supdate)

or die(mysqgl_error());

Supdate="UPDATE movie SET
movie_running time=134,
movie_cost=15,
movie_takings=10

WHERE movie_id = 3";

Sresults = mysqgl_query ($Supdate)

or die(mysqgl_error());

?>

2. Open this file in your browser. Don’t worry—you will see a blank screen, but your table has
been altered and the information has been entered automatically.

How It Works

First, the script used the ALTER TABLE command to add the appropriate fields into the existing movie
table, and then it used the UPDATE command to insert the new data into those fields. If you aren’t famil-
iar with these commands, you might try rereading Chapter 3.

Try It Out Calculating Movie Takings

Now that you have the data in place, you need to create a new page that you'll use to display the extra
movie information (movie_details.php).

1. Open your text editor and type the following program:

<?php
Slink = mysqgl_connect ("localhost", "root", "mysglpass")
or die(mysqgl_error());
mysgl_select_db("wiley") or die (mysgl_error());

/* Function to calculate if a movie made a profit,
loss or broke even */

123

Chapter 4

function calculate_differences ($takings, Scost)

{
Sdifference = Stakings - S$Scost;
if($difference <0)
{
Sdifference = substr($difference,l);
$font_color ='red';
Sprofit_or_loss = "$".Sdifference."m";
lelseif ($difference >0) {
$font_color ='green';
Sprofit_or_loss = "$".Sdifference."m";
telse({
$font_color ='blue';
Sprofit_or_loss = "Broke even";
}
return "".Sprofit_or_loss."";
}
?>

This function will make life easier for you. This will become clearer as we proceed through the
rest of this example.

2. Save this file asmovie_details.php.

How It Works

The line that contains the code substr is placed before the $profit_or_loss line because a loss will
return a negative number, and no one actually says, “The movie made a loss of minus 10 million dol-
lars.” Instead we say, “The movie lost 10 million dollars.” However, what happens when the movie
takings are the same as the movie production costs? That’s where the last “else” comes into play. We've
covered all eventualities.

The important thing to remember is that in PHP you can very easily create new variables by performing
actions on existing ones. Just because you don’t hold the information in the database doesn’t mean you
can’t create it.

Try It Out Displaying the New Information

Now you are going to alter the original master table to include the new data, and this will serve as your
new “child” table.

1. Addthe following code to movie_details.php:

/* Function to get the director's name from the people table */
function get_director() {

global $movie_director;

global S$director;

Squery_d = "SELECT people_fullname
FROM people
WHERE people_id='Smovie_director' ";
Sresults_d = mysqgl_query(Squery_d) or die(mysqgl_error());
Srow_d = mysqgl_fetch_array(Sresults_d) ;
extract (Srow_d);

124

Using Tables to Display Data

Sdirector = Speople_fullname;

/* Function to get the lead actor's name from the people table */
function get_leadactor () {

global S$movie_leadactor;

global $leadactor;

Squery_a = "SELECT people_fullname
FROM people
WHERE people_id='Smovie_leadactor'";
Sresults_a = mysgl_query(Squery_a) or die(mysgl_error());
Srow_a = mysqgl_fetch_array(Sresults_a);
extract ($row_a);
Sleadactor = Speople_fullname;

$query = "SELECT
*
FROM
movie
WHERE
movie_id ='".$_GET['movie_id']."'";

Sresult = mysqgl_query(Squery, $link) or die(mysqgl_error());

Smovie_table_headings=<<<EOD
<tr>
<th>Movie Title</th>
<th>Year of Release</th>
<th>Movie Director</th>
<th>Movie Lead Actor</th>
<th>Movie Running Time</th>
<th>Movie Health</th>
</tr>
EOD;

while ($Srow = mysql_fetch_array(Sresult))
{
Smovie _name = S$Srow['movie_name'];
Smovie_director = $row['movie_director'];
Smovie_leadactor = S$Srow['movie_leadactor'];
Smovie_year = $row['movie_year'];
Smovie_running_time = Srow['movie_running_time']." mins";
Smovie_takings = Srow['movie_takings'];
Smovie_cost = Srow['movie_cost'];

//get director's name from people table
get_director (Smovie_director) ;

//get lead actor's name from people table
get_leadactor (Smovie_leadactor) ;

125

Chapter 4

How It Works

Because we’ve already written the functions to get the director’s and lead actor’s names, we “borrowed”
this from the table2.php file. Then we’ve changed the query to return everything in each record, as
opposed to only a few fields. It does mean that we are returning one field that we are not actually using.
The query now contains a WHERE clause. This determines which record we are going to retrieve the data
from.

Take a look at the WHERE clause (it’s not as daunting as it first seems).

We have used $_GET['movie_id'] in the WHERE clause. This is the ID of the movie that was passed
from the hyperlink in table3.php.

We've also created the variable $movie_table_headings to contain the headings for the fields that
we’ll be using.

The rest of the code is very similar to the code in table3.php. We've added four extra fields to the
while control loop.

Didn’t we say previously that returning fields that you don’t need is not good practice? Yes, we did.
However, in this case we are returning only one more field than we need, as opposed to returning many
redundant fields. So are we going against our own advice? Well, to be 100 percent truthful, yes.
However, as we are using the vast majority of fields in each record, PHP will not suffer from this tradeoff
and it is worth it. You would not want to do this when, for example, you want the values of (say) 5 fields
and the record structure contains 50 fields. If you did this in that instance, PHP would be “wasting”
resources to return the other 45 fields.

Try It Out Displaying Movie Details
So now that you've arranged to return information from records, what next? Now you put this extra
information to work.
1. Add the following lines of code to movie_details.php.

Smovie_health =
calculate_differences (Smovie_takings, $Smovie_cost) ;
Spage_start =<<<EOD

<HTML>
<head>
<title>Details and Reviews for: Smovie_name</title>
</head>
<body>
EOD;

Smovie_details =<<<EOD
<table width='70%' border='0"' cellspacing='2' cellpadding='2' align='center'>
<tr>
<th colspan='6"'><u><h2>$movie_name: Details</h2></u></th>
</tr>
Smovie_table_headings
<tr>
<td width='33%"' align='center'>S$movie_name</td>
<td align='center'>Smovie_year</td>
<td align='center'>S$director</td>
<td align='center'>$leadactor</td>

126

Using Tables to Display Data

<td align='center'>S$movie_running_time</td>
<td align='center'>S$movie_health</td>
</tr>
</table>

EOD;
Spage_end =<<<EOD
</body>
</HTML>
EOD;
Sdetailed_movie_info =<<<EOD
Spage_start
Smovie_details
Spage_end
EOD;

echo $detailed_movie_info;
mysgl_close() ;

2. Save the file asmovie details.php, upload the file to your Web server, and browse to
table3.php.
3. Click a movie name and you should see a page similar to Figure 4-6.
‘Details and Reviews for: Bruce Almighty - Microsaft Internet Explorer EE|
File Edit View Favorites Tools Help -ﬂ'
Qo - () |i|ﬁ Ig] ¢ ¢) search ',' Favorites (P Media 4 [+ f = é% @P
aciress |] hetpilacahostjmove_detsils, phpimevie_id=1 B s>
Bruce Almighty: Details
Movie Title Year of Movie Movie Lead Movie Runing MMovie
Release Director Actor Time Health
7 Tetn s g ‘.
Bruce Almighty 2003 Shadyac Jirn Carrey 102 rrine B5em
/&] bane %4 Local intranet
Figure 4-6

127

Chapter 4

How It Works

Remember the function we created at the top? When we add the line in Step 1 of the previous “Try It Out”
section, we call the function and ask it to execute. Whatever value is returned from the calculate_
difference function will be placed in the variable $movie_health (after all, if a movie is healthy then it
has made a profit). Passing the $movie_takings and the $movie_costs to the function will produce the
correct result.

When we define the $page_start variable, we start sorting out the actual page structure. By adding the
variable $movie_name, we can get it displayed in the browser’s title bar. You can see now how handy
the =<<<EOD syntax is becoming.

Next, we define the $movie_details variable. This should be fairly self-explanatory. Remember the
$movie_table_headings variable we created previously? All we’ve done is slot it into place within the
$movie_details variable and, hey presto, it appears.

Finally, we define the $page_end variable and bring it all together in the closing lines.

Phew! That was a lot of code there! Now is a good time to take a break and reward yourself (mine’s cof-
fee with milk and two sugars, thanks).

A Lasting Relationship

What if you wanted to find all the reviews for a particular movie? As it stands, you’d need to create a
new SQL query in the movies_details.php page and execute it when the page loads, which would
make a total of two SQL queries in one page. It would work, but it would not be very efficient. (We're

all efficient coders, aren’t we?) This also results in unnecessary code.

It’s time for us to answer the question, what’s a relationship?

A relationship is a way of joining tables so that you can access the data in all those tables.

The benefit of MySQL is that it is a relational database and, as such, supports the creation of relationships
between tables. When used correctly (this can take a bit of time to get your head around) relationships can

be very, very powerful and can be used to retrieve data from many, many tables in one SQL query.

The best way to demonstrate this is to build upon what we have done so far, so let’s do it.

Try It Out Creating and Filling a Movie Review Table

Before you can access movie reviews in your movie review table, you need to create the table and then
fill it with data.

1. Open your text editor and type the following code:

<?php
//connect to MySQL
Sconnect = mysgl_connect ("localhost", "root", "mysglpass") or

die ("Hey loser, check your server connection.");
mysqgl_select_db ("wiley");

128

Using Tables to Display Data

//create "reviews" table

Sreviews = "CREATE TABLE reviews (
review_movie_id int(11) NOT NULL,
review_date date NOT NULL,
review_name varchar (255) NOT NULL,
review_reviewer_ name varchar (255) NOT NULL,
review_comment varchar (255) NOT NULL,
review_rating int(11) NOT NULL default 0,
KEY (review_movie_id),
) TYPE=MyISAM";

Sresults = mysqgl_query (Sreviews)
or die (mysqgl_error());

//populate the "reviews" table
Sinsert = "INSERT INTO reviews
(review_movie_id, review_date, review_name,
review_reviewer_name, review_comment, review_rating)
VALUES
(*1', '2003-08-02', 'This movie rocks!',
'John Doe','I thought this was a great movie even though

my girlfriend made me see it against my will.' ,'4'),
('1','2003-08-01"', 'An okay movie',
'Billy Bob', 'This was an okay movie. I liked Eraserhead better.',K6 '2'),
('1','2003-08-10"', 'Woo hoo!',
'Peppermint Patty', 'Wish I\'d have seen it sooner!','5'),

('2','2003-08-01"', 'My favorite movie',

'Marvin Marian', 'I didn\'t wear my flair to the movie but I loved
it anyway.','5"'),

('3','2003-08-01"', 'An awesome time',

'George B.','I liked this movie, even though I thought it was

an informational video from our travel agent.',6 '3')";

Sinsert_results = mysgl_query(Sinsert)
or die(mysqgl_error());

?>

2. Save this file as createreviews . php, upload it to your server, and open it in your browser.
Your reviews table has now been created and filled!

How It Works

By now you should be familiar with creating tables using MySQL and PHP, and this should be pretty
self-explanatory. If you're having trouble, you might try going back to Chapter 3.

Try It Out Querying for the Reviews

In this example, you're going to link two tables (movies and reviews) to show the reviews for a particu-
lar movie. This requires a lot of changes to the movie_details.php page, so you'd best make a copy of
the file (can’t ever be too careful). Then follow these steps:

129

Chapter 4

1. Openmovie_details.php in your favorite text/HTML editor.

2. Make the following changes to the code (changes are in bold):

Smovie_query = "SELECT
*
FROM
movie
WHERE
movie_id ='".$_GET['movie_id']."'

Smovie_result = mysqgl_query(Smovie_query,$link) or die(mysgl_error());

And later in the code, change the following:

while (Srow = mysqgl_fetch_array(Smovie_result))
{
Smovie_name = Srow['movie_name'];
Smovie_director = $row['movie_director'];

3. Addthe following lines:

Sreview_query = "SELECT
*
FROM
reviews
WHERE
review_movie_id ='".$_GET['movie_id']."'
ORDER BY

review_date DESC";

Sreview_result = mysqgl_query(Sreview_query, $link) or die(mysgl_error());

How It Works

We've changed the name of $query to $movie_guery, and also changed $result to $movie_result.
This was done to ensure that we do not confuse ourselves when accessing the relevant results set
returned from a SQL query. There is also an “order by” clause, which ensures that the most recent
reviews are at the top of the page.

A fundamental mistake that a lot of beginners make is to simply use the same variable names when cre-
ating SQL queries (for example, $sgl = "SELECT . . .). Let’s assume that we simply copied and pasted,
and then modified the movie query and movie result when it was called query. We’d have two SQL
queries called query and two results sets called $result. When the first result ran it would produce the
expected results, as would the second one. However, if we ever wanted to refer to the results set that
was returned from the first SQL, we’d have a big problem.

Why? The first results set would have been overwritten by the results of the second SQL query. For this

reason, always ensure that you use different names for additional SQL queries and results sets returned
from the query.

130

Using Tables to Display Data

Try It Out Displaying the Reviews

The next chunk of code is the function that allows you to display a cool little graphic for the rating that
each film received from the reviewer.

1. Enter this code:

function generate_ratings($review rating)

{ for($i=0;$i<S$review rating;$i++)
{ $movie_rating .= " ";
ieturn $movie_rating;
}
2. Now add the code in the following lines immediately below the $movie_table_headings

variable.

$review_ table_ headings=<<<EOD
<tr>
<th>Date of Review</th>
<th>Review Title</th>
<th>Reviewer Name</th>
<th>Movie Review Comments</th>
<th>Rating</th>
</tr>
EOD;

3. Youneed to add the next few lines to the page following the review table headings:

while($review row = mysql_fetch_array($review result))
{
$review_flag =1;
$review_title[] = $review row['review name'];
$reviewer name[] = ucwords($review rowl['review reviewer name']);
$review[] = $review row['review comment'];
$review_date[] = $review _row['review date'];
$review_rating[] = generate_ratings($review row['review rating']l);}

4. Next, youneed to add the following lines to the page:

$i=0;
while($i<sizeof ($review))
{
$review_details .=<<<EOD
<tr>
<td width='15%' valign='top' align='center'>$review date[$i]</td>
<td width='15%' valign='top'>$review title[$i]l</td>
<td width='10%' valign='top'>$reviewer name[$i]</td>
<td width='50%"' valign='top'>$review[$i]</td>
<td width='10%' valign='top'align='center'>$review rating[$i]</td>
</tr>
EOD;
Si++;

131

Chapter 4

5. Make the changes (in bold) as shown here. Go slowly, and ensure that you make all the changes
correctly.

<td>S$movie_health</td>
</tr>
</table>

EOD;

if ($review flag)

{
$movie_details .=<<<EOD
<table width='95%' border='0' cellspacing='2"
cellpadding='20' align='center'>
$review_table_headings
$review details
</table>
EOD;
}

6. Save the file asmovie_details.php (overwriting the existing one—we hope you have made a
backup copy as suggested).

N

Upload to your Web server and load table3.php.

8. Click a movie and you'll see something similar to Figure 4-7.

[ET Detalis arid Reviews for: Bruce Almighty - Microsof nternat Explorar =[o |
Eile Edit View Favorites Tools Help w
Qui- © N R G Lo v @ @2 %= R D
Atz |] st fiacelhasimove_dekais, pho7movie_id=1 | B oo s

Bruce Almighty: Details
Mosie Title Year of Movie Movie Lead Movie Running Movie
Release Director Actor Time Health
- o o Tom o ms .
FBruce Ahmghiy 2003 Shadyac Jun Carrey 102 mms $5m
Date of Review Reviewer : z 2
Besiar Title Naie MMovie Review Conunents Hating
2003-08-10 Weoo hool FPeppermmt TWish I'd have seen it soonsr!
Fatty
2002-08-02 Thiz mowne Jobn Doe 1 thought this was a great movie even though my girlnend made
rocls! me see it against my will,
2003-08-01 An okay EBdly Bob Thiz was an okay mowie. [Hred Eraserhead better
maosne
] Done %J Local intranet

Figure 4-7
132

Using Tables to Display Data

How It Works

The generate_ratings function is fairly straightforward. You send it the value that is in the ratings
field for a movie and it creates a “rating” image for that movie and returns it. Notice that we are using
.= (which is similar to . =<<<). This ensures that movies with a rating of more than 1 will get additional
images added to the single rating image

The $review_table_headings variable contains the table headings for the reviews that we have just
pulled out via the previous SQL query. This uses exactly the same concept as the movie table headings in
the previous example. So now we have all the review table headings in a nice, neat variable.

While the script is collecting rows of reviews, if there are any reviews for the movie, you set a flag indi-
cating this using the $review_flag variable. The code creates arrays to hold the values that will be
returned. Why are we putting them into arrays and not just ordinary variables? This allows the variables
to hold data for more than one review for the movie. After all, we expect that there’ll be many, many
reviews for each film. If you didn’t create the review variables as arrays, then you’d return only the last
review for the movie. In the previous discussion, we looked at why we preferred to put the field values
into a variable rather than echo out the field values. Take a look at the line reviewer_name. You'll notice
that we have placed the line $review_row['review_name'] inside the PHP function ucwords. This
allows us to automatically perform the ucwords function (which capitalizes the first letter of each word)
on the value returned from that field.

The code then loops through the array and assigns values to each of the fields that we are going to dis-
play to the user for the review. We use the PHP sizeof function to calculate how many records have
been returned.

Finally, we’ve broken the $movie_details variable up into several smaller chunks and added them
through the use of . =<<<. Just as we have done before, we used an already-defined variable (in this case,
$review_table_headings and $review_details) and just slotted it into the correct place. If the
review flag has been set, then we'll see the items that make up the reviews (review table headings and
the reviews).

We’ve made quite a few changes in this section. But as you can see, the changes have been well worth it.
Now you know how to use MySQL to create relationships between tables. We successfully retrieved all
the reviews from the review table depending on the movie_id variable. We also looked at using the
$_GET superglobal variable to pass values from one page to another.

Summary

We’ve shown you how to work with HTML tables to display your data, how to pull data from more than
one database table and have it displayed seamlessly with data from another table, and how to create
dynamic pages that display detailed information about the rows in your database. You should also be
able to include those nifty little images to graphically display data to your Web site visitors.

What more could you possibly need to know about PHP and MySQL? Plenty!

133

Form Elements: Letting
the User Work with Data

An interactive Web site requires user input, which is generally gathered through forms. As in

the paper-based world, the user fills in a form and submits its content for processing. In the Web-
application instance, the processing is performed by a PHP script, not a sentient being. Hence, the
script requires coded intelligence.

When you fill in a paper form, you generally use a means to deliver its content (for example, the
postal service) to a known address (such as a mail order bookstore). The same logic applies to
online forms. An HTML form is sent to a specific location and processed.

In HTML, the form element is rather simple; it states where and how it will send the contents of
the elements it contains once submitted. At this point, PHP comes into play. Your PHP script
receives the data from the form and uses it to perform an action, such as updating the contents
of a database, sending an e-mail, testing data format, and so on.

PHP uses a set of simple yet powerful expressions that, once combined, provide you with the means
to do virtually anything you want.

In this chapter, you begin to build a simple application that allows you to add, edit, or delete
members of a data set (in this instance, movies, actors, and directors). This chapter welcomes you
into a world of PHP/MySQL interaction by covering:
0 Creating forms using buttons, text boxes, and other form elements
Creating PHP scripts to process HTML forms

a
0 Mastering $_POST and $_GET to retrieve data
Q

Passing hidden information to the form processing script via hidden form controls and
a URL query string

Chapter 5

Your First Form

As a wise man once said, every journey starts with a single step. To start this particular journey, we will
focus on a very simple form. It will include only a text field and a submit button in a table layout. The
processing script will display only the value entered in the text field.

Try It Out Say My Name

In this exercise, you are going to get PHP to respond to a name entered in a form. This is a simple varia-
tion of the typical “hello world,” allowing you to take your first step into interactivity.

1. Create a text file named forml.html and open it in your favorite text editor.
2. Enter the following code:

<html>
<head>
<TITLE>Say My Name</TITLE>
</head>
<body>
<form action="formprocessl.php" method="post">
<table border=0 cellspacing=1 cellpadding=3 bgcolor="#353535" align="center">
<tr>
<td bgcolor="#ffffff" width="50%">
Name
</td>
<td bgcolor="#ffffff" width="50%">
<INPUT type="TEXT" name="Name">

</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="Submit">
</td>
</tr>
</table>
</form>
</body>
</html>

3. Create another empty file named formprocess1.php and enter the following code:

<html>
<head>

<title>Say My Name</title>
</head>
<body>
<?php

echo "Hello ".$_POST['Name'];
?>

<PRE>

136

Form Elements: Letting the User Work with Data

DEBUG :
<?php
print_r ($_POST) ;
?>
</PRE>
</body>
</html>

4. Upload the files to your Apache work directory.
5. Type test in the name text box (as shown in Figure 5-1) and click the Submit button.

You can see two distinct parts on the resulting page: the “Hello Test” portion and the DEBUG part
shown in Figure 5-2.

You just coded your first form processing script.

-0 BRAG Pree p-ad-0 = =
Mame |Tesﬂ
Figure 5-1

137

Chapter 5

@
B

CQ-0 - BRG| PFHFTE O -85 ! L

Hello Test

DEBUG :
Array
{
[Mams] => Test
[SUBMIT] => Submit
1

Figure 5-2

How It Works

As with any recipe, it’s a good idea to start working on forms by understanding the ingredients. To
familiarize yourself with forms, you'll need some background information about HTML form elements
and a few new PHP functions.

Let’s start with the HTML form.

HTML references can be found at the World Wide Web Consortium Web site at www.w3 . org/MarkUp.

FORM Element

First, we’ll introduce the first HTML element you'll need: FORM. It delimits the form area in the page and
holds the fields you want your Web site users to fill in.

<FORM action="formprocessl.php" method="post">

<!—form controls here—>
</FORM>

138

Form Elements: Letting the User Work with Data

Notice that the FORM element has an ending tag and two attributes.
The first attribute (action) is the recipient page address (the form processing script).

The second attribute (method) is the way in which you will send the data to the recipient. There are two
separate ways of sending a form to its processing script: the POST and the GET methods.

The PosST method (see Figure 5-3) takes the data from the form fields and sends it through an HTTP
header. In this case, the data cannot be seen in the URL.

foo.php
<form action="bar.php" method="POST">
<input type="text” name="mcvie name”:
</form>

http://localhost/bar.php

\ 4

bar.php

The movie is called <?=5_POST["movie_name"]?s.

Figure 5-3
The GET method gets the data from the form fields, encodes it, and adds it to the destination URL, as
shown here:
http://localhost/formprocessl.php?fieldl=valuea&field2=value%20b

As you can see, the field names and their values are easy to read inside the script URL.

INPUT Element

The second new HTML element included here is INPUT. This is the basis of most forms and can be used
in many different ways to gather many different types of information.

In this case, we use two different types of INPUT: the text and submit types.
Here’s the INPUT TEXT type:
<INPUT type="TEXT" name="Name">

The INPUT text type is a standard, single-line text box. As with all form controls, it needs a name so that
the processing script can access its content using the following syntax:

139

Chapter 5

<?php
echo $_POST['Name']; // will display the value typed in
?>
And here’s the INPUT submit type:

<INPUT type="SUBMIT" name="SUBMIT" value="Submit">

As its name cleverly hints, the submit element displays a button that, when pressed, submits the form.
The button text is set through the value attribute. As mentioned for the text INPUT, this form control
needs a name for a processing reference.

Processing the Form

In this little script, you may have noticed a few new functions and syntaxes, and you are probably curi-
ous about them.

The first form processing script is an interactive variation of the famous “hello world,” but in this case it
displays “hello” and the name you type in the text box.

To make this happen, you need to print the value of the text field you filled in on the form. You know the
echo command, so let’s move on to the other piece, $_POST['Name'].

The $_posST global array contains all form data submitted with the POST method. The array index of
the field is its name. See the next item for hints on checking the content of your $_POST array using the
print_r () function.

<?php
echo "Hello ".$_POST['Name'];
?>
In this example, $_POST['name'] displays what you entered in the “Name” box.
Hello test

(A debugging tip: Dump the global arrays.)

You might wonder what print_r ($_POST) does. It simply dumps the whole contents of the super global
$_POST array to the output. This is a great way to debug your forms, as you will see.

The $_POST array, as with all arrays, has case-sensitive indexes. Use this tip to check for case and display
the state of your objects when building a script.

Your formprocessl.php script outputs something similar to the following;:
Hello test
DEBUG :

Array

(

140

Form Elements: Letting the User Work with Data

[Name] => test
[SUBMIT] => Submit
)

When receiving the submitted form, PHP sets the POST array with the data that the form sends. As with
any array, you can directly access any of the indexes by name. In this instance, you can clearly see that
the Name index contains the value test. This trick works for all forms, even the most complicated ones.

Let’s move on to see how you can use more HTML elements during form input to interact with the user.

Driving the User Input

The form in this example allows you to lead the user to choose values from a set of values you provide.
Defining a value set is done through the use of specific HTML elements, such as list boxes, radio but-
tons, and checkboxes.

Two kinds of predefined user input are in HTML forms. The first kind allows you to choose one item from
the available options; the second allows the user to choose multiple items. Drop-down list boxes and radio
buttons allow for one selection only. Checkboxes and multiline list boxes provide for multiple choices.

Try It Out Limiting the input choice

Let’s start with the simple type of input. Follow these steps to create a single selection list:

1. Create a text file named form2.html and open it in your favorite text editor.
2. Enter the following code:

<html>
<head>
<TITLE>Greetings Earthling</TITLE>
</head>
<body>
<form action="formprocess2.php" method="post">
<table border=0 cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">
<tr>
<td bgcolor="#ffffff" width="50%">
Name
</td>
<td bgcolor="#ffffff" width="50%">
<INPUT type="TEXT" name="Name">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Greetings
</td>
<td bgcolor="#ffffff">
<SELECT name="Greeting">

141

Chapter 5

<option value="Hello">Hello</option>
<option value="Hola">Hola</option>
<option value="Bonjour">Bonjour</option>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" width="50%">
Display Debug info
</td>
<td bgcolor="#ffffff" width="50%">
<INPUT type="checkbox" name="Debug" CHECKED>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="Submit">
</td>
</tr>
</table>
</form>
</body>
</html>

3. Create another empty file named formprocess2.php and enter the following code:

<html>
<head>

<TITLE>Greetings Earthling</TITLE>
</head>
<body>
<?php

if ($_POST['Debug'] == "on") {
?>
<PRE>
<?php

print_r ($S_POST) ;

?>
</PRE>
<?php

}

?>

<p align="center"><?php echo $_POST['Greeting']?> <?php echo $_POST['Name']?></p>
</body>
</html>

4. Save formprocess2.php and upload it to your work folder.

5. Call the page from your browser.

As you can see from the resulting page displayed in Figure 5-4, the form got a bit more
complicated.

142

Form Elements: Letting the User Work with Data

-0 BRb Pree[p-aE-0 & >
Mame Test
Greetings Bonjour |ﬂ
Dusplay Debug mfo

Figure 5-4

6. Enter your name and click the Submit button.

The display page that appears, shown in Figure 5-5, is rather simple; it holds only debug infor-
mation and a greeting.

How It Works

As you see, this code uses logic similar to that in formprocess1.php. Two fields have been added (a
drop-down list box and a checkbox).

formprocess2.php does the same thing as formprocessl.php but with an added twist. It displays the
debugging information only if the Debug checkbox is selected and greets you using any of the drop-
down list choices in the subsections that follow.

143

Chapter 5

0-0 RRG PR eEe|praE-L z

hrray

{

[Mams] == Test
[Greeting] => Bonjour
[Debug] => on
[FUBMIT] => 3ubmit

EBonjour Test

Figure 5-5

INPUT Checkbox Type

The checkbox can represent only two possibilities: When checked, it passes the value on to the $_PosT
array, but otherwise it just doesn’t send anything. This is a great way to represent Boolean typed data.

* SELECT element
<SELECT name="Greeting">
<option value="Hello">Hello</option>
<option value="Hola">Hola</option>
<option value="Bonjour">Bonjour</option>
</SELECT>

The SELECT element (also known as list) allows you to display a fixed list of choices from which the user
has to choose an element. The item selected won’t be sent as displayed but will be sent as its value. In
this example, the value and its display are identical, but in a database-driven system you would proba-
bly see record IDs as the values and their text label as list choices. A good example is a product number
and its name.

144

Form Elements: Letting the User Work with Data

When using lists, be sure to set the value part of the OPTION items. If these are not set, the list looks all
the same but is totally useless because all choices will send the same null value.

One Form, Multiple Processing

Forms always react in a predefined way based on how you code your processing script to handle the
data that the user sends to the system. A single form can have more than one defined action by using dif-
ferent submit buttons.

Try It Out Radio Button, Multi-Line List Boxes

In the following example, you create a form that prepares a search and creates a movie/actor/director
interface.

1. Create a text file named form3.php and open it in your text editor. Then type the following
code:

<html>
<head>
<TITLE>Add/Search Entry</TITLE>
</head>
<body>
<form action="formprocess3.php" method="post">
<table border=0 cellspacing=1 cellpadding=3 bgcolor="#353535" align="center">
<tr>
<td bgcolor="#ffffff" width="50%">
Name
</td>
<td bgcolor="#ffffff" width="50%">
<INPUT type="TEXT" name="Name">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
What you are looking for
</td>
<td bgcolor="#ffffff">
<SELECT name="MovieType">
<option value="" SELECTED>Select a movie type...</option>
<option value="Action">Action</option>
<option value="Drama">Drama</option>
<option value="Comedy">Comedy</option>
<option value="Sci-Fi">Sci-Fi</option>
<option value="War">War</option>
<option value="Other">Other...</option>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Add what?
</td>

145

Chapter 5

<td bgcolor="#ffffff">
<INPUT type="radio" name="type" value="Movie" CHECKED>

Movie

<INPUT type="radio" name="type" value="Actor">
Actor

<INPUT type="radio" name="type" value="Director">
Director

</td>
</tr>
<tr>

<td bgcolor="#ffffff" width="50%">
Display Debug info
</td>
<td bgcolor="#ffffff" width="50%">
<INPUT type="checkbox" name="Debug" CHECKED>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="Submit" value="Search">
<INPUT type="SUBMIT" name="Submit" value="Add">
</td>
</tr>
</table>
</form>
</body>
</html>

2. Create another file named formprocess3.php and edit it to add the following code:

<?php
if ($S_POST['type'] == "Movie" && $_POST['MovieType'] == ""){
header ("Location: form3.php") ;
}
Stitle = $_POST['Submit']." ".$_POST['type']l." : ".S$_POST['Name'];
?>
<html>
<head>
<TITLE><?php echo $title?></TITLE>
</head>
<body>
<?php
if ($_POST['Debug'] == "on") {
?>
<PRE>
<?php
print_r ($S_POST) ;
?>
</PRE>
<?php
}
Sname = $_POST['Name'];
Sname[0] = strtoupper(Sname[0]);

146

Form Elements: Letting the User Work with Data

if ($S_POST['type'] == "Movie") {
Sfoo = $_POST['MovieType'] ." ". $_POST['type'l;
} else {

$foo = $_POST['type'l;
}

?>

<p align="center">
You are <?php echo $_POST['Submit']?>ing
<?php echo $_POST['Submit'] == "Search" ? "for " : "";?>
a <?php echo $foo ?>
named "<?php echo Sname?>"
</p>
</body>
</html>

3. Start your browser and open http://localhost/myform3.php.

The form shown in Figure 5-6 appears. Notice that the form has two submit buttons. One is
labeled Search, the other Add.

-0 RRO PLPree| p-aB = z

Mame K.ewin Kline

Mdowe type (if applicable) || Mavie type.. ﬂ

O Mowie
Ttem Type @ Mctor

O Director
Display Debug Dump

Figure 5-6

147

Chapter 5

4. Type Kevin Kline in the Name field.
B. Leave Movie Type as is; then move on to the Item Type field, in which you'll select Actor.

6. Clear the Display Debug Dump checkbox if you like; then click the Search button.

The results appear, as shown in Figure 5-7.

C-0 - NRAa| Pre@e -8B =2 @_

hrray

(
[Mams] => Kevin Hline
[HovieType] =>
[type] => Actor
[Debug] => on
[Submit] => Search

Tou are Searching for a Actor named "Eevin Elne"

Figure 5-7

Now play around a bit with the form. Look at the output and how it changes when you modify the data.

How It Works

You just coded a simple form with two possible actions. Depending on the button you click and the data
you choose to enter, this code outputs different information.

What's new in the form page itself? A group of radio buttons and a new submit button have been added.
Let’s have a closer look at these.

148

Form Elements: Letting the User Work with Data

Radio INPUT Element

The radio button is a very simple element. By default, if no radio button is specified as CHECKED, no
default choice is made. Always remember that choosing the default value is a very important part of
building a form. Users often leave defaults in forms. (It is a form of laziness, so to speak.)

<INPUT type="radio" name="type" value="Movie" CHECKED>

Movie

<INPUT type="radio" name="type" value="Actor">
Actor

<INPUT type="radio" name="type" value="Director">
Director

For multiple radio buttons to be linked together to form a group and be processed as a single form ele-
ment, they need to share the same name and different values (quite obviously). In the preceding code,
the name is always type. This tells the browser that selecting one of the radio buttons clears the others.

Multiple Submit Buttons

As with radio buttons, submit buttons share the same name with a different value. Clicking one of these
buttons simply submits the form.

<INPUT type="SUBMIT" name="Submit" value="Search">
<INPUT type="SUBMIT" name="Submit" value="Add">

As you can see in the DEBUG block, the submit button sends its own information to the script. You can
access the submit button value through the $_POST[' Submit'] array.

Basic Input Testing

What about the processing script? What’s new in there?

The following code checks that the item type is Movie, and, if it is, it checks that the user has selected a
valid movie type from the list. If he or she has not, he or she is redirected to the form page.

The test is a simple if with an and operator. (In simple Monopoly parlance, if the item type is movie
and the movie type is not specified, you go back to square one and you do not collect $2,000.)

if ($S_POST['type'] == "Movie" && $_POST['MovieType'] == ""){
header ("Location: form3.php") ;
}

The header function allows you to send a raw HTTP header. It is useful for handling security problems
and access restrictions. In this instance it redirects the user to the specified page.

A very common error with beginning PHP users is that they fail to understand a very simple fact: Once
sent, the headers cannot be sent again. This means that any echo, any space, any tabulation left before
the call to the header function will trigger a warning in the script execution. Here are a few typical
errors:

149

Chapter 5

<?php
header ("Location: form3.php") ;
?>

This code will fail. The empty line starting the script will send the headers with a carriage return and a
line feed (depending on the operating system).

<?php

echo "foobar";

header ("Location: form3.php") ;
?>

This code will fail. The echo function will send the headers with the text " foobar".

Dynamic Page Title

This code is rather simple to understand: You don’t start outputting as soon as you start executing the
PHP script. What often happens is that at the start of the scripts there will be a check for intrusion and
context verification. In this instance, you dynamically set the page title using the action type and item
type you will use to handle the page.

Stitle = $_POST['Submit']." ".$_POST['type']." : ".$_POST['Name'];
?>
<html>
<head>

<TITLE><?php echo $title?></TITLE>

Manipulating a String as an Array to Change
the Case of the First Character

Single string characters can be accessed through a very simple syntax that is similar to array index
access. Specify the index of the character you want to access and voila! To change the case of a character
or an entire string, use the strtoupper () function:

Sname = $_POST['Name'];
$name[0] = strtoupper(S$Sname[0]);

We could have used the ucfirst () function (which essentially does what the code explained previ-
ously did), but a bit of creativity can’t hurt.

Ternary Operator

This line holds a ternary comparison operation. Ternary operators are not PHP-specific; many other lan-
guages, such as C, use them.

150

Form Elements: Letting the User Work with Data

<?php echo $_POST['Submit'] == "Search" ? "for " : "";?>

These work in a very simple way and can be compared to an if-else structure:
[expression] ? [execute 1f TRUE]: [execute if FALSE];

The ternary operator is a known maintainability hazard. Using this operator will make your code less
readable and will probably cause errors during maintenance stages.

Using Them All

Now that you know most of the form elements, let’s create a skeleton for the application. The system
will add new items or search for existing ones. As we have no database interfacing so far, this form will
just display the information typed in.

Try It Out Hidden and password input
1. Create a file named form4 .php and open it in your text editor.
2. Enter the following code:

<?php
// Debug info Display
function debugDisplay () {
?>
<PRE>
S_POST
<?php
print_r ($_POST) ;
?>
S_GET
<?php
print_r (S_GET) ;
?>
</PRE>
<?php
}

// Switch on search/add wizard step
switch($_GET['step']){

[/ HEHEHEHE RS

// Search/Add form

[/ HEHFHEHE

case "1":
Stype = explode(":",S_POST['type'l);
if ($S_POST['Submit']=="Add") {
require ($_POST['Submit'].S$type[0]."'.php');
} else {
if ($_POST['type'] == "Movie:Movie" &&

151

Chapter 5

152

$_POST['MovieType'] == ""){
header ("Location: formd.php") ;
}
?>
<hl>Search Results</hl>
<p>You are looking for a "<?php echo $type[l]?>" named "<?php echo
$_POST['Name']?>"</p>

<?php
}
if ($_POST['Debug'] == "on") {
debugDisplay () ;
}
break;

[/ #EHHHHHHHH A
// Add Summary
[/ HERHHE AR
case "2":
Stype = explode(":",$_POST['type'l);
?>
<hl>New <?php echo $type[l]?> : <?php echo $_POST['Name']?></hl>
<?php
switch(S$typel0]){
case "Movie":
?>
<p>Released in <?php echo $_POST['MovieYear']?></p>
<p><?php echo nl2br (stripslashes ($_POST['Desc']))?></p>
<?php
break;
default:
?>
<h2>Quick Bio</h2>
<p><?php echo nl2br (stripslashes ($_POST['Bio']))?></p>
<?php
break;
}
break;
[/ HESHHES RS
// Starting form
[/ HEHHHHEEE S
default:
require ('startform.php') ;
break;
}

?>

3. Create a new file called startform.php, and enter the following code:

<html>
<head>
<TITLE>Multipurpose Form</TITLE>
</head>
<body>
<FORM action="form4.php?step=1" method="post">

Form Elements: Letting the User Work with Data

<table border=0 width="750" cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">
<tr>
<td bgcolor="#ffffff" width="30%">
Name
</td>
<td bgcolor="#ffffff" width="70%">
<INPUT type="TEXT" name="Name">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Item Type
</td>
<td bgcolor="#ffffff">
<INPUT type="radio" name="type" value="Movie:Movie" CHECKED>

Movie

<INPUT type="radio" name="type" value="Person:Actor">
Actor

<INPUT type="radio" name="type" value="Person:Director">
Director

</td>
</tr>
<tr>

<td bgcolor="#ffffff">
Movie type (if applicable)
</td>
<td bgcolor="#ffffff">
<SELECT name="MovieType">
<option value="" SELECTED>Movie type...</option>
<option value="Action">Action</option>
<option value="Drama">Drama</option>
<option value="Comedy">Comedy</option>
<option value="Sci-Fi">Sci-Fi</option>
<option value="War">War</option>
<option value="Other">Other...</option>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" width="50%">
Display Debug Dump
</td>
<td bgcolor="#ffffff" width="50%">
<INPUT type="checkbox" name="Debug" CHECKED>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="Submit" value="Search">
<INPUT type="SUBMIT" name="Submit" value="Add">
</td>
</tr>
</table>

153

Chapter 5

</FORM>
</body>
</html>

4. Create another new, empty file named AddMovie.php, in which you will add this code:

<?php
if ($S_POST['type'] == "Movie:Movie" &&
$S_POST['MovieType'] == ""){
header ("Location: form4.php") ;
}
Stitle = $_POST['Submit']." ".$_POST['type']l." : ".S$_POST['Name'];
Sname = $_POST['Name'];
Sname[0] = strtoupper(Snamel[0]);
?>
<html>
<head>
<TITLE><?php echo $title?></TITLE>
</head>
<body>

<FORM action="formd.php?step=2" method="post">
<input type="hidden" name="type" value="<?php echo Stype[l]?>">
<input type="hidden" name="action" value="<?php echo $_POST['Submit']?>">
<table border=0 width="750" cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">
<tr>
<td bgcolor="#ffffff" width="30%">
Movie Name
</td>
<td bgcolor="#ffffff" width="70%">
<?php echo S$name?>
<input type="hidden" name="Name" value="<?php echo S$name?>">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Type
</td>
<td bgcolor="#ffffff">
<?php echo $_POST['MovieType']?>

<input type="hidden" name="type" value="Movie: <?php echo
$_POST['MovieType']?>">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Year
</td>
<td bgcolor="#ffffff">
<SELECT name="MovieYear">

<option value="" SELECTED>Select a year...</option>
<?php
for ($year=date("Y"); $year >= 1970 ;S$year—){
?>

154

Form Elements: Letting the User Work with Data

<option value="<?php echo Syear?>"><?php echo Syear?></option>

<?php
}
?>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Description
</td>
<td bgcolor="#ffffff">
<textarea name="Desc" rows="5" cols="60"></textarea>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="Add">
</td>
</tr>
</table>
</FORM>
</body>
</html>

5. Create a file named AddpPerson.php and enter the following code:

<?php
Stitle = $_POST['Submit']." ".$_POST['type']." : ".$_POST['Name'];
Sname = $_POST['Name'];
Sname [0] = strtoupper(S$Sname[0]);
2>
<html>
<head>
<TITLE><?php echo $title?></TITLE>
</head>
<body>
<FORM action="form4.php?step=2" method="post">
<input type="hidden" name="type" value="Person: <?php echo S$typel[l]?>">
<input type="hidden" name="action" value="<?php echo $_POST['Submit']?>">
<table border=0 width="750" cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">
<tr>
<td bgcolor="#ffffff" width="30%">
<?php echo S$type[l]?> Name
</td>
<td bgcolor="#ffffff" width="70%">
<?php echo S$name?>
<input type="hidden" name="Name" value="<?php echo S$name?>">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Quick Bio

155

Chapter 5

</td>
<td bgcolor="#ffffff">
<textarea name="Bio" rows="5" cols="60"></textarea>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="Add">
</td>
</tr>
</table>
</FORM>
</body>
</html>

6. Upload the files to your Apache server and launch a browser, entering the address
http://localhost/chapter5/formd.php (adapt this URL to your setup).

A new form, shown in Figure 5-8, pops up, asking for more details.

Tdewie type (F applicable)

Display Debug Dump

-0 BRRAG Preee|[p-aB 2)
Mame |Grand Carwon
@ Mowvie
Ttemn Type O Actor
O Director

Figure 5-8

156

Form Elements: Letting the User Work with Data

7. Enter the name of the movie you want to add: “Grand Canyon.”

%

Select a date for the year the movie was made (1998, if memory serves).
9. Select Drama in the Movie type list
10. Click the Add button; this takes you to the add form shown in Figure 5-9.

0-0 REG| P ee|p-aB = 2
Mewvie Iame Grand Canyon
Mewe Type Drama
Mowme Year 1998 .|."J

Grand canyon, & ma3ter piece.
Two thumbs up.
Mewie Description

Add

§_POST

hrray

(
[Mams] => Grand Canyon
[type] => Hovie:HNovie
[KovieType] => Drams
[Debug] => oh
[Subreit] =»> Add

1

§_GET

Array

{
[3tep] => 1

)

Figure 5-9

11. Type a quick movie description, making sure you enter multiple lines, and press the Enter key
between them.

12. Click the Add button and see how the information is displayed (see Figure 5-10).

157

Chapter 5

@
B

C-0 - ERAG| PHrTee p-aB =

New Drama : Grand Canyon
Eeleased in 1598

Grand canyoen, a master piece.
Twre thumbs up.

Figure 5-10

How It Works

This script is designed around a simple idea: one skeleton script and multiple flesh-and-muscle scripts
doing the job under one URL with query strings.

This raises a question, however: Why use one skeleton script and multiple flesh-and-muscle scripts? One
word: maintainability. One of the things most beginners never think about when they start a new lan-
guage is maintainability. It is a very common error that most people regret.

Let’s say that you have a site you made in the month after reading this book and you made a darn good
job of it for a first site. Six months later you've learned a lot and want to improve this site.

At this very moment, the full force of chaos theory hits you square in the face: You can’t read your code
anymore. How unfortunate. Our goal now is to help you to separate things out in such a way that, when
you come back to your code in six months, you won’t have to start from scratch (which, trust me, hap-
pens to most of us).

158

Form Elements: Letting the User Work with Data

So, let’s get back to work. How does this thing work, anyway? We discuss the elements you must deci-
pher in the sections that follow.

The Skeleton Script

The skeleton here is the form4 . php script. It all revolves around a use of the switch case structure. It
starts with a function definition for the debug display (which now holds the display of the $_GET super
global array).

The trick resides in the fact that the forms will use the POST methods and thus transmit their information
through the $_POST array; the actual page content switching will be made through query strings passed
through the $_GET array.

Each step in the building of the data is guided by the $_GET['step'] index value. It holds the informa-
tion passed on by the ?step=1 part of the URL.

Each value of the step has a specific script attached to it.

Default Response

What happens when you call the page the first time and the step URL parameter is not set? Logically
enough, it evaluates the switch condition and finds that it doesn’t match any of the specified cases, so it
executes the default behavior:

switch($_GET['step']){

default:
require('startform.php');
break;
}

The require () function gets the content of the file that is specified and includes it in the script at inter-
pretation time. The require () function differs from the include () in that it triggers a fatal error
instead of a warning if the file is not found. In this instance, not having the form script would slightly
reduce our script’s functionality, so we want to know if it doesn’t find the file.

Adding Items

When adding a person or a movie, you need two different forms (at least if you consider that you store
the same data in the database for the actors and directors). So you need a second branching (the first
branching being the step switch) to determine which form will be displayed.

Now we hit a part of the script in which there is a little trick. The list item value is used to store two val-
ues instead of one. The trick is to use a separator, and then to explode the value into an array and access
the piece you need (the explode () function takes each bit of text delimited by the separator and inserts
it as new array elements). Let’s take a closer look.

159

Chapter 5

In this case we have three types of items (Actors, Directors, and Movies), each of which requires a form
to create. But we have decided that, so far, an Actor and a Director form hold the same information. So
we don’t need two different forms, just one. You handle this by adding a tree structure level above the
item level, Person or Movie. Under Person you include the Actor and Director level. The whole point is
to be able to use the new hierarchy level name to name the file so that the including is automatic and
you can add new levels later without too much effort.

In startform.php we have:

<INPUT type="radio" name="type" value="Person:Actor">
Actor

You can clearly see that the value part of the type element is composed of two different values, sepa-
rated by a semicolon.

In form4 . php you have:

Stype = explode(":",$_POST['type'l);
if ($_POST['Submit']=="Add") {
require ($S_POST['Submit'].Stype[0]."'.php');

In this script, you retrieve the type element value using the $_POST[' type'] array index and then use
the explode () function on its content. The explode () function is fairly easy to use; it just needs a
string that specifies the delimiter and a string that holds the text to be exploded.

For example, we have "Person:Actor" as the value to explode and a colon (:) as the delimiter. The
resulting $type variable will be an array holding the pieces of the string cut at each instance of the semi-
colon. If you represent it in the print_r format, you have:
Array
(
[0] => Person
[1] => Actor
)

The goal of having simple file names inclusion is achieved. We have two Add scripts, and one name:
AddPerson.php and AddMovie.php.

require($_POST['Submit'].Stype[0].'.php');

This line recomposes our filenames automatically.

160

Form Elements: Letting the User Work with Data

Summary

You've learned a lot of about forms in this chapter. Forms are composed of fields. Each field type has a
specific purpose and allows a certain data type to be entered. Text fields can be used to enter text or
numeric data. Lists can be used to enter any type of data and have a limited set of possible values. Lists
are a good way to drive user input when multiple choices are available.

Forms are processed by the PHP script using the super global array $_GET and $_P0ST, which is a sub-
array of $_QUERY. Each super global array has its use, as you saw, and contributes to making your script
access the form data.

Always remember to keep your forms simple. Some studies have shown that a form with more than 15

items is often too complex for many users to use. (Readability and layout are the keys to having a usable
system.)

161

Letting the User Edit
the Database

Retrieving data from a database is all well and good when you've fed the database some data.
Most databases don’t generate their own contents (well, none do), and only a few get fed data by
other systems (integrated systems and so on). So we have to feed our system with data that comes
from PHP.

Our database of choice (out of many available) is MySQL, as you have probably figured out. (It’s
in the title of the book, right?)

All database interaction is based on SQL (you will one day encounter XML and other sources, but
let’s not go there now). You know the basic SQL syntax to get data from a table; now let’s look at
the other side of the equation.

Most people use SQL to insert data that PHP modifies or generates. We will try a slightly different
approach and let SQL do its thing.

This chapter covers database editing, including:

0 Adding entries, which is quite simple, but you will find that adding entries in a relational
database is yet another exercise

Q Deleting entries without corrupting the database structure and referential integrity

0 Modifying entries to replace some existing fields with new content in an existing record

Preparing the Battlefield

This may sound a bit Vulcan, but if you want to manage a database, the first logical thing to do is
to create one. To save time, let’s use an existing database to avoid any problems in the coming

Chapter 6

exercises. Create a new empty database in phpMyAdmin named chapter6. In the new-born database,
execute the chapter6.mysql script, which holds the database definition and its start data.

Then you're ready to go.
Try It Out Setting Up the Environment
First, you need a start page. Follow these steps to create one:

1. Create anew directory called chap6 under your htdocs (or create an alias, if you wish).

2. Create an index.php script and enter the following code:

<?php
$link = mysqgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysqgl_select_db('chapter6', $link) or die (mysqgl_error());
?>
<html>
<head>
<TITLE>Movie database</TITLE>
</head>
<body>

<table border=0 width="600" cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">
<td bgcolor="#ffffff" colspan=2 align="center">
Movies [ADD]
</td>
<?php
Smoviesgl = "SELECT
*

FROM
‘movie’®

Sresult = mysqgl_query (Smoviesqgl)

or die("Invalid query: " . mysqgl_error());
while(Srow = mysqgl_fetch_array(Sresult, MYSQL_ASSOC)) {
?>
<tr>

<td bgcolor="#ffffff" width="50%">
<?php echo S$row['movie_name']?>
</td>
<td bgcolor="#ffffff" width="50%" align="right">
<a href="movie.php?action=edit&id=<?php echo
Srow['movie_id']?>">[EDIT]
<a href="delete.php?type=movie&id=<?php echo
Srow['movie_id']?>">[DELETE]
</td>
</tr>
<?php

164

Letting the User Edit the Database

?>
<td bgcolor="#ffffff" colspan=2 align="center">
People [ADD]
</td>
<?php
Smoviesgl = "SELECT
*
FROM
‘people’

",
7

Sresult = mysqgl_query (Smoviesql)

or die("Invalid query: " . mysqgl_error());
while(Srow = mysqgl_fetch array(Sresult, MYSQL_ASSOC)) {
?>
<tr>

<td bgcolor="#ffffff" width="50%">
<?php echo Srow['people_fullname']?>
</td>
<td bgcolor="#ffffff" width="50%" align="right">
<a href="people.php?action=edit&id=<?php echo
Srow['people_id']?>">[EDIT]
<a href="delete.php?type=people&id=<?php echo
Srow['people_id']?>">[DELETE]
</td>
</tr>
<?php
}
?>
</table>
</body>
</html>

3. Now open your browser and go to http://localhost/chapter6/index.php as shown in
Figure 6-1.

Remember that all links are broken, so do not worry; that’s perfectly normal because we haven't yet cre-
ated the pages.

How It Works

You must always have a central administration interface that allows you to perform actions on the data
and easily see the content. This script is the admin interface. It shows you everything and allows you to
manage everything in sight.

What does it do and how does it do what it does? As in Chapter 4, where we connected to the database

and displayed its contents, we will do the same thing here. The table holds the name of each known
movie and person, and generates EDIT and DELETE links.

165

Chapter 6

C-0-RRAG|,PreE |- 7 @ z

Movies [ADD]

Bruce Almighty [EDIT] [DELETE]

Office Space | [ELIT] [DELETE]

Grand Canyon [EDIT] [DELETE
People [ADD]

Jim Carrey [EDIT] [DELETE]

Tom Shadyac | [EDIT] [DELETE]

Lawrence Fasdan | [EDIT] [DELETE

Kevin Klne | [EDIT] [DELETE]

Ron Livingston | [EDIT] [DELETE]

Wfikee Tudge | [EDIT] [DELETE]

Figure 6-1

Inserting a Simple Record from phpMyAdmin

Note that in the following scripts, we will follow a simple rule concerning SQL: Always try the query in
MySQL before trying to insert it in your code. The simple reason is that you are probably better off
debugging one language at a time.

Try It Out Inserting Simple Data

Now follow these steps to insert some data:

1. Open your database in phpMyAdmin and enter the following SQL code (yes, there is an error)
as in Figure 6-2.

INSERT INTO
‘movie’

(‘movie_name' , ‘movie_type' , ‘movie_year)
VALUES

('Bruce Almighty','1l','2003)

166

Letting the User Edit the Database

-0 BRAG| Phee | p-aBE U @ z
q_'_ Al Database wiley running on localhost
Home |.Stmcturn l SaL l _. Export | | Search |. Query l | Drop l

il 3 'i

wiey {35 Run SOL gueryfguenes on database wiley [Documentation] -

INSERT INTO

wiley ovie 2 s L v .
R { ‘'movie_name’ | ‘movie_type’ | ‘movie_year)
& movietype VALUES e
i dogutE (Bruce Almighty' 1", 20033

Show this guery here again
Cr Location of the textfile :

Farcourir., |

Compression: @ Autodetect O Mone O “gzipped”

(E=]
DQuery window ||
Al 1 | [

Figure 6-2

2. The following message appears (see Figure 6-3 for details):

You have an error in your SQL syntax. Check the manual that corresponds to your
MySQL server version for the right syntax to use near ''2003)' at line 5
3. Fix the error as this suggests (quite simple to do with the line number reference) and run.

phpMyAdmin then displays the executed SQL and takes you back to the table content display
as shown in Figure 6-4.

Before doing any SQL query in PHP, you should always test your SQL statement in phpMyAdmin. It
will enable you to debug the SQL before inserting it in your code and prevent debugging in two differ-
ent languages at the same time.

167

Chapter 6

0-0 - RRG Pree | p-ralm-D =2 z
.H.'_ i Database wiley running on localhost
Home Eiror
wiley (3) 'i There seems to be an ertor in your S0L gquery. The MySQL server error output below, if thera is any, may also help you in diagnosing the problem
— ERROR: Unclosed gquote B 110
wiley STR: '
B movie S0QL: INSERT INTO
& movietype “movie
B people ["movie neme® , ‘movie type’ , ‘movie year®)
—_— VALUES
{ '"Bruce Xlmighty' , '1' ., '2003)
SCL-guery

INSERT INTO “movie® { ‘movie_name’ |, ‘movie_type” , ‘movie_year”) VALUES ('Bruce Almighty', "', 2003)
My SGL said:
You have an error in your 3QL syntax. Check the manual thar corresponds to your My3SQL server version for t

Back

(E=]
DQuery window ||
< [I | [> <| I 3

Figure 6-3

How It Works

When inserting a record in a table, you don’t need to insert the id if you set the primary key field to auto
increment. The engine will gladly handle that for you. This enables you to be sure you don’t have dupli-
cate keys in the table.

To get the just-inserted record auto increment id, just use the PHP mysql_insert_id () function right
after the mysql_query () function call. This function returns the primary key field when inserting a new
record.

The mysqgl_insert_id function syntax can be found on the PHP site at www.php.net/
mysgl_insert_id.

Because we have created the SQL query on more than one line, we can use the line number returned in
the following error message.

You have an error in your SQL syntax. Check the manual that corresponds to your
MySQL server version for the right syntax to use near ''2003)' at line 5

168

Letting the User Edit the Database

0-0 RROG|Pree | p-aB-0 =2 z
L Vo Database wiley - Table movie running on localhost

Home _5(mc1um| .Brm_ soL Select | | Insert | | Expont | | Operations Options | Empty] Drop]
wiley (33 'i

Showing rows 0 - 2 (3 total, Query took 0.0018 sec)
SQL-guery - [Edit] [Explain SQL| [Create PHP Code]
SELECT *

wiley
B movie FROM ‘movie’ LIMIT 0, 30
& movietype
I people
a0 row(s) starting from record #0
in]hﬂﬁ10n53| j rmode and repeat headers sfier {100 cells

movie_id movie_ name movie_type movie year movie leadacter movie_director

Edit Delste 1 Bruce Almighty 5 2003 1 e
Edit Delate 2 Office Space 5 1999 5 B
Edit Delete 3 Grand Canyon 2 1991 4 3
30 row(s) starting from recard #|0
in | horizantal = mode and repeat headers afier [100 cells

Insert newve row
Frint view

Export

]
DQuery window ||
< | 1 | i

Figure 6-4

This line corresponds to the value part of our SQL statement, as shown here:
('Bruce Almighty','1','2003)

If our SQL query had been on one line, we’d have had only a useless “error in line 1” message. Here you
can see that on the guilty line we forgot to close a quote in the movie_year value.

Now you can see that we omitted the ‘movie. ‘movie_id" field. We did this on purpose (yes, we did).

Not specifying the primary key value forces the MySQL engine to automatically determine the auto
increment value. Thanks to this trick, we don’t need to know what the next key will be.

Inserting a Record in a Relational Database

Databases often hold more than just one table. All those tables can be totally independent but that would
be like using your car to store some things in the trunk but never to drive you around.

In old systems in which relational databases didn’t exist, every row held all the information. Imagine
your system running with only one table holding all the information. Your movie table would store all

169

Chapter 6

the data about the actors and the directors and the movie types. Let’s say that one day you were to
decide that a movie category should change from action to adventure (things change). You would then
have to go through all records to change the movie type label.

In modern RDBMS (relational database management systems), this is not the case anymore; you will cre-
ate a “movietype" table storing a reference of all movie types possible, and you will link movies to the
relevant movie type.

To link those tables, you will use a primary key/foreign key team. The primary key of the “movietype®
table is a numeric identification of each type of movie. For example, in our database the id 1 references
comedy. The foreign key is the reference in the movie table to the “movietype® primary key.

In the following exercise, you use PHP and SQL to insert a movie in your database. This movie is of a
known movie type from the “movie type" reference table.

Try It Out Inserting a Movie with Known Movie Type and People

This time, let’s do something a bit more complicated. You need to be able to add a movie to the system
while specifying an existing movie type and existing actor and director.

1. Create a new empty file named movie.php and enter the following code:

<?php
$link = mysqgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());

mysqgl_select_db('chapter6', slink) or die (mysqgl_error());
Speoplesgl = "SELECT

*

FROM
“people’

Sresult = mysqgl_query (S$Speoplesqgl)

or die("Invalid query: " . mysqgl_error());
while(Srow = mysqgl_fetch_array(Sresult , MYSQL_ASSOC)) {
Speople[Srow['people_id']] = $rowl['people_fullname'];
}
?>
<html>
<head>
<TITLE>Add movie</TITLE>
</head>
<body>

<FORM action="commit.php?action=add&type=movie" method="post">
<table border=0 width="750" cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">
<tr>
<td bgcolor="#ffffff" width="30%">
Movie Name
</td>
<td bgcolor="#ffffff" width="70%">
<input type="text" name="movie_name">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">

170

Letting the User Edit the Database

Movie Type
</td>
<td bgcolor="#ffffff">
<SELECT id="game" name="movie_type" style="width:150px">

<?php
Ssgl = "SELECT
‘movietype_id",
‘movietype_label’
FROM
‘movietype’
ORDER BY
‘movietype_label’
Sresult = mysqgl_query (Ssqgl)
or die("Query Error".mysqgl_error());
while (Srow = mysqgl_fetch_array(Sresult)){
echo '<OPTION
value=""'.Srow['movietype_id'].'">'.Srow['movietype_label'].'</OPTION>'."\r\n";
}
2>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Year
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_year">
<option value="" SELECTED>Select a year...</option>
<?php
for ($year=date("Y"); S$year >= 1970 ;S$year—){
?>
<option value="<?php echo Syear?>"><?php echo S$Syear?></option>
<?php
}
2>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Lead Actor
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_leadactor">
<option value="" SELECTED>Select an actor...</option>
<?php
foreach($people as $people_id => $people_fullname) {
?>

<option value="<?php echo S$people_id?>" ><?php echo
Speople_fullname?></option>
<?php
}

?>

171

Chapter 6

</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Director
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_director">

<option value="" SELECTED>Select a director...</option>
<?php
foreach($people as Speople_id => S$people_fullname) {
?>

<option value="<?php echo S$people_id?>" ><?php echo
Speople_fullname?></option>
<?php
}
?>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="Add">
</td>
</tr>
</table>
</FORM>
</body>
</html>

2. Save your file and upload it to a new chapter6 directory on your server.

3. Create a new empty file named commi t . php and enter the following code:

<?php
// COMMIT ADD
Slink = mysqgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysgl_select_db('chapter6', $link) or die (mysgl_error());
switch($_GET['action']){
case "add":
switch($_GET['type']){
case "movie":
$sgl = "INSERT INTO
‘movie’

(‘movie_name® ,

‘movie_year |,

‘movie_type® ,

‘movie_leadactor® ,

‘movie_director’)
VALUES

('"".$_POST['movie_name']."' ,
".$_POST['movie_year']."' ,
".$_POST['movie_type']l."' ,
".$_POST['movie_leadactor']."' ,
".$_POST['movie_director']."')

172

Letting the User Edit the Database

",
7

break;
}
break;
}
if (isset($sgl) && 'empty(Ssgl)){
echo "<!=".$sqgl."—>";
Sresult = mysqgl_query(S$sqgl)
or die("Invalid query: " . mysqgl_error());
?>
<p align="center" style="color:#FF0000">
Done. Index
</p>
<?php
}
?>

4. Save your file and upload it to a new chapter6 directory on your server.
5. Open your browser on the index.php page and click ADD next to the *movie" table header.

6. Add amovie named “Test” with random type, actor, and director in the form shown in Figures

6-5 and 6-6.
-0 RRAG PHae | p-a ” @ z
Mowme Mame |
Mewe Type Selectatype... =
Movie Year |selectavear. =
Lead Actor Selectanactor.. =]
Director Select a director.., 'I
add
Figure 6-5

173

Chapter 6

-0 - RRAG| PHreee|p-a " @)
Mowme Mame Test |
Mewie Type 'WL‘
Movie Year | 2002 |
Lead Actor Kevin Kling =]
Diirector n

Figure 6-6

7. Click the “add” button and you will see the confirmation message as in Figure 6-7.

How It Works

Inserting data is always easier when you have an actual method to insert (remember these wise words).
We generally use HTML forms.

HTML forms allow us to drive the way the user enters the data. Once submitted, the form sends the
server information that PHP can use to generate and run the SQL. INSERT statement.

As you see in the movie insertion form in movie.php, we have four combo boxes and a text field. The

text field content is left to your discretion, but the combos are quite directive. Let’s review the content of
the combos generated from the database contents.

174

Letting the User Edit the Database

HRe PreE e 25 >

z

Dione. Index

Figure 6-7

First, let’s concentrate on the people combos. Each combo lists all persons present in a “people” table.

<?php

?>

$1link = mysqgl_connect ("localhost", "root", "")
or die("Could not connect: " . mysgl_error());
mysqgl_select_db('chapter6', $link) or die (mysqgl_error());
Speoplesgl = "SELECT
*
FROM
‘people’
Sresult = mysqgl_query (Speoplesqgl)
or die("Invalid query: " . mysqgl_error());
while(Srow = mysqgl_fetch array($Sresult , MYSQL_ASSOC)) {

Speople[Srow['people_ id']] = Srow['people_fullname'];
}

175

Chapter 6

At the beginning of the form script, we query the “people’ table and put its content in an array. The data
regarding people known to the system is stored in the “people” table.

To generate the list of people, we simply query the database, retrieve all the known people in the system,
and display the names in the combo and reference their primary key as the item value. Each known per-
son will have an item in the combo box:

<SELECT name="movie_director">
<option value="" SELECTED>Select a director...</option>
<?php
foreach($people as Speople_id => S$people_fullname) {
?>
<option value="<?php echo $people_id?>" ><?php echo S$people_fullname?></option>
<?php
}
?>
</SELECT>

Here we've used the foreach syntax to walk the array to generate all the options.

Now we’ll generate the movie type combo box. This is a more conventional use of SQL to generate con-
tents. We’ll reuse this code soon to create a generic form to edit and add, so you need to understand the
details of how this works.

<SELECT id="game" name="movie_type" style="width:150px">
<?php
$sql = "SELECT
‘movietype_id",
‘movietype_label’
FROM
‘movietype"
ORDER BY
‘movietype_label’

",
i

Sresult = mysqgl_query($sqgl)

or die("Query Error".mysqgl_error());
while (Srow = mysqgl_ fetch_array(Sresult , MYSQL_ASSOC)){

echo '<OPTION

value=""'.$row['movietype_id'].'">"'.Srow['movietype_label'].'</OPTION>'."\r\n";
}

?>
</SELECT>

This code generates the options in combo box by querying the “‘movietype" table to extract all available
movie types. Each option will have the movie type id as a value and the movie type itself as a label.

Now that our form is ready, we need to have a script that uses this data to create records. As you can see,

the switch case on $_GET['action'] is totally useless for now. In the next exercises, we add a lot of
code to the movie. php script so we can use it to edit the movies.

176

Letting the User Edit the Database

Deleting a Record

Deleting records is easy (a bit too easy at times—you will know what I mean soon). As we said before,
always be sure to test your queries on a test database. Deleting records in a test database never threatens
your system, and testing your query helps you find any SQL error before deleting all the records in your
production database because you forgot a little thing such as a WHERE clause. MySQL deletes everything
that matches the SQL statement. If you omit a WHERE clause in your query, all the records will match the
SQL statement and thus will be deleted.

Deleting always means losing data. To delete a record you need to point the record to the database
engine through a set of conditions in a WHERE statement. Once this statement is executed, there is no
turning back. The record(s) will be deleted without hope of return; that’s why we advise caution when
using the DELETE statement.

Try It Out Deleting a Single Record

Before asking PHP to delete anything, you will try deleting a record from phpMyAdmin to familiarize
yourself with the DELETE statement. Follow this step to delete a record:

QO Open phpMyAdmin and enter the following code:
DELETE FROM
‘movie®
WHERE
‘movie_id® = '12"
LIMIT 1

phpMyAdmin returns a nice message saying you deleted a record from the “movie" table.

How It Works

The DELETE SQL statement is very simple to use. As you see, we used the LIMIT 1 statement to limit the
deletion to only one record (just in case).

Cascade Delete

As you know, a database often holds related records in different tables. Deleting some records without
consideration of relations introduces you to chaos and heavy database manual tweaking. MySQL unfor-
tunately doesn’t manage relations for you, and thus will not automatically preserve referential integrity.

To avoid that problem, we use a more elaborate form of the DELETE statement, the Cascade Delete, as dis-
cussed in the following section.

Try It Out Cascade Delete

Now that you know how to use DELETE, you will add it to your system to delete a known person from
the system. As you store references to known people in the “movie" table, you will need to update the
‘movie" table content so you don’t reference deleted people. (The update-specific exercises come next in
this chapter.)

177

Chapter 6

Follow these steps to implement the Cascade Delete:

1. Create a new text file named delete.php and enter the following code:

<?php
$link = mysqgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysqgl_select_db('chapter6', $link) or die (mysqgl_error());
// DELETE SCRIPT
if (!isset($_GET['do']) || $_GET['do'] != 1){
?>
<p align="center" style="color:#FF0000">
Are you sure you want to delete this <?php echo $_GET['type']?>?

<a href="<?php echo $_SERVER['REQUEST URI']?>&do=1">yes or Index
</p>
<?php
} else {
if (S_GET['type']l == "people"){
// delete references to people from the movie table
// delete reference to lead actor
Sactor = "UPDATE
‘movie’
SET
‘movie_leadactor® = '0'
WHERE
‘movie_leadactor® = '".$_GET['id']."™'

",
i

Sresult = mysqgl_query(Sactor)
or die("Invalid query: " . mysqgl_error());
// delete reference to director
$director = "UPDATE
‘movie’
SET
‘movie_director® = '0'
WHERE
‘movie_director' = '".$_GET['id']."'

",
’

Sresult = mysqgl_query(S$director)
or die("Invalid query: " . mysqgl_error());
}
// generate SQL
$sgl = "DELETE FROM
‘", $_GET['type'].""
WHERE
“".$_GET['type']."_id® = '".$_GET['id'].""'
LIMIT 1";
// echo SQL for debug purpose
echo "<!—".S$sqgl."—>";
$result = mysql_query($sqgl)
or die("Invalid query: " . mysqgl_error());
?>
<p align="center" style="color:#FF0000">

178

Letting the User Edit the Database

Your <?php echo $_GET['type']?> has been deleted. Index
</p>
<?php
}

?>

2. Savedelete.php and upload it to your chapé directory.

3. Open index.php in your browser. You will see the [DELETE] links next to each movie or per-
son as in Figure 6-8.

-0 BRAG| PHe e p-a ” @)
Mowvies [ADD]
Bruce Almighty | [EDIT] [DELETE]
Office Space | [ELIT] [DELETE]
Grand Canyon | [EDIT] [DELETE
Test ' [EDIT] [LELETE]
People [ADD]
Jim Carrey | [EDIT] [DELETE]
Tem Shadyvac | [EDIT] [DELETE
Lawrence Kasdan . [EDIT] [DELETE
Fevin Kline | [EDIT] [DELETE]
Ron Livingston | [EDIT] [DELETE]
Wike Tudge _ [ELIT] [DELETE]
Figure 6-8

4. Try deleting the test movie you added in the previous exercise by clicking the DELETE link next
to the “Test” movie name. You will be asked for confirmation as in Figure 6-9.

5. Click the “yes” link to confirm the deletion and wait for the confirmation message as in
Figure 6-10.

179

Chapter 6

S

®)

z

CO-0 - HNR G |PFPFT@E | 2%

Are you sure you want to delete this movie?
yes or Index

Figure 6-9

How It Works

Here we are, planning the annihilation of an innocent set of data. Putting any moral issues aside, let’s
see how this script works.

First, you need to understand that in a relational database you cannot delete records and just forget
about them. Deleting has to be considered carefully. For example, if you delete a person from the “peo-
ple’ table, this prevents you from finding a potential reference to that person in the “movie" table. If you
delete Jim Carrey from the “people’ table, who will “Bruce Almighty’s” lead actor be? If you don’t do
anything, Jim Carrey’s id will remain in the record and you will have a corrupted database. You don’t

want that, do you? (The answer is no.)

The solution to this problem is to make sure that you always have the round peg (the round peg being a
foreign key) in the round hole (the round hole being a record). In the code that follows, we update the
‘movie” table with a 0 value (the default value telling the script we have not set the people part) before
deleting the “people” record. This also allows us to check the behavior of the UPDATE SQL statement.
(Isn’t life great?)

180

Letting the User Edit the Database

@

z

Your movie has been deleted Index

Figure 6-10

// delete reference to lead actor
Sactor = "UPDATE
‘movie’®
SET
‘movie_leadactor® = '0'
WHERE

‘movie_leadactor® = '".$_GET['id'].""'

",
7

Sresult = mysqgl_query($actor)
or die("Invalid query: " . mysqgl_error());
// delete reference to director
Sdirector = "UPDATE
‘movie®
SET
‘movie_director® = '0"'
WHERE
‘movie_director® = '".$_GET['id']."'

"o,
7

Sresult = mysgl_query($Sdirector)
or die("Invalid query: " . mysqgl_error());

181

Chapter 6

In the preceding code, we set any field in the ‘movie" table that might hold a reference to our unfortu-
nate, soon-to-be-deleted person. The UPDATE statement works in a very simple way. It sets the fields
specified to the new value specified in all records, meeting the requirements of the WHERE statement.

You might wonder what would happen if someone were to forget the WHERE part. Well, curiosity is a
fine quality: This would update all records in the table, which is probably not something you want to do
in real life.

Once our tidying up is done, we do the deleting:

// generate SQL
$sgl = "DELETE FROM

‘v $ GET['type'].""
WHERE
"".$_GET['type']l."_id® = '".$_GET['id']."’
LIMIT 1";
// echo SQL for debug purpose
echo "<!—".$sqgl."—>";
Sresult = mysqgl_query(S$sqgl)
or die("Invalid query: " . mysqgl_error());

This DELETE query is a bit dynamic, but it’s fairly understandable. We don’t want to code a SQL state-
ment for each type. (Well, we did for the movies update, but it doesn’t count, does it?) So we use the
information passed through the URL to generate our SQL statement. The table and primary key field are
generated dynamically from the item type to delete.

Editing Data in a Record

Having data in the database is all well and good, but data has a mind of its own and tends to want to be
updated. To update data, we need to identify the data to update and present the system user with a nice
interface to do so. Using the same interface as was used to create the data is often a good practice.

Try It Out Editing a Movie

In this exercise, you create a script that enables you to edit a movie. You will build on the existing
movie.php script you created earlier.

1. Open movie.php in your favorite text editor and enter this code:

<?php
$link = mysqgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());

mysqgl_select_db('chapter6', $link) or die (mysqgl_error());
Speoplesgl = "SELECT

*

FROM
‘people’

"
7

Sresult = mysqgl_query ($peoplesqgl)
or die("Invalid query: " . mysqgl_error());
while(Srow = mysqgl_fetch array(Sresult , MYSQL_ASSOC)) {

182

Letting the User Edit the Database

Speople[$row|'people_id']] = $Srow]['people_ fullname'];
}
switch($_GET['action']){
case "edit":
$moviesgl = "SELECT
*
FROM
‘movie®
WHERE
‘movie . 'movie_id' = '".$_GET['id']."!'

",
7

Sresult = mysqgl_

or die("Inval
Srow = mysgl_fet
Smovie _name = Sr
Smovie_type = S$r
Smovie_year = S$r
Smovie_ leadactor
Smovie_director
break;
default:
Smovie_name =

query (Smoviesqgl)

id query: " . mysqgl_error());
ch_array($result , MYSQL_ASSOC);
ow['movie_name'];

ow['movie_type' 1;

ow['movie_year' 1;

= $row['movie_leadactor' 1;

= $row['movie_director'];

wn o,
i

Smovie_type = "";

Smovie_year =
Smovie_leadactor
Smovie_director
break;
}
?>
<html>
<head>
<TITLE><?php echo $_GE
</head>
<body>
<FORM action="commit.php?
echo $_GET['id']?>" metho
<table border=0 width=
align="center">
<tr>
<td bgcolor="#ff
Movie Name
</td>
<td bgcolor="#ff
<input type="
</td>
</tr>
<tr>
<td bgcolor="#ff
Movie Type
</td>
<td bgcolor="#ff

wn o,
7

T['action']?> movie</TITLE>

action=<?php echo $_GET['action']?>&type=movie&id=<?php
d="post">
"750" cellspacing=1 cellpadding=3 bgcolor="#353535"

ffff" width="30%">

ffff" width="70%">
text" name="movie_name" value="<?php echo S$Smovie_name?>">

fEEE">

fEEE">

<SELECT id="game" name="movie_type" style="width:150px">

<?php

183

Chapter 6

$sqgl = "SELECT
‘movietype_id",
‘movietype_label’
FROM
‘movietype®
ORDER BY
‘movietype_label’
Sresult = mysqgl_query (S$sql)
or die("Query Error".mysqgl_error());
while ($row = mysqgl_ fetch_array($result)){

if (Srow['movietype_id'] == Smovie_type) {
$selected = " SELECTED";

} else {
Sselected = "";

}
echo '<OPTION
value=""'.Srow['movietype_id'].'"'.S$selected.'>"'.Srow['movietype_label'].'</OPTION>'
."\r\n";
}
?>
</SELECT>

</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Year
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_year">

<option value="" SELECTED>Select a year...</option>
<?php
for ($year=date("Y"); S$year >= 1970 ;S$year—) {
if (Syear == Smovie_year) {
Sselected = " SELECTED";
} else {
Sselected = "";
}
?>
<option value="<?php echo $year?>"<?php echo $selected?>><?php echo
Syear?></option>
<?
}
?>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Lead Actor
</td>

184

Letting the User Edit the Database

<td bgcolor="#ffffff">
<SELECT name="movie_leadactor">

<option value="" SELECTED>Select an actor...</option>
<?php
foreach($people as $people_id => $people_fullname) {
if (Speople_id == Smovie_leadactor) {
$selected = " SELECTED";
} else {
Sselected = "";
}
2>

<option value="<?php echo S$people_id?>"<?php echo $selected?>><?php
echo S$people_fullname?></option>

<?php
}
?>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Director
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_director">
<option value="" SELECTED>Select a director...</option>
<?php
foreach($people as S$people_id => $people_fullname) {
if ($people_id == $movie_director) {
Sselected = " SELECTED";
} else {
Sselected = "";
}
?>

<option value="<?php echo S$people_id?>"<?php echo $selected?>><?php
echo Speople_fullname?></option>

<?php
}
?>
</SELECT>
</td>
</tr>
<tr>

<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="<?php echo
S_GET['action']?>">
</td>
</tr>
</table>
</FORM>
</body>
</html>

185

Chapter 6

2. Open the commit . php script and edit its content to match this new code:
<?php
// COMMIT ADD AND EDITS
$link = mysqgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysqgl_select_db('chapter6', $link) or die (mysqgl_error());
switch($_GET['action']){

case "edit":
switch($_GET['type'l){
case "movie":
Ssgl = "UPDATE

‘movie’
SET
‘movie_name® = '".$ POST['movie_name']."',
‘movie_year' = '".$_POST['movie_year']."',
‘movie_type' = '".$_POST['movie_type'].""',
‘movie_leadactor® = '".$_POST['movie_leadactor']."',
‘movie_director’ = '".$_POST['movie_director']."'
WHERE
‘movie_id' = '".$_GET['id']."'
break;
}
break;
case "add":
switch($_GET['type']l){
case "movie":
$sgl = "INSERT INTO
‘movie’
("movie_name' , ‘movie_year , ‘movie_type |,
‘movie_leadactor® , ‘movie_director’)
VALUES
('".$_POST['movie_name']."' , '".$_POST['movie_year']."' ,
‘" $ POST['movie_type']."' , '".$_POST['movie_leadactor']."'

'".$_POST['movie_director']."')
break;
}
break;
}
if (isset(S$sagl) && !empty(S$sgl)){
echo "<!—=".$sgl."—>";
Sresult = mysqgl_query($sqgl)

or die("Invalid query: " . mysqgl_error());
?>
<p align="center" style="color:#FF0000">
Done. Index
</p>
<?php
}
?>

186

Letting the User Edit the Database

3. Now open your browser and go to http://localhost/chapter6/index.php as shown in

Figure 6-11.
Q-0-RRAG Pree | p-a @ z

Mowvies [ADD]

Bruce Almighty | [EDIT] [DELETE]

Office Space | [ELIT] [DELETE]

Grand Canyon [EDIT] [DELETE
People [ADD]

Jim Carrey [EDIT] [DELETE]

Tom Shadyac | [EDIT] [DELETE]

Lawrence Kasdan | [EDIT] [DELETE

Kevin Kline | [EDIT] [DELETE]

Eon Livingston [EDIT] [DELETE

Wike Tudge [EDIT] [DELETE]

Figure 6-11

4. Try clicking the EDIT link next to the “Bruce Almighty” movie, change a few boxes and the
movie name, and press the “edit” button in the form shown in Figure 6-12.

5. Edit the “Bruce Almighty” entry again with the procedure in Step 4, and fix it so it’s back to its
own old self.

Now the EDIT links for movies will actually do something!

You see that the script loads the stored values and allows you to edit the data easily. Play around a bit,
and get a feel for the way it all works.

187

Chapter 6

-0 - RRAG| PHreee|p-a " @ z
Ifowe Mame Eruce Almighty)
Mewie Type Sci-Fi =
Movie Year | 2003 |
Lead Actor Jim Carey =]
Director Tam Shadyac vI
Figure 6-12

How It Works

The commit .php code is very much the same as what you saw already, but there is an interesting twist
in movie.php. Let’s look at it in some detail.

First, look at the switch at the start of the script. We defined a switch on a query string parameter named
action. If the action is edit, we query the database for a record corresponding to the id specified in the
id query string parameter and set some variables. These variables are set to void if action is not edit.

switch($_GET['action']){
case "edit":
Smoviesgl = "SELECT

*

FROM
‘movie’

WHERE

‘movie’ . movie_id' = '".$_GET['id'].""'

",
7

Sresult = mysqgl_qguery (Smoviesql)
or die("Invalid query: " . mysqgl_error());
Srow = mysqgl_fetch_array(Sresult , MYSQL_ASSOC);

188

Letting the User Edit the Database

Smovie_name = Srow['movie_name'];
Smovie_type = Srow['movie_type' 1;
Smovie_year = $row['movie_year'];
Smovie_leadactor = Srow['movie_leadactor' 1];
Smovie_director = $row|['movie_director'];
break;

default:
Smovie_name = "";
Smovie_type = "";
Smovie_year = "";
Smovie_leadactor = "";
Smovie_director = "";
break;

?>

The variables set in the preceding code are used to set the default value of the form fields. Each field has
a known value if you are editing a record and has a void value if you are creating a record.

<tr>
<td bgcolor="#ffffff" width="30%">
Movie Name
</td>
<td bgcolor="#ffffff" width="70%">
<input type="text" name="movie_name" value="<?=$movie_name?>">
</td>
</tr>

In this example, the movie_name field takes the $movie_name variable content as a default value. This
allows us to reload the form with data from the record to edit it.

Editing a text field is pretty straightforward. Editing a value in a list is another story. You can’t just dis-
play the list and hope the user will reset the value to the original when he or she edits the record. You
need to reload the whole list and make the previously set value as a default in the list so the user can just
forget about it if he or she doesn’t want to edit it.

How do you do this? The script holds the solution:

<tr>
<td bgcolor="#ffffff">
Movie Type
</td>
<td bgcolor="#ffffff">
<SELECT id="game" name="movie_type" style="width:150px">
<?php
$sql = "SELECT
‘movietype_id",
‘movietype_label’
FROM
‘movietype’
ORDER BY
‘movietype_label’

",
7

Sresult = mysqgl_query(Ssqgl)

189

Chapter 6

or die("Query Error".mysql_error());
while (Srow = mysqgl_fetch_array(Sresult)) {

if (Srow['movietype_id'] == Smovie_type) {
$selected = " SELECTED";

} else {
Sselected = "";

}

echo '<OPTION
value=""'.Srow['movietype_id'].'"'.S$selected.'>"'.Srow['movietype_label'].'</OPTION>'
."\r\n";
}
?>

</SELECT>

</td>

</tr>

We load the list as we would have done if adding a record, but we compare the current value to the
default value. If they are identical, add a simple SELECTED flag to the option value. This sets the default
list value to the current value in the table.

if (Srow['movietype_id'] == Smovie_type) {
Sselected = " SELECTED";

} else {
Sselected = "";

}

What Next?

The next thing you might do is to create the edit/delete code for the “people’ table. This code is available
in Chapter 17, “Troubleshooting.”

Summary

As you've learned in this chapter, there are three basic actions in modifying the content of a database:

4 Insert
Q Delete
0O Update

These actions are performed by the database itself through SQL queries PHP executes on MySQL. Read
up on the SQL statements used in this chapter to get a good feel for how far they can take you and at
what level you feel confident using these commands.

Often, using MySQL revolves around the same few PHP functions. The SQL executed through those
commands on the database changes the way the system reacts. Don’t hesitate to learn more about SQL
to enhance your PHP systems.

And finally, always remember that testing your query alone in phpMyAdmin saves you a lot of time

debugging it when working in a PHP script.

190

Validating User Input

Accepting user inputs means being prepared to react to human error and human habit. The fact is
that users acquire habits pretty fast. If a person uses an application often enough, the brain starts
creating automation for well-known application paths. As the system evolves, user habits will
have a bearing on the changes you make. Try switching two fields on a form and see what hap-
pens in any widely used system. Users will just go insane until their brains reinitiate the auto-
mated path. This problem also exists in new systems because of the users’ habits regarding certain
commonly used data formats (dates, for example). If you use a format that is not familiar to your
users, you will confuse them and force them to change their usual habits to match your new for-
mat. It’s vital to consider user input when creating a system.

In this chapter, we cover user input validation, including;:

0 Validating simple string values
Q Validating integer values

Q Validating formatted text input

Users Are Users Are Users . . .

Let’s consider an example here: You work in a bank. You are developing a new system to allow

the employees to manage a customer account updating process on the company intranet. You use
your well-known MM-DD-YYYY format for the date. It all works quite well when testing, but
when put in production, your users say it doesn’t work. Why? Because all your company systems
use the ISO 8601 YYYY-MM-DD date format (a standard used in many systems because the date
can be sorted alphabetically). Your users are confused between the two different formats and input
wrong information in the system. If you fail to implement the correct input validation methods,
you can end up with a corrupted database or trigger errors in your application.

Chapter 7

You can avoid this by using well-known formats and validating the user input. When you expect an
integer value, for example, you can check that it is an integer before you try to use it. Simple enough
rule.

What Now?

To really understand the role of user input and validation, you need to see it in action. So, first we need
to add a few fields to our beloved movie database. The modifications are all in the “movie" table.

The movie application provides us with a lot of opportunities to check for user input. We will need to
add a few features to the application, however, to provide more case studies. It will also help you to
review what you learned in the previous chapters.

Add a movie_release field INT (11) with default value 0 after the existing movie_year field, as shown in
Figure 7-1. This allows you to store a timestamp for the movie release date. Then add a field named
movie_rating at the end of the table type TINYINT (2). That information holds the movie rating we gave
the movie when viewing it (see Figure 7-2). This rating goes from 0 to 10.

0-0-RRG| Pree|p-aEB-0 = >
|
-, . Database wiley - Table movie running on localhost
Home [Structure Browse . sOL Select | | Insert | | Export | '.Dpe rations Options ._ Empty] Drop]
wiley (30 VJ
i Field Type Attributes Null Default Extra Action
[movie_id int(11) Mo auto_increment Change Drop Primary Index Unique Fulltaxt
:“9\' : [movie_name varchar(255) Mo Change Drop Primary Index Unique Fulltaxt
movie
I movietyps [movie_type tinyint(2) Mo O Change Drop Primary Index Unique Fulllext
[Eirechle [] movie_year intf4) Mo O Change Drop Primary Index Unique Fulliext
[l movie_leadactar int(11) Mo O Change Drop Primary Index Unigue Fulltext
[movie_directar int(11) Mo O Changa Drop Primary Index Unique Fulltaxt
T Check All £ Uncheck &Il ¥With selected: o | Drop |
Indekes s (Pasmentatio] Space usage Row Statistic |
i Tl Earianiy EAy Field Type Usage Statements Value
¥ ¥ F 2
FRIMARY PRIMARY S Eonal CoeMNdlEENes Eomak R
SR Index 3072 Bytes Rows 3
movie_type INDEX Mone Drop Edit :D\nie_ 2 Total 3,180 Bytes Row length & 36
= Row size & 1,060 Bytes
Mext Autoindex 4
Go
Create an index on |1 T Craation et 13, 2003 3t 07:17 AM
Last update Oct13, 2003 at 0717 AM
® Print view
= Add naw fiald : |1 ;Aﬁer movia_year 3
« Propose table structure [Documentation)
Run S0L guery/queries on database wiley [Documentation] _ Fields: :
SELECT * FROM "movie’ WHERE 1 movie_id |
] movie_name |
Query window |';-. waf—wﬂg = | %l
<[L [al el I [>
Figure 7-1

192

Validating User Input

C-0 RRG Pree p-& B-U =) z B
L Vo Database wiley - Table movie running on localhost
Home s
Field L Lk Length/Values™ Attributes Null Default= Extra Primary Index Ur
T [Documentation]
ley (3 v g - ; :
wiley (1) ¥ movie_release | INT 3 1 ':l | not null s} 1EI | :] O o |e
wiley
B movie
& movisivpe + . i) 2 L
B people ff field type is "enum"” or "set”, please enter the values using this format: 'a''b"c".

If you ever need to put a backslash (") or a single guote (") amongst those values, backslashes it (for example Myz’ or ‘alh).
** For default values, please enter just a single value, without backslash escaping or guotes, using this format: a

[Documentation]

=)
DQuery window |
< [1 | liss £ 1 1 3|

Figure 7-2

Forgot Something?

Sometimes, when a user enters data in a form, he or she forgets to fill in a field. When this happens, the
system has to react so that the insertion of the invalid or incomplete data will not corrupt the database.
In some cases, these errors are made on purpose. In fact, these attempts to find cracks in the walls
around your system are quite frequent. You need to design your system so it can react to such errors or
malicious attempts to corrupt the database.

Try It Out Setting Up the Environment

Start by making sure your users enter a movie name when creating a new movie entry.

1. Open the movie.php script and modify it as follows (modifications are shown in bold):

<?
$1link = mysqgl_connect ("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysqgl_select_db('wiley', $link) or die (mysqgl_error());

193

Chapter 7

Speoplesgl = "SELECT
*
FROM
“people’

"o,
/

Sresult =

mysgl_query (Speoplesqgl)
or die("Invalid query: "

. mysqgl_error());

while(Srow = mysqgl_fetch_array($result , MYSQL_ASSOC)) {

Speople[Srow['people_id']

}
switch($_GET['action']
case "edit":
Smoviesgl = "SELECT
*
FROM
‘movie’
WHERE
‘movie’ .

‘movie_id' =

) {

Sresult = mysqgl_query (Smoviesql)

or die("Invalid query: "

Srow = mysqgl_fetch_array (
Smovie_name = Srowl
Smovie_type = Srowl
Smovie_year = Srow|

Smovie_leadactor =
Smovie_director =
break;
default:
Smovie_name
Smovie_type =
Smovie_year =
Smovie_leadactor =

wno,
7
wno,
/

wno.
’

Srow [
Srow [

. mysql_error());
Sresult , MYSQL_ASSOC
'movie_name'];

115
I

'movie_leadactor'

'movie_director'];

'movie_type'
'movie_year'

I

Smovie_director = "";

break;

?>
<html>
<head>
<TITLE><?php echo $_GET[
</head>
<body>

'action']?> movie</TITLE>

'".S_GET['id']."!

= Srow|['people_fullname'];

) 8

<FORM action="commit.php?action=<?php echo $_GET['action']?>&type=movie&id=<?php
echo $_GET['id']?>" method="post">
<?php
if (!empty($_GET['error'])){

echo "<div align=\"center\" style=\"color:#FFFFFF;background-color:#££0000; font-
weight :bold\">".nl2br (urldecode($ GET['error']))."</div>
";
}
?>

<table border=0 width="750" cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">

<tr>

Validating User Input

<td bgcolor="#ffffff" width="30%">
Movie Name
</td>
<td bgcolor="#ffffff" width="70%">
<input type="text" name="movie_name" value="<?php echo $movie_name?>">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Type
</td>
<td bgcolor="#ffffff">
<SELECT id="game" name="movie_type" style="width:150px">

<option value="" SELECTED>Select a type...</option>
<?php
$sql = "SELECT
‘movietype_id",
‘movietype_label’
FROM
‘movietype’
ORDER BY
‘movietype_label’
Sresult = mysqgl_query(Ssqgl)
or die("Query Error".mysqgl_error());
while (Srow = mysqgl_fetch_array(Sresult)){
if (Srow['movietype_id'] == Smovie_type) {
Sselected = " SELECTED";
} else {
Sselected = "";
}
echo '<OPTION
value=""'.Srow['movietype_id'].'"'.Sselected.'>'.Srow['movietype_label'].'</OPTION>'
"\r\n";
}
2>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Year
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_year">
<option value="" SELECTED>Select a year...</option>
<?php
for (Syear=date("Y"); $year >= 1970 ;$year—){
if (Syear == Smovie_year) {
Sselected = " SELECTED";
} else {
Sselected = "";

195

Chapter 7

196

?>
<option value="<?=$Syear?>"<?=Sselected?>><?=Syear?></option>
<?php
}
?>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Lead Actor
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_leadactor">
<option value="" SELECTED>Select an actor...</option>
<?php
foreach($people as Speople_id => S$people_fullname) {
if (Speople_id == Smovie_leadactor) {
$selected = " SELECTED";
} else {
Sselected = "";
}
?>

<option value="<?php echo S$people_id?>"<?php echo $selected?>><?php
echo S$people_fullname?></option>

<?php
}
?>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Director
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_director">
<option value="" SELECTED>Select a director...</option>
<?php
foreach($people as S$people_id => S$people_fullname) {
if (Speople_id == S$movie_director) {
Sselected = " SELECTED";
} else {
Sselected = "";
}
?>

<option value="<?php echo S$people_id?>"<?php echo $selected?>><?php
echo $people_fullname?></option>
<?php
}
?>
</SELECT>
</td>
</tr>

Validating User Input

<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="<?=$_GET['action']?>">
</td>
</tr>
</table>
</FORM>
</body>
</html>

2. Save the file asmovie.php and upload the new code to your work directory.

3. Open the commit . php script and modify it as follows (modifications are shown in bold):

<?php
// COMMIT ADD AND EDITS
$error = '';
$link = mysqgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysgl_select_db('wiley', $link) or die (mysqgl_error());
switch($_GET['action']){

case "edit":
switch($_GET['type'l){
case "people":
$sgl = "UPDATE

‘people’
SET

‘people_fullname® = '".$_POST['people_fullname']."'
WHERE

‘people_id® = '".$_GET['id']."'

break;
case "movie":
$movie_name = trim($row['movie name']);
if(empty($movie_name)) {
$error .= "Please+enter+a+movie+name%21%0D%0A";
}
if (empty($_POST['movie_type']))({
$error .= "Please+select+a+movie+type%21%0D%0A";
}
if (empty($_POST['movie_vyear']))({
$error .= "Please+select+a+movie+year%21%0D%0A";
}
if (empty($error))({
$sql = "UPDATE

‘movie’
SET
‘movie_name® = '".$_POST['movie_name']."',
‘movie_year = '".$_POST['movie_year']."',
‘movie_type' = '".$_POST['movie_type']."',
‘movie_leadactor® = '".$_POST['movie_leadactor']."',
‘movie_director’ = '".$_POST['movie_director'].™"'
WHERE
‘movie_id® = '".$_GET['id']."'

197

Chapter 7

} else {
header (
"location:movie.php?action=edit&error=".$error."&id=".$_GET['id']);
}
break;
}
break;
case "add":
switch($_GET['type']){
case "people":
$sgl = "INSERT INTO
“people’
(‘people_fullname')
VALUES
('".$_POST['people_fullname']."')
break;

case "movie":

$movie name = trim($row['movie_name']);
if (empty($movie_name)) {

$error .= "Please+enter+a+movie+name%21%0D%0A";
}
if (empty($_POST['movie_type'l)){

$error .= "Please+select+a+movie+type%21%0D%0A";
}
if (empty($_POST['movie_year'])){
$error .= "Please+select+a+movie+year%21%0D%0A";
}
if (empty($error))({

$sgl = "INSERT INTO

‘movie’

(‘movie_name |,

‘movie_year® |,

‘movie_type® ,

‘movie_leadactor’® ,

‘movie_director’)

VALUES

('"".$_POST['movie_name']."' ,

‘" $_POST['movie_year']."' ,
".$_POST['movie_type']l.""' ,
".$_POST['movie_leadactor']."' ,
", $ _POST['movie_director']."')

} else {
header("location:movie.php?action=add&error=".$error);

}
break;

}
break;
}
if (isset(S$sqgl) && !empty(Ssqgl)){
echo "<!—".$sgl."—>";
Sresult = mysqgl_query(S$sqgl)

198

Validating User Input

or die("Invalid query: " . mysqgl_error());
?>
<p align="center" style="color:#FF0000">
Done. Index
</p>
<?php
}
?>
4. Save the file as commit . php and upload it to your server.
5. Now open your browser and go to http://localhost/chapter7/index.php (adapt this
URL to fit your setup) and try adding a movie with no name, as shown in Figure 7-3.
o - BRRG| Pree|p-aB 2 &
Mowe Mame _'
Mewie Type Action Z[
Movie Vear 2001]
Lead Actor Jim Camey |V]
Director Fon Livingstan 'IE|
Idovie release date (dd-mm-yyyy) 28-10-2003
Idowie ratng (0 to 10) 9
add
Figure 7-3
6. Now try to enter a new movie without setting the year and the movie type (see Figure 7-4).
7. Edit a movie from the index and try deleting the name and submitting the form (see Figure 7-5).
8. Notice the error message stating the mistake made in filling in the form (Figure 7-6).

199

Chapter 7

0-0-RRAG| APHreO|p-&B 2 z
Mowe Mame Some movie
Mewie Type Salectatype... :[
Tfowie Year Selectavear, . |ﬂ
Lead Actor Jim Carey |V]
Tiirector Ron Livingston .|Z|
Idovie release date (dd-mm-yyyy) 28-10-2003
Idowie rabng (0 to 100 9
add

Figure 7-4

How It Works

When the form passes information to the commit script, the data has to be verified. In this case, we use a
simple verification method: The empty () function returns true if the string is empty and false if not.
To ensure that the user did not submit the form with a simple space in the movie name field, we trim()
the field’s content to eliminate any space leading or trailing the string. (Some people like to trigger errors

in Web sites by entering erroneous input; let’s not make their job easy.)

At the same time, if an error is detected, we add a message to the $error variable that collects all the
error messages. The error messages are URL encoded before being added to the code. (See urlencode

and urldecode functions in the manual; for more information, check the PHP Web site at

www . php.net/url.)

if (empty ($Smovie_name)) {

Serror .= "Please+enter+a+movie+name%21%0D%0A";

}

200

Validating User Input

Q-0 RRAG PHree|p-iub =2 iz
Mowe Mame |
Mewie Type Camedy Z[
Movie Vear 2003]
Lead Actor Jim Camey |V]
Director Tom Shadyac '|Z|

Mowie release date (dd-mm-yiry)

23-05-2003

Idowie ratng (0 to 10)

3

Figure 7-5

Once we are sure that an error has occurred, we redirect the user to the form with an error message stat-
ing the problem. The error message is URL encoded to ensure that it will be passed to the movie.php

script without being corrupted.

if (empty(Serror)){
} else {

header ("location:movie.php?action=add&error=".Serror);

}

Once redirected to the form, the system needs to display the decoded error message.

<?

if (lempty($S_GET['error'])){
echo "<div align=\"center\" style=\"color:#FFFFFF;background-color:#f£f0000; font-
weight:bold\">".nl2br (urldecode($_GET['error']))."</div>
";

}

?>

201

Chapter 7

-0 RRG LHree | p-&B 2)
Please enter a movie name!
Ifowe Mame Bruce Almighty) |
Mewie Type Camady Z[
Movie Year 2003]
Lead Actor Jim Carrey |V]
Director Torm Shadyac "E|
Idovie release date (dd-mm-yyyy) | 23-05-2003
Idowie ratng (0 to 100 8

Figure 7-6

This causes a rather colorful message that your user will not miss to be displayed by the browser.

The update itself is performed at the end of the code, along with all the controls and debug messages
we need.

if (isset($sgl) && 'empty(S$sqgl)){

echo "<!-=".$sqgl."—>";
$result = mysqgl_query($sqgl)
or die("Invalid query: " . mysqgl_error());

?>
<p align="center" style="color:#FF0000">
Done. Index
</p>
<?php
}

If the $sql variable is not previously set (which could happen if the page is called out of context), the

code will not try to execute and will do nothing. (Note that it would be a good exercise for you to code a
response to this occurrence, such as a message or a logging of the error in the database.)

202

Validating User Input

Checking for Format Errors

Checking for errors in dates or other formatted data is a requirement in most systems because users
can’t always be guided in their input. You should always check for what is entered if you require a spe-
cific format or set of values.

At this point, we need the feared and powerful regular expressions. The regular expressions allow us to
define a pattern and check to see if it can be applied to our data. It’s very useful to check for dates, social
security numbers, and any data that has to respect a predefined set of format requirements. (It helps to
be sure to always indicate the format in the source field.)

Try It Out Checking Dates and Numbers
First, you need to modify the database and a few pages slightly:

1. Open the well-known movie.php and modify it as follows (modifications are shown in bold):

<?php
$link = mysgl_connect("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysqgl_select_db('wiley2', $1link) or die (mysqgl_error());
Speoplesgl = "SELECT
*
FROM
‘people’
Sresult = mysqgl_query (Speoplesqgl)
or die("Invalid query: " . mysqgl_error());
while(Srow = mysqgl_fetch array($result , MYSQL_ASSOC)) {
Speople[Srowl'people_id']] = Srow]'people_ fullname'];
}
switch($_GET['action']){
case "edit":
Smoviesgl = "SELECT
*
FROM
‘movie®
WHERE
‘movie' . 'movie_id' = '".$_GET['id']."'
Sresult = mysqgl_query (Smoviesql)
or die("Invalid query: " . mysqgl_error());
Srow = mysqgl_fetch array(Sresult , MYSQL_ASSOC);
Smovie_name = Srow['movie_name'];
Smovie_type = Srow['movie_type'];
Smovie_year = Srow['movie_year'];
$movie_release = $row['movie_release'];
Smovie_leadactor = Srow['movie_leadactor'];
Smovie_director = Srow['movie_director' 1;
$movie_rating = $row['movie rating'];
break;
default:
Smovie_name = "";

203

Chapter 7

204

Smovie_type = "";
Smovie_year = "";
$movie_release = time();
Smovie_leadactor = "";
Smovie_director = "";

$movie_rating = "5";
break;
}
?>
<html>
<head>
<TITLE><?php echo $_GET['action']?> movie</TITLE>
</head>
<body>

<FORM action="commit.php?action=<?php echo $_GET['action']?>&type=movie&id=<?php
echo $_GET['id']?>" method="post">

<?php
if (!empty($_GET['error'])){
echo "<div align=\"center\" style=\"color:#FFFFFF;background-color:#f£0000; font-
weight:bold\">".nl2br (urldecode($_GET['error']))."</div>
";
}
?2>

<table border=0 width="750" cellspacing=1 cellpadding=3 bgcolor="#353535"
align="center">
<tr>
<td bgcolor="#ffffff" width="30%">
Movie Name
</td>
<td bgcolor="#ffffff" width="70%">
<input type="text" name="movie_name" value="<?php echo $movie_name?>">
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Type
</td>
<td bgcolor="#ffffff">
<SELECT id="game" name="movie_type" style="width:150px">
<option value="" SELECTED>Select a type...</option>
<?php
$sqgl = "SELECT
‘movietype_id",
‘movietype_label’
FROM
‘movietype®
ORDER BY
‘movietype_label’

"o,
’

Sresult = mysqgl_query (S$sal)
or die("Query Error".mysqgl_error());
while ($Srow = mysqgl_ fetch_array ($result)) {

if (Srow['movietype_id'] == Smovie_type) {
$selected = " SELECTED";
} else {

Validating User Input

Sselected = "";
}
echo '<OPTION
value=""'.Srow['movietype_id'].'"'.Sselected.'>"'.Srow['movietype_label'].'</OPTION>'
"\r\n";
}
?>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Movie Year
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_year">
<option value="" SELECTED>Select a year...</option>
<?php
for (Syear=date("Y"); Syear >= 1970 ;Syear—)({
if (Syear == Smovie_year) {
$selected = " SELECTED";
} else {
Sselected = "";
}
2>

<option value="<?php echo Syear?>"<?php echo $selected?>><?php echo
Syear?></option>

<?php
}
2>
</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Lead Actor
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_leadactor">
<option value="" SELECTED>Select an actor...</option>
<?php
foreach($people as S$people_id => $people_fullname) {
if (Speople_id == $Smovie_leadactor) {
Sselected = " SELECTED";
} else {
Sselected = "";
}
?>

<option value="<?php echo S$people_id?>"<?php echo $selected?>><?php
echo Speople_fullname?></option>
<?php
}

?>

205

Chapter 7

</SELECT>
</td>
</tr>
<tr>
<td bgcolor="#ffffff">
Director
</td>
<td bgcolor="#ffffff">
<SELECT name="movie_director">

<option value="" SELECTED>Select a director...</option>
<?php
foreach($people as S$people_id => S$people_fullname) {
if (Speople_id == Smovie_director) {
Sselected = " SELECTED";
} else {
Sselected = "";
}
?>

<option value="<?php echo S$people_id?>"<?php echo $selected?>><?php
echo S$people_fullname?></option>

<?php
}
?2>
</SELECT>
</td>
</tr>
<tr>

<td bgcolor="#ffffff" width="30%">
Movie release date (dd-mm-yyyy)
</td>
<td bgcolor="#ffffff" width="70%">
<input type="text" name="movie_release" value="<?=date("d-m-Y"
$movie_release)?>">
</td>
</tr>
<tr>
<td bgcolor="#ffffff" width="30%">
Movie rating (0 to 10)
</td>
<td bgcolor="#ffffff" width="70%">
<input type="text" name="movie rating" value="<?=$movie_rating?>">
</td>
</tr>
<tr>
<td bgcolor="#ffffff" colspan=2 align="center">
<INPUT type="SUBMIT" name="SUBMIT" value="<?=S$_GET['action']?>">
</td>
</tr>
</table>
</FORM>
</body>
</html>

206

Validating User Input

2.

Now open commi t . php and modify it as follows (modifications are shown in bold):
<?php
// COMMIT ADD AND EDITS
Serror = '';
$1link = mysqgl_connect ("localhost", "root", "")
or die("Could not connect: " . mysqgl_error());
mysqgl_select_db('wiley2', $1link) or die (mysqgl_error());
switch($_GET['action']){
case "edit":
switch($_GET['type']l){

case "people":
$sql = "UPDATE

‘people’
SET

‘people_fullname® = '".$_POST['people_fullname']."'
WHERE

‘people_id' = '".$_GET['id']."'

break;
case "movie":
$movie_rating = trim($_POST['movie_rating']);
if (!is_numeric ($movie rating)){
$error .= "Pleaset+enter+at+numeric+rating+%21%0D%0A";
} else {
if ($movie rating < 0 || $movie_rating > 10){
$error .= "Pleaset+enter+at+rating+between+0+and+10%21%0D%0A" ;
}
}
if (!ereg ("([0-91{2})-([0-91{2})-([0-9]{4})",
$_POST['movie_release'] , $reldatepart))({
$error .= "Please+enter+a+date+with+the+dd-mm-
yyyy+format%21%0D%0A" ;
} else {
$movie_release = @mktime (0, 0, 0, $reldatepart['2'],
$reldatepart['l'], $reldatepart['3']);
if ($movie_release == '-1'){
$error .= "Please+enter+a+real+date+with+the+dd-mm-
yyyy+format%21%0D%0A" ;
}
}
Smovie_name = trim($_POST['movie_name']);
if (empty (Smovie_name)) {
Serror .= "Please+enter+a+movie+name%21%0D%0A";
}
if (empty ($_POST['movie_type'])) {
Serror .= "Pleaset+select+at+movie+type%21%0D%0A";
}
if (empty ($_POST['movie_year'])){
Serror .= "Pleaset+select+at+movie+year%21%0D%0A";
}
if (empty(Serror)){
$sgl = "UPDATE
‘movie’

207

Chapter 7

'
’

SET
‘movie_name' = '".$_POST['movie_name']."',
‘movie_year = '".$_POST['movie_year']."',
“movie_release’ = '$movie_release',
‘movie_type' = '".$_POST['movie_type'].""',
‘movie_leadactor® = '".$_POST['movie_ leadactor'].
‘movie_director’ = '".$_POST['movie_director'].
‘movie_rating® = '$movie_rating'
WHERE
‘movie_id' = '".$_GET['id']."'
} else {
header (
"location:movie.php?action=edit&error=".Serror."&id=".$_GET['id']);
}
break;

}
break;
case "add":
switch($_GET['type']){
case "people":
Ssgl = "INSERT INTO
‘people’
(‘people_fullname®)
VALUES

('".S_POST|['people_fullname']."')

break;
case "movie":
$movie rating = trim($_POST['movie_rating']);
if (!is_numeric ($movie_rating)){
$error .= "Please+enter+a+numeric+rating+%21%0D%0A";
} else {
if ($movie rating < 0 || $movie rating > 10){

$error .= "Please+enter+a+rating+between+0+and+10%21%0D%0A" ;

}
}
$movie release = trim($_POST['movie_ release']);

1
’

if (lereg ("([0-91{2})-([0-9]1{2})-([0-91{4})", $movie release ,

$reldatepart) || empty($movie release)){
$error .= "Please+enter+a+date+with+the+dd-mm-
yyyvy+format%21%0D%0A" ;
} else {
$movie_release = @mktime (0, 0, 0, $reldatepart['2'],
$reldatepart['l'], $reldatepart['3']);
if ($movie_release == '-1'){
$error .= "Please+enter+a+real+date+with+the+dd-mm-
yyyy+format%21%0D%0A" ;
}
}
Smovie name = trim(Srow['movie_name']);
if (empty (Smovie_name)) {
Serror .= "Please+enter+a+movie+name%21%0D%0A";

208

Validating User Input

?>

if (empty($_POST['movie_type'])){

Serror .= "Pleaset+select+at+movie+type%21%0D%0A";
}
if (empty (S_POST['movie_year'])) {

Serror .= "Pleaset+select+at+movie+year%21%0D%0A";

if (empty(Serror)){
$sgl = "INSERT INTO

‘movie’

(“movie_name® ,
‘movie_year |,
‘movie_release’ ,
‘movie_type® ,
‘movie_leadactor® ,
‘movie_director’ ,
“movie_rating’)

VALUES

('".$_POST['movie_name']."' ,
'",$_POST['movie_year']."' ,
'$movie_release'
""", $_POST['movie_type']."' ,
'".$_POST['movie_leadactor']."' ,
'".$ _POST['movie director']."',
'$movie_rating')

"
7

} else {
header ("location:movie.php?action=add&error=".Serror);
}
break;
}
break;

}
if (isset(S$sgl) && !empty($Ssgl)){
echo "<!—".$sqgl."—>";
Sresult = mysqgl_query($sgl)
or die("Invalid query: " . mysqgl_error());

<p align="center" style="color:#FF0000">
Done. Index
</p>

<?php

?>

Now save the files, upload them, and open your browser to the site index.

Click any movie and try entering 2003-10-10 in the release date field. You will be brought back
to the form with a nice, yet very explicit, message telling you what format to respect, as shown

in Figure 7-7.

Try entering alphanumeric values in the rating field, as in Figure 7-8 (which could easily have

been a drop-down but is a text field for the purpose of the exercise).

209

Chapter

7

Q-0-RRAG PLPHree|p-uB = >

Ifowe Mame Bruce Almighty _'
Mewie Type Cameady Z[
Movie Vear 2003]
Lead Actor Jim Carey |V]
Director Tom Shadyac '|Z|
Idovie release date (dd-mm-yyyy) 20031010
Idowie rabng (0 to 100 8

Figure 7-7

If the entered value is not in the 0 to 10 range, it will be refused. (Note that the decimals are not
managed in this code and will be lost.)

How It Works

This requires some explaining. First, let’s look into the type validating functions.

In the commit .php code, we use the is_numeric () function. This function returns a Boolean TRUE if
the value is indeed numeric and FALSE if not. There are more of these validating functions available,
including:

Q

a
a
a

210

is_string, which checks to see if the value is of the string format
is_bool, which checks for Boolean type (TRUE, FALSE, 0 or 1)
is_array, which tells you if the variable holds an array

is_object, which determines if the variable stores an object (remember this one when you try
object oriented coding using PHP; it is very useful)

Validating User Input

C-0-RRAG PLPree|p-aB 2 z
Ifowe Mame Eruce Almighty _'
Mewie Type Camedy Z[
Movie Vear 2003]
Lead Actor Jim Camey |V]
Director Tom Shadyac '|Z|
Idovie release date (dd-mm-yyyy) 23-05-2003
Idowie ratng (0 to 10) st

Figure 7-8

These functions are all documented in the PHP manual at www . php .net /variables.

In this instance, the use of is_numeric allows us to make sure our user has entered a numeric value
(remember that we are expecting a numeric value between 0 and 10).

Smovie_rating = trim($_POST['movie_rating']);

if (!is_numeric (Smovie_rating)) {
Serror .= "Pleasetenter+a+numeric+rating+%21%0D%0A";
} else {
if ($movie rating < 0 || $movie_rating > 10){
Serror .= "Pleaset+enter+a+rating+between+0+and+10%21%0D%0A";
}
}

The code first cleans up the value of leading and trailing spaces (always try to be prepared for typos and
mishaps) and then tests to see if the value is numeric. If it’s not, the error message queue is fed; if it is,
we test the value to see if it is between 0 and 10. If the value is not between 0 and 10, we add an error
message to the error message queue.

211

Chapter 7

The date validation is almost as simple to understand, if you know about regular expressions. Here’s a
closer look at it:

Smovie_release = trim(S$_POST['movie_release']);

if (lereg ("([0-9]1{2})-([0-91{2})-([0-9]{4})", Smovie_release , Sreldatepart) ||
empty (Smovie_release)) {

Serror .= "Please+enter+a+date+with+the+dd-mm-yyyy+format%21%0D%0A";
} else {

Smovie_release = @mktime (0, 0, 0, Sreldatepart['2'], Sreldatepart['l']
Sreldatepart['3']);

if (Smovie_release == '-1'){

Serror .= "Please+enter+a+real+date+with+the+dd-mm-yyyy+format%21%$0D%0A";
}

}

As you saw in this chapter’s first exercise, we use the trim () function to clear all leading and trailing
spaces in the received string to make sure our user entered something other than just a space.

The string manipulation functions are found at the PHP Web site at www . php .net/strings. You
can find trim and some other very useful functions there.

The next statement contains two conditions. The first condition tests for a regular expression match. The
regular expressionis " ([0-91{2})-([0-91{2})-([0-9]1{4}) ". What does this do? [0-9] {2} speci-
fies that we want to check for numbers between 0 and 9 with two occurrences. For example 02 will
match but not 2. The same logic applies to the [0-9] {4} statement: The only difference is that we are
expecting four digits in our number. These four digits are the year part of the date.

So, in English, it means: I want my string to start with a number with two digits, followed by a hyphen (-),
and then another group of two digits, and then a hyphen (-), and finish with a four-digit number.

if (lereg ("([0-91{2})-([0-91{2})-([0-91{4})", Smovie release , $reldatepart) ||
empty (Smovie_release)){...

}

Now, this is not exactly what our regular expression says. It says that if it matches our condition, we will
split it in three different chunks, each chunk delimited with the parentheses.

This cutting is performed by the ereg () function. If the $movie_release string matches the pattern,
ereg will cut the string into parts and then store each part as an element of the $reldatepart array in
our example.

Be sure to read the PHP manual about reqular expressions at www .php .net /regex and consult a few
tutorials to understand the real power of using reqular expressions. (A good starting tutorial can be
found at www . phpbuilder.com/columns/dario19990616.php3.)

If our date were 02-03-2003, the array would be as follows:

Array

(
[0] => 02-03-2003
[1] => 02

212

Validating User Input

As you can see here, the first index holds the whole string, and each chunk holds a cut-off part of the
string, delimited by the parentheses.

Now that we have our date in an understandable format, we can change it into a timestamp using the
mktime () function, which allows you to create a timestamp from chunks of dates. It is also a very useful
function to manipulate dates.

Smovie_release = mktime (0, 0, 0, Sreldatepart['2'], Sreldatepart['l'],
Sreldatepart['3']);

This code stores a timestamp from the day, month, and year information fed to the system in the
$movie_release variable. The format is int mktime (int hour, int minute, int second, int month,
int day, int year). The returned value is the number of seconds between January 1, 1970, and the
specified date.

See documentation at www . php . net /mktime for additional information regarding optional parameters
such as daylight saving flag.

If mktime fails to create a timestamp from the date you passed to it, it will return -1. This happens when
the input is invalid, although it matches the regular expression (for example 99-99-9999 will pass the reg-
ular expression test, but is obviously not a valid date). To be sure that the date is indeed a date, we will
test for the return value from mktime and respond accordingly.

if (Smovie_release == '-1'){
Serror .= "Pleaset+enter+a+real+date+with+the+dd-mm-yyyy+format%21%0D%0A";

}
In this case, a false date entry triggers an error message asking for a valid date.

Here’s an alternate technique: The same timestamp generation could have been performed using SQL.
Many things that PHP does on the string manipulation side can be done straight from SQL, as shown here:

if (lereg ("([0-91{2})-([0-91{2})-([0-91{4})", Smovie release , S$reldatepart) ||
empty (Smovie_release)){...
}
Sreldate = Sreldatepart['3']."-".Sreldatepart['2']."-".Sreldatepart['l']."
00:00:00";
$sgl = "INSERT INTO

‘movie’

("movie_release’)

VALUES
(UNIX_TIMESTAMP ('Sreldate'))

"o
7

In this code, the SQL does the timestamp generation. The UNIX_TIMESTAMP () SQL function expects a
YYYY-MM-DD HH:MM:SS (2003-12-05 02:05:00) format and creates a timestamp from it. In the code, we

213

Chapter 7

force the creation of the timestamp at 00:00 on the date of the movie release. You can save yourself some
lengthy coding by using SQL features wherever possible.

See documentation on MySQL date and time functions at www.mysql.com/doc/en/
Date_and_time_functions.html.

Summary

Validating user data is all about being prepared for the worst. Users make mistakes—that’s the nature of
users. Most errors are unintentional. Some errors are made intentionally to deny the service. It happens
e