
Beginning PHP, Apache,
MySQL® Web Development

Michael Glass
Yann Le Scouarnec

Elizabeth Naramore
Gary Mailer
Jeremy Stolz
Jason Gerner

01 557440 FM.qxd 2/6/04 9:13 AM Page iii

Beginning PHP, Apache, MySQL® Web Development
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2004 by Michael Glass, Yann Le Scouarnec, Elizabeth Naramore, Gary Mailer, Jeremy
Stolz, and Jason Gerner

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

Library of Congress Control Number: 2004101426

ISBN: 0-7645-5744-0

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

1MA/SV/QS/QU/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as per-
mitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior writ-
ten permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978)
646-8600. Requests to the Publisher for permission should be addressed to the Legal Department, Wiley
Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-Mail: permcoordinator@wiley.com.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESEN-
TATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF
THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WAR-
RANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS
NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFES-
SIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE
SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM.
THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A
POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER
ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS WORK MAY
HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS READ.

For general information on our other products and services or to obtain technical support, please con-
tact our Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317)
572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic books.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in
the United States and other countries, and may not be used without written permission. MySQL is a
registered trademark of MySQL AB Company. All other trademarks are the property of their respective
owners. Wiley Publishing, Inc., is not associated with any product or vendor mentioned in this book.

01 557440 FM.qxd 2/6/04 9:13 AM Page iv

About the Authors

Michael “BuzzLY” Glass
Michael Glass has been a gladiator in the software/Web site development arena for more than eight
years. He has more than ten years of commercial programming experience with a wide variety of tech-
nologies, including PHP, Java, Lotus Domino, and Vignette StoryServer. He divides his time between
computer programming, playing pool in the APA, and running his Web site at www.ultimatespin.com.
You can usually find him slinking around on the PHPBuilder.com forums, where he is a moderator with
the nickname BuzzLY.

Thanks, Staci, for putting up with long and late hours at the computer. Elizabeth and Jason, it wouldn’t
have been the same project without you two. And thanks to my code testers at www.ultimatespin.com:
Spidon, Kaine, Garmy, Spidermanalf, Ping, Webhead, and FancyDan. You guys rock!

To Donna and Gerry, who have influenced my life more than they can ever know, and who taught me
the importance of finishing what you’ve started.

Yann “Bunkermaster” Le Scouarnec
Yann is the senior developer for Jolt Online Gaming, a British gaming company. He is a moderator at
PHPBuilder.com and a developer of open source PHP software for the gaming community. He has also
worked for major software corporations as a software quality expert.

I thank all the innocent bystanders who got pushed around because of this project: Debra and Nancy,
who were patient enough not to have homicidal thoughts; and my wife and kids, who barely saw me for
six months.

Elizabeth Naramore
Elizabeth has been programming with computers since a very young age, and, yes, she remembers when
software was packaged on cassette tapes. Graduating from Miami University at age 20 with a degree in
Organizational Behavior, she found a world of opportunity awaiting her—in corporate marketing. Her
first love was always computers, however, and she found herself sucked back to the programming world
in 1997 through Web site design and development (once a computer geek, always a computer geek).
While she plans to return to Miami to get her Masters in Computer Science, she currently stays busy run-
ning several Web sites. Her main focus is in e-commerce and running www.giftsforengineers.com.

Elizabeth has spent the past six years developing Web sites and coordinating all phases of Web site pub-
lication and production. She is currently a moderator at PHPBuilder.com, an online help center for PHP.
Her other interests include poetry, arts and crafts, camping, and juggling the many demands of career,
family, and the “other duties as assigned” that come along in life. She lives in Cincinnati, Ohio, with her
husband, beautiful daughter, and a new baby on the way.

01 557440 FM.qxd 2/6/04 9:13 AM Page v

Gary “trooper” Mailer
After graduation from university in 1998, Gary worked in a major software house in central London as a
quality assurance engineer, and also as the departmental Web developer (using ASP). This gave him a
taste of Web development. After a few years, he made the jump into full-time Web development and has
not looked back since.

Gary has worked in a few different sectors, including communications (Siemens) and hotels (Hilton), as
well as in “traditional” development houses.

He is currently a freelance developer for a European communications company. Gary has been and con-
tinues to be an active member of and contributor to the PHPBuilder.com site.

Jeremy “stolzboy” Stolz
Jeremy is a Web developer at Cloverfish Inc. (www.cloverfish.net), a Web development company in
Fargo, North Dakota. Jeremy is primarily a PHP/MySQL developer, but he has also worked with many
other languages. When not working, he frequents the Internet and tries to keep up his programming
skills. He is a contributor to and moderator at PHPBuilder.com. He also frequents many other computer-
related Web sites to keep his skills sharp and up to date.

Thanks to my employer and colleagues for giving me the time and space to participate in this project.
Also, thanks to Debra Williams Cauley at Wiley for getting me involved in this project for Wrox.

I dedicate this book to my wife and family for helping me get through the long hours of preparation and
writing.

Jason “goldbug” Gerner
Jason currently spends his days working as a Web developer in Cincinnati and burns free time com-
plaining about lack of support for Web standards and abusing XML. He can often be found lurking in
the PHPBuilder.com discussion forums, waiting to chime in with nagging comments about CSS or code
efficiency.

01 557440 FM.qxd 2/6/04 9:13 AM Page vi

Credits
Acquisitions Editor
Debra Williams Cauley

Development Editor
Nancy Stevenson

Production Editor
Eric Newman

Technical Editor
Jason Gerner

Copy Editor
Nancy Rapoport

Editorial Manager
Mary Beth Wakefield

Vice President & Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Robert Ipsen

Vice President and Publisher
Joseph B. Wikert

Executive Editorial Director
Mary Bednarek

Project Coordinator
Kristie Rees

Graphics and Production Specialists
Sean Decker
Carrie Foster
Joyce Haughey
Jennifer Heleine
Kristin McMullan

Quality Control Technicians
Andy Hollandbeck
Susan Moritz
Carl William Pierce
Brian Walls

Proofreading and Indexing
TECHBOOKS Production Services

01 557440 FM.qxd 2/6/04 9:13 AM Page vii

Contents

Introduction 1

Part I: Getting Started

Chapter 1: Introduction and Installation Configuration 9

Installation Configuration 9
Brief Intro to PHP, Apache, MySQL, and Open Source 10

What Is Open Source? 10
How the Pieces of the AMP Module Work Together 11

Apache 12
PHP 13
MySQL 13

PHP5: The Future of PHP 14
A Brief Overview of PHP5 14
How Changing to PHP5 Affects This Book 14

Installation Configuration of Apache 14
Customizing Your Installation 15

Installation Configuration of PHP 17
Testing Your Installation 18
Customizing Your Installation 19

Installation Configuration of MySQL 20
Testing Your Installation 20
Configuring Your Installation 23

Try It Out: Setting Up Privileges 27

Where to Go for Help and Other Valuable Resources 28
Help within the Programs 28
Source Web Sites 28
AMP Installers 29

Summary 29

01 557440 FM.qxd 2/6/04 9:13 AM Page ix

x

Contents

Part II: Movie Review Web Site

Chapter 2: Creating PHP Pages 33

Overview of PHP Structure and Syntax 34
How PHP Fits with HTML 34
The Rules of PHP Syntax 34
The Importance of Coding Practices 35

Creating Your First Program 36
Try It Out: Using echo 37

Using HTML to Spice Up Your Pages 38
Integrating HTML with PHP 39

Try It Out: Using PHP within HTML 39

Considerations with HTML Inside PHP 40
Using Constants and Variables to Spice Up Your Pages 41

Overview of Constants 41
Try It Out: Using Constants 42

Overview of Variables 43
Try It Out: Using Variables 43

Passing Variables Between Pages 45
Try It Out: Using URL Variables 47

Try It Out: Passing the Visitor’s Username 52

What Is a Cookie? 55
Try It Out: Setting a Cookie 56

Passing Through Forms 58
Try It Out: Using Forms to Get Information 59

Using if/else Arguments 63
Using if Statements 63

Try It Out: Using if 64

Using if and else Together 65
Try It Out: Using if and else 65

Using Includes for Efficient Code 65
Try It Out: Adding a Welcome Message 66

Using Functions for Efficient Code 68
Try It Out: Working with Functions 68

A Word About Arrays 73
Array Syntax 73
Sorting Arrays 73

Try It Out: Sorting Arrays 74

foreach Constructs 74
Try It Out: Adding Arrays 75

01 557440 FM.qxd 2/6/04 9:13 AM Page x

xi

Contents

While You’re Here . . . 79
Try It Out: Using the while Function 80

Alternate Syntax for PHP 83
Alternates to the <?php and ?> php Tags 83
Alternates to the echo Command 83
Alternates to Logical Operators 84
Alternates to Double Quotes: Using heredoc 84
Alternates to Incrementing Values 84

Summary 84
Exercises 85

Chapter 3: Using PHP with MySQL 87

Overview of MySQL Structure and Syntax 87
MySQL Structure 88
MySQL Syntax and Commands 94

How PHP Fits with MySQL 94
Connecting to the MySQL Server 95
Looking at a Ready-Made Database 96

Try It Out: Creating a Database 96

Querying the Database 101
WHERE, oh WHERE 102

Try It Out: Using the SELECT Query 102

Working with PHP and Arrays of Data: foreach 105
Try It Out: Using foreach 105

A Tale of Two Tables 106
Try It Out: Referencing Individual Tables 106

Try It Out: Joining Two Tables 107

Helpful Tips and Suggestions 109
Documentation 109
Using PHPMyAdmin 109

Summary 110
Exercises 110

Chapter 4: Using Tables to Display Data 111

Creating a Table 111
Try It Out: Defining the Table Headings 111

Populating the Table 114
Try It Out: Filling the Table with Data 114

Try It Out: Putting it All Together 116

Try It Out: Improving Our Table 117

01 557440 FM.qxd 2/6/04 9:13 AM Page xi

xii

Contents

Who’s the Master? 120
Try It Out: Adding Links to the Table 120

Try It Out: Adding Data to the Table 122

Try It Out: Calculating Movie Takings 123

Try It Out: Displaying the New Information 124

Try It Out: Displaying Movie Details 126

A Lasting Relationship 128
Try It Out: Creating and Filling a Movie Review Table 128

Try It Out: Querying for the Reviews 129

Try It Out: Displaying the Reviews 131

Summary 133

Chapter 5: Form Elements: Letting the User Work with Data 135

Your First Form 136
Try It Out: Say My Name 136

FORM Element 138
INPUT Element 139
Processing the Form 140
Driving the User Input 141

Try It Out: Limiting the input choice 141

INPUT Checkbox Type 144
One Form, Multiple Processing 145

Try It Out: Radio Button, Multi-Line List Boxes 145

Radio INPUT Element 149
Multiple Submit Buttons 150
Basic Input Testing 150
Dynamic Page Title 151
Manipulating a String as an Array to Change the Case of the First Character 151
Ternary Operator 151

Using Them All 152
Try It Out: Hidden and password input 152

The Skeleton Script 160
Default Response 160
Adding Items 160

Summary 161

Chapter 6: Letting the User Edit the Database 163

Preparing the Battlefield 163
Try It Out: Setting Up the Environment 164

Inserting a Simple Record from phpMyAdmin 166
Try It Out: Inserting Simple Data 166

01 557440 FM.qxd 2/6/04 9:13 AM Page xii

xiii

Contents

Inserting a Record in a Relational Database 169
Try It Out: Inserting a Movie with Known Movie Type and People 170

Deleting a Record 177
Try It Out: Deleting a Single Record 177

Cascade Delete 177
Try It Out: Cascade Delete 177

Editing Data in a Record 182
Try It Out: Editing a Movie 182

Summary 190

Chapter 7: Validating User Input 191

Users Are Users Are Users . . . 191
What Now? 192

Forgot Something? 193
Try It Out: Setting Up the Environment 193

Checking for Format Errors 203
Try It Out: Checking Dates and Numbers 203

Summary 214

Chapter 8: Handling and Avoiding Errors 215

How the Apache Web Server
Deals with Errors 215

Apache’s ErrorDocument Directive 216
Try It Out: Using Apache’s ErrorDocument Method 216

Apache’s ErrorDocument: Advanced Custom Error Page 220
Error Handling and Creating Error Handling Pages with PHP 224
Other Methods of Error Handling 232

Summary 233
Exercises 233

Part III: Comic Book Fan Site

Chapter 9: Building Databases 237

Getting Started 237
Nam et Ipsa Scientia Potestas Est! 238
What Is a Relational Database? 238
Keys 239
Relationships 240
Referential Integrity 241
Normalization 241

01 557440 FM.qxd 2/6/04 9:13 AM Page xiii

xiv

Contents

Designing Your Database 241
Creating the First Table 242
What’s So Normal About These Forms? 245
Standardization 246
Finalizing the Database Design 246

Creating a Database in MySQL 247
Try It Out: Create the Table 248

Creating the Comic Character Application 252
Try It Out: The Comic Book Character Site 253

Summary 283

Chapter 10: E-mailing with PHP 285

Setting Up PHP to Use E-mail 285
Sending an E-mail 286

Try It Out: Sending a Simple E-mail 286

Try It Out: Collecting Data and Sending an E-mail 287

Dressing Up Your E-mails with HTML 291
Try It Out: Sending HTML Code in an E-mail 291

Try It Out: Sending HTML by Using Headers 292

Multipart Messages 294
Try It Out: Multipart Messages 294

Storing Images 297
Try It Out: Storing Images 297

Getting Confirmation 299
Try It Out: Getting Confirmation 300

Summary 315

Chapter 11: User Logins, Profiles, and Personalization 317

The Easiest Way to Protect Your Files 317
Try It Out: Creating htaccess and htpasswd Files 318

Friendlier Logins Using PHP’s Session and Cookie Functions 322
Try It Out: Using PHP for Logins 322

Using Database-Driven Information 325
Try It Out: Session Tracking with PHP and MySQL 327

Try It Out: Cookie Tracking with PHP 345

Try It Out: Administration Section 348

Summary 357

01 557440 FM.qxd 2/6/04 9:13 AM Page xiv

xv

Contents

Chapter 12: Building a Content Management System 359

Getting Your Users to Return 359
Content 359
Management 360
System 360
Putting It All Together 360

Getting Started 361
Try It Out: The Content Management System Application 361

Summary 421

Chapter 13: Mailing Lists 423

First Things First 423
What Do You Want to Send Today? 424
Coding the Application 424

Try It Out: Mailing List Administration 424

Sign Me Up! 437
Try It Out: Mailing List Signup 437

Mailing List Ethics 454
A Word About Spam (and SPAM) 454
Opt-In vs. Opt-Out 455

Summary 456

Chapter 14: Online Selling: A Quick Way to E-Commerce 457

Adding E-Commerce to the
Comic Book Fan Site 458

Something to Sell 458
A Shopping Cart 459

Try It Out: Defining the Database and Tables 460

Try It Out: Adding Your Products 463

Try It Out: Creating the Store Home Page 467

Try It Out: Viewing the Products 469

Try It Out: Creating a Table for the Shopping Cart 471

Try It Out: Adding Products to the Cart 472

Try It Out: Viewing the Shopping Cart 473

Try It Out: Changing Items in the Cart 477

Try It Out: Checking Out: Step One 478

Try It Out: Checking Out: Step Two 483

Try It Out: Checking Out: Step Three 490

01 557440 FM.qxd 2/6/04 9:13 AM Page xv

xvi

Contents

E-Commerce, Any Way You Slice It 497
Information Is Everything 498
Importance of Trust 498
Easy Navigation 500
Competitive Pricing 501
Appropriate Merchandise 501
Timely Delivery 501
Communication 501
Customer Feedback 501

Summary 502
Exercises 502

Chapter 15: Creating a Bulletin Board System 503

History of the Computer Bulletin Board 503
Your Bulletin Board 504

Try It Out: The Bulletin Board Code 505

Try It Out: The Bulletin Board Application 541

setup.php 550
A Last Look at User Authentication 551
admin.php 552
Searching 559
Pagination 561
Breadcrumbs 565
Going Out in Style 567

Afterthoughts 568
Summary 568
Exercises 569

Part IV: Advanced Users

Chapter 16: Using Log Files to Improve Your Site 573

What Is a Log? 574
Where Are These Logs? 574

Apache 574
PHP 576
MySQL 576

Now That I Know What and Where They Are, What Do I Do with Them? 579
Webalizer 579
Analog 580
WebTrends 580

01 557440 FM.qxd 2/6/04 9:13 AM Page xvi

xvii

Contents

AWStats 583
HTTP Analyze 583

What Do the Reports Mean? 584
User Preferences and Information 585
Number of Hits and Page Views 585
Trends over Time 585
Referring Sites 586

Summary 586

Chapter 17: Troubleshooting 587

Installation Troubleshooting 587
Parse Errors 588

Cleanup on Line 26 . . . Oops, I Mean 94 588
Elementary, My Dear Watson! 588

Empty Variables 589
The Ultimate Bait-and-Switch 589
Consistent and Valid Variable Names 590
Open a New Browser 590

“Headers Already Sent” Error 590
General Debugging Tips 591

Using echo 591
Divide and Conquer 592
Test, Test, Test! 592

Where to Go for Help 593
wrox.com 593
PHPBuilder.com 593
Source Web Sites 593
Search and Rescue 593
IRC Channels 594

Summary 594

Appendix A: Answers to Exercises 595

Chapter 2 595
Chapter 3 598
Chapter 8 601
Chapter 14 602
Chapter 15 603

01 557440 FM.qxd 2/6/04 9:13 AM Page xvii

xviii

Contents

Appendix B: PHP Quick Reference 605

PHP Syntax 605
Displaying to Browser 605
Setting a Value to a Variable 605
Passing Variables 606

Through a URL 606
Through Sessions 606
Through a Form 606

if Statements 606
else Statements 607
Nested if Statements 607
Including a File 607
Using Functions 607
Arrays 608
for 608
foreach 609

Appendix C: PHP Functions 611

Apache/PHP Functions 611
Array Functions 612
Date/Time/Calendar Functions 616
Class/Object/Function Handling Functions 619
Directory and File Functions 620
Error Handling and Logging Functions 624
HTTP Functions 624
Image Functions 624
Mail Functions 629
Mathematical Functions 630
Miscellaneous Functions 631
MySQL Functions 632
Network Functions 634
Output Buffer Functions 636
PHP Configuration Information 636
Program Execution Functions 638
Spelling Functions 638
Session Functions 639
String Functions 640
URL Functions 645
Variable Functions 645

01 557440 FM.qxd 2/6/04 9:13 AM Page xviii

xix

Contents

Appendix D: MySQL Data Types 647

Appendix E: MySQL Quick Reference 651

Database Manipulation Commands 651
Connecting to the Database 652
Accessing the Database 652
Retrieving Data from the Database 652

Condition Clauses 652
Selecting from Multiple Tables 653
Sorting the Results 653
Limiting the Results 653

Appendix F: Comparison of Text Editors 655

Appendix G: Choosing a Third-Party Host 657

Hosting Options 657
Supported Languages 658
Supported Databases 658
Server Control and Access 658
Administration GUIs 659
Bandwidth and Site Usage 659
Pricing 660

Making the Choice 660

Appendix H: An Introduction to PEAR 661

What Is PEAR? 662
Requirements 662
The Packages 662

PEAR DB 663
Other PEAR Packages 666

HTML 666
Authentication 667
Payment 667
Mail 667

01 557440 FM.qxd 2/6/04 9:13 AM Page xix

xx

Contents

Appendix I: AMP Installation 669

Installing with Windows 669
Install Apache 669
Install PHP 670
Install MySQL 671

Installing with Linux 672
Install MySQL 672
Install Apache 673
Install PHP 674

Index 677

01 557440 FM.qxd 2/6/04 9:13 AM Page xx

Introduction

Welcome to Beginning PHP, Apache, MySQL® Web Development, your guide to developing dynamic
Web sites using these popular open source solutions. Consider us your tour guide as we travel
through the various adventures that await you. Okay, so perhaps it won’t be that glamorous or
exciting, but we do promise an enjoyable learning experience.

The main purpose of this book is to provide you with a taste of what can be done with Web devel-
opment using these three modules together. While we’ve given you only the tip of the iceberg, it
will be enough to get you started and to get those creative juices flowing when designing and
developing your own site. Each of these modules is complex in and of itself, and this book merely
covers the basics of all three. This book is not meant to be an in-depth and comprehensive resource
but rather an introduction.

Who’s This Book For?
We assume that anyone reading this book has some experience with Web site development con-
cepts and a basic working knowledge of HTML. Knowledge of other programming languages
besides PHP is not a prerequisite for this book, but certainly any programming experience you
have will help you understand and apply the concepts.

This book is geared toward the “newbie” to these three areas, and we’ve brought many of the con-
cepts and code snippets to the most basic level. As your experience and comfort level grow with
your knowledge and practical applications, you will find more complex and perhaps more effi-
cient ways of doing things. When that happens, you will know that you have come over to the
dark side and joined us as PHP, Apache, and MySQL enthusiasts.

02 557440 Intro.qxd 2/6/04 9:13 AM Page 1

What’s Covered in the Book
A variety of topics are covered in this book:

❑ Installation and configuration of PHP, Apache, and MySQL

❑ Basic introduction to each module and how the modules interact with one another

❑ Gathering input from and interacting with your Web site visitors

❑ Handling and avoiding errors and general troubleshooting tips

❑ User registration and logins

❑ E-mailing and setting up e-mail lists using the three modules

❑ Content management systems

❑ Adding e-commerce to a Web site

❑ Incorporating a discussion forum into your site

❑ Using activity logs and error logs to enhance your Web site

❑ Locating a third-party Web host

❑ Finding the text editor that’s right for you

❑ Using PEAR to enhance your Web site

As you read through the chapters and learn about these topics, you will be creating two complete Web
sites. The first is a movie review Web site that displays information about films and their respective
reviews. This project will cover the basics, such as writing PHP code, creating a MySQL database, filling
it with data, and showing it to your visitors based on what they want to see.

The second project is a comic book fan Web site, which acts as a resource for any comic book fan. This
site will be developed in the latter part of the book and will incorporate some of the more complex top-
ics. You will create a truly interactive Web site, where your visitors can interact with you and with other
members of the site.

We take you step by step through the development of each of these sites, and you will continually build
upon them as new concepts are introduced. Note, however, that each of the chapters is a stand-alone chap-
ter, so that if you are not particularly interested in reading a specific one, you won’t be left in the dust.

If you thought the days of the “pop” quiz were over, you might want to think again. We have provided
handy-dandy exercises at the end of some of the chapters to test your knowledge of the chapter topics
and to challenge you to think one step further. Don’t worry, however, as we’ve provided the answers in
Appendix A.

Other general references are provided for your reading pleasure in additional appendixes. These are not
intended to be comprehensive resources, but they are great for referencing the general topics covered in
the meat of the chapters.

2

Introduction

02 557440 Intro.qxd 2/6/04 9:13 AM Page 2

As any programmer knows, software is constantly being improved and debugged, and while we used
the latest and greatest versions of our modules at the time of publishing, chances are those versions
won’t be around for long. It is important for you to visit the source Web sites for PHP, Apache, and
MySQL (URLs provided frequently for you throughout this book) to get the most updated versions and
recent release notes. When developing Web sites using applications, we recommend that you always use
the most recent stable release. Using software versions that have not been fully tested can be dangerous
to your application and leave bugs in your code. The same is true for the new learner—you should be
learning on a stable release of the application, not on a beta version.

The most recent stable versions that were in effect at the time of this book’s writing were:

❑ PHP: Version 4.3.3 (PHP5 is still in beta at this writing, although we do address it and its current
implications)

❑ Apache: Version 2.0.47

❑ MySQL: Version 4.0.15a

Future editions of this book will address changes and improvements in these programs as they become
available.

What You Need to Use This Book
This book is designed to be multiplatform and covers topics and issues for both Windows- and Linux-based
systems. We have provided you with instructions for downloading and installing all three components onto
your machine. Each is an open source program, so you can download and use them free of charge.

The only other external piece of software needed is a text editor. If you’re not sure what that is or what
you should be using, don’t worry—we cover that topic, too.

Source Code
We have provided the two applications and accompanying code that are discussed in the text. The com-
plete source code from the book is available for download from www.wrox.com. As PHP5 is in beta pro-
duction at the time this book was written, we will update the code and applications on the companion
Web site with any pertinent changes that come as a result of the stable release of PHP5. We encourage
you to visit the companion site periodically to view these updates. Although all the code you need is
listed in the book, we suggest you download a copy of the code to save yourself a lot of typing.

Conventions
Throughout the book, we have used certain typographic conventions to get our points across. While you
don’t need a secret decoder ring to get the gist of what we mean, knowing how we say what we’re saying
will certainly help.

3

Introduction

02 557440 Intro.qxd 2/6/04 9:13 AM Page 3

Filenames, field names, and commands or functions are shown in monospaced type—for example,
“Open the create.php file and . . .”

We present code in two ways:

//This is an example of code that is being seen for the first time

//This is an example of code that you have already seen, but is being referenced
later

//or code that we’re quoting from another source, such as from a configuration file

Changes to an existing program created earlier in a chapter will be shown in bold:

//This is old code here.
//This is the line we want you to add.

You will be prompted to get your fingers typing and your brain working in our “Try It Out” sections,
which entice you to actually apply the concepts we’re covering and get a firsthand glimpse into coding.
We then follow up with a “How It Works” section to explain what you just accomplished.

Customer Support
We offer source code for download, errata, and technical support from the Wrox Web site at www.wrox
.com. In addition, you can join mailing lists for author and peer discussion at http://p2p.wrox.com
(see the last section in this introduction for more info on the P2P site).

Source Code and Updates
As you work through the examples in this book, you may choose either to type all the code manually or
to use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book’s title (either through the
Search utility or by using one of the title lists) and double-click the Download Code link on the book’s
detail page and you can obtain all the source code for the book.

Errata
We have made every effort to ensure that there are no errors in the text or in the code. However, we are
human, so occasionally something will come up that none of us caught prior to publication.

To find the errata page for this book, go to www.wrox.com and locate the title using the Search utility or
one of the title lists. Then, on the book details page, click the Book Errata link. On this page you will be
able to view all errata that have been submitted for this book and posted by Wrox editors. You can also
click the Submit Errata link on this page to notify us of any errors that you might have found.

Boxes like this one hold important, not-to-be-forgotten, mission-critical information
that is directly relevant to the surrounding text.

4

Introduction

02 557440 Intro.qxd 2/6/04 9:13 AM Page 4

While we’re on the subject of submitting errata, we want to hear about any error you find in this book.
Simply e-mail the information to techsupwrox@wrox.com. We’ll check the information and, if appropri-
ate, post a message to the book’s errata page and fix the problem in subsequent editions of the book.

If you do e-mail us, your e-mail should include the following things:

❑ In the Subject field, include the book’s title, the last six digits of the ISBN (557440 for this book),
and the number of the page upon which the error occurs.

❑ In the body of the message, tell us your name, contact information, and the problem.

We won’t send you junk mail, we promise. We need these details to help you as quickly as possible.

p2p.wrox.com
For author and peer discussion, join the P2P mailing lists at wrox.com. Our unique system provides pro-
grammer-to-programmer contact on mailing lists, forums, and newsgroups, all in addition to our one-to-
one e-mail support system discussed in the previous section. Wrox authors and editors and other
industry experts are present on our mailing lists.

At http://p2p.wrox.com you will find a number of different lists that will help you, not only while
you read this book but also as you develop your own applications. To subscribe to a mailing list, follow
these steps:

1. Go to http://p2p.wrox.com and choose the appropriate category from the left menu bar.

2. Click the link for the mailing list you want to join.

3. Follow the instructions to subscribe and fill in your e-mail address and password.

4. Reply to the confirmation e-mail that you receive.

5. Use the subscription manager to join more lists and set your e-mail preferences.

Note that the Wrox support process can offer support only for issues that are directly
pertinent to the content of our published title. Support for questions that fall out-
side of the scope of normal book support is provided by the community lists of our
http://p2p.wrox.com forums.

5

Introduction

02 557440 Intro.qxd 2/6/04 9:13 AM Page 5

Part I: Getting Started

Chapter 1: Introduction and Installation Configuration

03 557440 PP01.qxd 2/6/04 9:13 AM Page 7

1
Introduction and Installation

Configuration

You’ve spent your hard-earned money and purchased this book, so you undoubtedly know the
enormous benefits of using PHP, Apache, and MySQL together to create your Web site. But in the
event that this book was placed on your desk one Monday morning with a sticky note that read,
“Learn this!” in this chapter we look at the basics of PHP, MySQL, and Apache to show you what
makes the “AMP” combination so popular. We also walk you through the procedure for installing
all three components of the AMP module and advise you on how to best configure the software to
meet your specific needs.

Installation Configuration
You can choose to install one, two, or all three components of the AMP package based on your
specific needs. For example, if you are responsible for providing a company-wide intranet and/or
hosting your own Web site, you should probably install all three. If your site is hosted by a third-
party Web hosting company, however, you do not necessarily need to install all three components
(or, for that matter, any).

Installing the three components, even if you don’t have to, enables you to develop and test your
site in the comfort of your own workspace without having to upload to the file server just to test
at every little step. If you do a lot of off-line testing, however, we highly recommend that you still
perform a complete test once your site is live and running, as your settings may differ from those
on your Web-hosting company’s server. Even a small difference can cause you big headaches.

Over the course of this book, you will develop two complete Web sites:

❑ Movie Review Web site. Developing this site introduces you to writing a PHP program,
making your pages look professional, working with variables and includes, and integrat-
ing PHP with MySQL to make your site truly dynamic as pages are created “on the fly”
for your Web-site visitor. You will also get experience in error handling and data valida-
tion while working on this site.

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 9

❑ Comic Book Fan Web site. The creation of this Web site takes you through the steps of building
databases from scratch, sending out e-mails using PHP, authenticating users, managing content
through CMS, creating a mailing list, setting up an e-commerce section, and developing and
customizing a discussion forum.

Finally, this chapter covers how to learn about your visitors through the use of log files and how to
troubleshoot common mistakes or problems. The appendixes in this book provide you with the neces-
sary reference materials you’ll need to assist you in your Web site development journey, and offer tools
to make you more efficient.

Because PHP5 is in beta release only at the time of this writing, we will touch on how your code may be
affected by upgrading, but we will not discuss PHP5 in depth.

After reading this book, you will be able to create a well-designed, dynamic Web site by utilizing tools
available for free. Although this book is not intended to be a detailed analysis of Apache, PHP, and
MySQL, it points you in the right direction to explore further issues you may wish to delve into.

Brief Intro to PHP, Apache,
MySQL, and Open Source

Let’s take a moment to explore the history of each of these three components and how they work
together to help you create a professional, dynamic Web site.

What Is Open Source?
PHP, Apache, and MySQL are all part of the open source group of software programs. The open source
movement is basically a collaboration of some of the finest minds in computer programming. By allow-
ing the open exchange of information, programmers from all over the world contribute to make a truly
powerful and efficient piece of software available to everyone. Through the contributions of many peo-
ple to the publicly available source code, bugs get fixed, improvements are made, and a “good” software
program becomes a “great” one over time.

A Brief History of Open Source Initiatives
The term “open source” was coined in 1998 after Netscape decided to publish the source code for its
popular Navigator browser. This announcement prompted a small group of software developers who
had been longtime supporters of the soon-to-be open source ideology to formally develop the Open
Source Initiatives (OSI) and the Open Source Definition.

Although the OSI ideology was initially promoted in the hacker community, upon Netscape’s release of
Navigator’s source code, programmers from all walks of life began to offer suggestions and fixes to
improve the browser’s performance. The OSI mission was off and running, as the mainstream comput-
ing world began to embrace the idea.

10

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 10

Linux became the first operating system to be called open source (although BSD was a close runner-up,
distributed from Berkeley in 1989), and many programs followed soon thereafter. Large software corpo-
rations, such as Corel, began to offer versions of their programs that worked on Linux machines.

Although there are now numerous classifications of OSI open source licenses, any software that bears
the OSI Certification seal can be considered open source because it has passed the Open Source
Definition list. These programs are available from a multitude of Web sites; the most popular is
www.sourceforge.net, which houses more than 66,000 open source projects.

Why Open Source Rocks
Open source programs are very cool because:

❑ They are free. The greatest thing about open source software is that it is free and available to the
general public. Software developers and programmers volunteer their time to improve existing
software and create new programs. Open source software cannot, by definition, require any sort
of licensing or sales fees.

❑ They are cross-platform and “technology-neutral.” By requiring open source software to be
non–platform specific, the open source community has ensured that the programs are usable by vir-
tually everyone. According to the Open Source Definition provided by the Open Source Initiative at
http://opensource.org/docs/definition.php, open source programs must not be depen-
dent on any “individual technology or style of interface” and must be “technology-neutral.” As
long as the software can run on more than one operating system, then it meets the criteria.

❑ They must not restrict other software. This basically means that if an open source program is
distributed along with other programs, those other programs may be open source or commer-
cial in nature. This gives software developers maximum control and flexibility.

❑ They embrace diversity. Diversity of minds and cultures simply produces a better result. For
this reason, open source programs cannot, by definition, discriminate against any person or
group of persons, nor against any “field of endeavor.” (For example, a program designed for
use in the medical profession cannot be limited to that field if someone in another field wants to
take the program and modify it to fit his or her needs.)

For a complete list of the criteria a piece of software must meet before it can be considered “open
source,” or for more information about the OSI or the open source community, visit the OSI Web site
at www.opensource.org.

How the Pieces of the AMP Module
Work Together

Now that we have covered some of the history of open source, it’s important to understand the role each
of these programs (Apache, MySQL, and PHP) plays in creating your Web site.

Imagine that your dynamic Web site is a fancy restaurant. Diners come to your place, and each one
wants something different and specific. They don’t worry so much about how the food is prepared, as

11

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 11

long as it looks and tastes delicious. Unlike a buffet-type spread, where everything is laid out and your
patrons simply choose from what’s available (the analogy being a more static, informational Web site
with little interaction and input from your visitors), a nice restaurant encourages patron/waiter interac-
tion and complete customization for any specific dietary needs (a dynamic Web site where the visitor
can choose what he or she wants to see).

In this scenario, we can attribute the three components of the AMP module as follows:

❑ Apache: This is your highly trained master of culinary arts, the chef. Whatever people ask for,
she prepares it without complaint. She is quick, flexible, and able to prepare a multitude of dif-
ferent types of foods. Apache acts in much the same way as your HTTP server, parsing files and
passing on the results.

❑ PHP: This is the waiter. He gets requests from the patron and carries them back to the kitchen
with specific instructions about how the meal should be prepared.

❑ MySQL: This is your stockroom of ingredients (or in this case, information).

When a patron (or Web site visitor) comes to your restaurant, he or she sits down and orders a meal with
specific requirements, such as a steak, well done. The waiter (PHP) takes those specific requirements
back to the kitchen and passes them off to the chef (Apache). The chef then goes to the stockroom
(MySQL) to retrieve the ingredients (or data) to prepare the meal and presents the final dish to the
patron, exactly the way he or she ordered the meal.

Apache
Apache acts as your Web server. Its main job is to parse any file requested by a browser and display the
correct results according to the code within that file. Apache is quite powerful and can accomplish virtu-
ally any task that you, as a Webmaster, require.

The version of Apache covered in this book is the most recent and stable at the time of this writing:
version 2.0.47. The features and server capabilities available in this version include the following:

❑ Password-protected pages for a multitude of users

❑ Customized error pages

❑ Display of code in numerous levels of HTML, and the capability to determine at what level the
browser can accept the content

❑ Usage and error logs in multiple and customizable formats

❑ Virtual hosting for different IP addresses mapped to the same server

❑ DirectoryIndex directives to multiple files

❑ URL aliasing or rewriting with no fixed limit

According to the Netcraft Web site (www.netcraft.com), at the time of this writing Apache is running
over 27 million Internet servers, more than Microsoft, Sun ONE, and Zeus combined. Its flexibility,
power, and, of course, price make it a popular choice. It can be used to host a Web site to the general
public, or a company-wide intranet, or for simply testing your pages before they are uploaded to a

12

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 12

secure server on another machine. Later in this chapter, we discuss how to configure your Apache setup
to accommodate all of these options.

PHP
PHP is a server-side scripting language that allows your Web site to be truly dynamic. PHP stands for
PHP: Hypertext Preprocessor (and, yes, we’re aware PHP is a “recursive acronym”—probably meant to
confuse the masses). Its flexibility and relatively small learning curve (especially for programmers who
have a background in C, Java, or Perl) make it one of the most popular scripting languages around.
PHP’s popularity continues to increase as businesses and individuals everywhere embrace it as an
alternative to Microsoft’s ASP language and realize that PHP’s benefits most certainly outweigh the
costs (three cheers for open source!). According to Zend Technologies, Ltd., the central source of PHP
improvements and designers of the Zend Engine, which supports PHP applications, PHP code can now
be found in approximately 9 million Web sites.

The version of PHP referenced in this book is the most recent stable release at the time of publication: ver-
sion 4.3.3. Although we discuss several of the most common uses and functions of PHP, you can find a
complete list of PHP functions in Appendix B of this book. As you continue to program in PHP and your
comfort level increases (or the demands of your boss grow), we encourage you to expand your use of
built-in PHP functions to take advantage of its tremendous power. You can download the PHP software
from PHP’s Web site at www.php.net.

MySQL
Another open source favorite, MySQL is the database construct that enables PHP and Apache to work
together to access and display data in a readable format to a browser. It is a Structured Query Language
server designed for heavy loads and processing of complex queries. As a relational database system,
MySQL allows many different tables to be joined together for maximum efficiency and speed.

This book references version 4.0.15a, the most stable release of MySQL at the time of publication. While a
complete list of features can be found at the MySQL Web site (www.mysql.com), some of the more popular
features of this program are as follows:

❑ Multiple CPUs usable through kernel threads.

❑ Multi-platform operation.

❑ Numerous column types cover virtually every type of data.

❑ Group functions for mathematical calculations and sorting.

❑ Commands that allow information about the databases to be easily and succinctly shown to the
administrator.

❑ Function names that do not affect table or column names.

❑ A password and user verification system for added security.

❑ Up to 32 indexes per table permitted; this feature has been successfully implemented at levels of
60,000 tables and 5,000,000,000 rows.

❑ International error reporting usable in many different countries.

13

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 13

MySQL is the perfect choice for providing data via the Internet because of its ability to handle heavy
loads and its advanced security measures.

For more information on how MySQL was developed, or other specific information not covered in this
book, visit the resource Web site at www.mysql.com.

PHP5: The Future of PHP
At the time of this writing, PHP5, the newest version of PHP, is in the beta-testing phase. While we can’t
speculate on which changes, if any, will be made to the final release, we would be negligent if we did not
prepare you for some changes that will most likely be in store for those who choose to upgrade. Knowledge
of these changes is especially important for those of you who have your Web sites hosted by a third-party
hosting company; if that company decides to upgrade, you will be along for the ride. Like it or not, their
decisions ultimately affect how you code your programs.

Throughout this book, we draw attention to concepts or syntax that will change in PHP5. This informa-
tion is for your benefit only and does not affect the PHP version most commonly used today, the one dis-
cussed in this book.

A Brief Overview of PHP5
With the development of PHP5, Zend brings some new methodologies to the PHP table. The biggest
change to note is the switch in focus from procedural programming to OOP (object oriented program-
ming). While procedural programming has served PHP well thus far, large and complex programs are
much better served with OOP. Currently, PHP4 passes variables by value instead of reference. PHP5
changes all that. The new PHP5 provides for improved error handling and integration of objects from
external sources, such as Java.

How Changing to PHP5 Affects This Book
PHP5 will change the way you do some things, and although it’s still in beta testing at the time of this
writing, we have tried to isolate specific code and circumstances that are most likely to need alteration if
and when you upgrade to PHP5. In each chapter that covers a topic that may be affected should the
upgrade take place, we will bring this information to your attention.

Installation Configuration of Apache
For the purposes of working through this book, we assume that you have installed Apache on your com-
puter. If you haven’t done so but would like to, you can find detailed installation instructions in
Appendix I.

Before you begin configuring and customizing your installation, take a minute to make sure you have
installed everything correctly.

14

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 14

You can access the Apache executable file in three ways:

❑ Open Windows Explorer and go to the directory where you have installed Apache, the default
being c:\program files\Apache Group\Apache2\; click Apache.exe to start your Apache
HTTP server.

❑ At the DOS prompt, change directories to the location where the Apache file has been loaded,
and type apache. This starts the server.

❑ During installation, the default option is to add Apache to your Start menu, so unless you dis-
abled this, you can locate the Apache HTTP Server listing directly from your Start button. This
gives you shortcuts to starting the server and to testing and configuring features, as well.

To test installation of your Apache server, open your Web browser and type the following:

http://localhost/

If your installation was successful, you will see an Apache “success” page in your browser. If not, check
your error log by opening the error.txt file, which you can find in c:\program files\ApacheGroup\
Apache2\logs\. This gives you an indication of where your installation went wrong.

If you had installation problems, note that you might experience problems if Apache is trying to share
port 80 with another Web server or application, such as a firewall.

Customizing Your Installation
Now that you know that everything works okay, you can adjust the configuration file to better suit your
needs. The main configuration file you use to make changes is httpd.conf; this is found in the c:\pro-
gram files\Apache group\Apache2\conf directory by default or wherever you have installed Apache.
This file can be opened with any common text editor, such as Notepad.

Adding PHP to the Equation
In order for Apache to recognize a PHP file as one that needs to be parsed with the PHP engine, you
need to add the following two lines to your httpd.conf file:

AddType application/x-httpd-php .php3 .php
AddType application/x-httpd-php-source .phps

While you can add these lines anywhere in the program, we recommend that you scroll down through
the program to find the correct “AddType application” section to avoid human error.

Now add the PHP module into your httpd.conf program so that Apache can properly parse PHP.

In your program, add the following line:

LoadModule php4_module c:/php/sapi/php4apache2.dll

Make sure your path matches the location of this file.

15

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 15

Document Root
By default, the directory under which Apache looks for files is c:\program files\ApacheGroup\Apache2\
htdocs\. You can change this to whatever is applicable for your directory structure, but for the purposes
of this discussion, let’s create a directory named c:\program files\Apache Group\Apache2\test\ where
you can put files to test them.

In order to point Apache to the new directory, you must change the document root in your httpd.conf
file by following these steps:

1. Locate the section of the file that resembles this text:

#
DocumentRoot: The directory out of which you will serve your
documents. By default, all requests are taken from this directory, but
symbolic links and aliases may be used to point to other locations.
#
DocumentRoot “C:/Program Files/Apache Group/Apache2/htdocs”

2. Change the last line of this section to:

DocumentRoot “C:/Program Files/Apache Group/Apache2/test”

Notice that this uses forward slashes instead of backslashes.

3. Locate the section of the file that resembles this text:

#
Note that from this point forward you must specifically allow
particular features to be enabled - so if something’s not working as
you might expect, make sure that you have specifically enabled it
below.
#

#
This should be changed to whatever you set DocumentRoot to.
#
<Directory “C:/Program Files/Apache Group/Apache2/htdocs”>

4. Change the last line of this section to:

<Directory “C:/Program Files/Apache Group/Apache2/test”>

5. Save your file and restart Apache so it can recognize the changes you made to the config file.

Now create a small “test” program to make sure Apache can find your directory.

Open Notepad and type the following:

<HTML>
<HEAD>
<TITLE>Apache testing</TITLE>
</HEAD>
<BODY>

16

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 16

If this works, we did it!
</BODY>
</HTML>

Save this as index.html in the “test” directory you created. Now open your browser, and type
http://localhost. You should see the screen shown in Figure 1-1.

Figure 1-1

Installation Configuration of PHP
Once PHP has been installed on your computer, you can customize it to fit your needs. Although some
of the configuration settings deal with how the information is shown through the browser, a great many
of the settings relate to how the server handles errors and how those errors are displayed to you and
your users. You will also be able to have some control over how PHP interacts with MySQL.

17

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 17

Testing Your Installation
To ensure that both PHP and Apache have been installed together, write another test program. Open
Notepad and type the following program:

<HTML>
<HEAD>
<TITLE>PHP Testing</TITLE>
</HEAD>
<BODY>
<?php
echo “If this works, we <i>really</i> did it!”;
?>
</BODY>
</HTML>

Save this file as phptest.php. Open your browser and type http://localhost/phptest.php and you
should see the screen shown in Figure 1-2.

Figure 1-2

18

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 18

Customizing Your Installation
The configuration file that holds the key to how PHP runs on your computer is named php.ini; it can
be found in the root directory where you extracted your installation files. For the purposes of our discus-
sion, we assume that you extracted the files to c:\ and then renamed the installation directory to
c:\php\.

The php.ini file includes a brief explanation of each of the configuration settings, which are beyond the
scope of this discussion. However, you are encouraged to read through the entire introduction of the
php.ini file before you begin making changes. In the table that follows, we touch on some of the more
commonly changed settings.

Setting What It Does

short_open_tag Allows short tags to be parsed (<? and ?> as opposed to <?php and
?>)

asp_tags Allows ASP-style tags to be parsed (<% and %>)

precision Determines the number of digits to be displayed in floating point
numbers. Default is 12, and this should suffice for most applications.

output_buffering Allows header lines to be sent after HTML has already been sent to
the server. The default is “Off,” and most third-party hosts maintain
this default. It is not advisable to change this setting, especially if you
depend on a third-party host.

max_execution_time Sets the limit for how long a script can take to run. Expressed in
seconds.

max_input_time Sets the limit for how long a script can take to parse the data.
Expressed in seconds.

memory_limit Sets the limit for how much memory a script can use to run.
Expressed in MB.

error_reporting There are many levels you can use to set what errors will be shown to
you, but for the purposes of our book, we assume that error_reporting
is set to E_ALL. When set to E_ALL, all errors and warnings are shown.

display_errors Determines whether or not errors will be printed. Let’s leave this fea-
ture on while you develop your site and you learn PHP, but once the
site is ready to go live, we recommend that this setting be switched to
“off” for security purposes.

log_errors Allows errors to be written into a log file for future reference. We rec-
ommend that you switch this setting to “on.”

error_log Points to the name of your PHP error log file.

Table continued on following page

19

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 19

Setting What It Does

variables_order Determines the order in which variables are registered. The default is
EGPCS, which translates into Environment, GET, POST, COOKIE,
and Built-in variables. We recommend that you leave this as the
default setting until you are more familiar with PHP and the way
variables work. In addition, your third-party host will most likely
keep the default setting. This setting applies to all variables on all
PHP pages, which we discuss in greater detail in Chapter 2.

register_globals Determines whether variables sent through forms are available glob-
ally. This was a recent change from “on” to “off” as the default, and
we recommend you leave this set to “off.” You can read more about
register_globals in Chapter 2.

file_uploads Enables Web site visitors to upload files to your server.

upload_max_filesize Sets the limit for how large a file that is uploaded may be.

mysql.allow_ Determines whether or not a persistent connection can be established
persistent with the MySQL server.

mysql.max_ Sets the limit of how many persistent connections are allowed. For no
persistent limit, set this to -1.

mysql.max_links Sets the limit of how many total links are allowed (persistent and
non-persistent together). For no limit, set this to -1.

session.save_path Determines where session information will be stored on your com-
puter. You must specify a valid path, such as c:\php\sess\tmp or
c:\tmp if you are using Windows. You must also create this directory
beforehand, as PHP will not set this up for you.

There are numerous other variables in your file that can be altered; we encourage you to work with the
defaults until you feel more comfortable with PHP and your Web site setup. Changing these defaults can
raise functionality, security, and performance issues, adversely affecting your site.

Installation Configuration of MySQL
MySQL needs TCP/IP protocols to run properly, regardless of the Windows environment. You must
install this before you can continue if it is not already on your computer. (Most computers have this set
up already by default.)

Testing Your Installation
As before, it’s a good idea to test your installation. You can do this from a DOS prompt so that you can
view any error messages your MySQL server encounters.

20

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 20

Follow these steps to test your installation:

1. For Windows 95/98/Me, at the DOS prompt, change directories until you are in the MySQL
server main directory (the default is c:\mysql\bin\). Then type:

c:\mysql\bin>mysqld

2. For Windows 2000/XP/NT, at the DOS prompt, change directories until you are in the MySQL
server main directory and type:

C:\>C:\mysql\bin\mysqld —install

You should see a screen that looks similar to the one shown in Figure 1-3.

Figure 1-3

3. To start the MySQL server, type the following:

c:\>NET START MySQL

Your screen will look like the one shown in Figure 1-4.

21

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 21

Figure 1-4

4. To stop the server from running, type the following:

c:\>NET STOP MySQL

5. Let’s test to make sure your MySQL server is running. While there are many possible com-
mands to test the server, to keep things simple, let’s use the following:

C:\>c:\mysql\bin\mysql test

Your screen should look something like the one shown in Figure 1-5.

Figure 1-5

6. To return to the DOS prompt, enter the following:

mysql>exit

or

mysql>quit

22

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 22

7. To shut down the MySQL service, type:

C:\>c:\mysql\bin\mysqladmin -u root shutdown

It’s time to configure your system to improve security, set up some user permissions, and alter your set-
tings according to your preferences.

Configuring Your Installation
Before you configure any of your settings, start the MySQL service again.

1. Enter the following:

c:\>c:\mysql\bin\mysql mysql

And now your screen should look like Figure 1-6.

Figure 1-6

2. By default, MySQL on Windows sets up all users with all privileges. In order to change this,
enter the following:

mysql> DELETE FROM user WHERE Host=’localhost’ AND User=’’;

You will get a response from MySQL that states:

Query OK, 1 row affected (0.46 sec)

The time it takes to process the query may differ based on the speed of your computer, but the
important thing here is that you get the “OK” from the MySQL gods.

3. Then get out of MySQL again and reset the users by entering the following:

mysql> quit
c:\>c:\mysql\bin\mysqladmin reload
c:\>c:\mysql\bin\mysqladmin -u root password choose_a_password

4. Insert whatever password you would like for your root access; in our example, we chose mysql-
pass, as shown in Figure 1-7.

23

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 23

Figure 1-7

5. To reconnect to the server, try your new password:

C:\>c:\mysql\bin\mysql -h localhost -u root -p

You will be prompted for your password; in this case, we entered “mysqlpass,” but you should
enter whatever you chose for your root password; you should then see the prompt shown in
Figure 1-8.

Figure 1-8

The my.cnf File
The my.cnf file, which can be opened with any text editor, such as Notepad, is the main file that MySQL
uses to read configuration options you have set up in your installation. You may alter this file at any
time to tweak your configuration down the road.

By default, the installation of MySQL provides us with four sample my.cnf configuration files to use as
examples: my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge.cnf. If you used the default
directory during installation, these were all saved under the c:\mysql\ directory.

The difference in these files is presumably the amount of space you have on your computer dedicated to pro-
cessing query requests and so on. For the purposes of the Web sites used in this book, the my-medium.cnf
file will suffice, so save it to your root c:\ directory so it can be accessed by the MySQL server. Be sure to
rename this file my.cnf so the server can find it.

24

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 24

Your my.cnf file looks like this:

Example mysql config file.
Copy this file to c:\my.cnf to set global options

One can use all long options that the program supports.
Run the program with —help to get a list of available options

This will be passed to all mysql clients
[client]
#password=my_password
port=3306
#socket=MySQL

Here is entries for some specific programs
The following values assume you have at least 32M ram
The MySQL server
[mysqld]
port=3306
#socket=MySQL
skip-locking
set-variable = key_buffer=16M
set-variable = max_allowed_packet=1M
set-variable = table_cache=64
set-variable = sort_buffer=512K
set-variable = net_buffer_length=8K
set-variable = myisam_sort_buffer_size=8M
server-id = 1

Uncomment the following if you want to log updates
#log-bin

Uncomment the following rows if you move the MySQL
distribution to another

location
#basedir = d:/mysql/
#datadir = d:/mysql/data/

Uncomment the following if you are NOT using BDB tables
#skip-bdb

Uncomment the following if you are using BDB tables
#set-variable = bdb_cache_size=4M
#set-variable = bdb_max_lock=10000

Uncomment the following if you are using Innobase tables
#innodb_data_file_path = ibdata1:400M
#innodb_data_home_dir = c:\ibdata
#innodb_log_group_home_dir = c:\iblogs
#innodb_log_arch_dir = c:\iblogs
#set-variable = innodb_mirrored_log_groups=1
#set-variable = innodb_log_files_in_group=3
#set-variable = innodb_log_file_size=5M

25

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 25

#set-variable = innodb_log_buffer_size=8M
#innodb_flush_log_at_trx_commit=1
#innodb_log_archive=0
#set-variable = innodb_buffer_pool_size=16M
#set-variable = innodb_additional_mem_pool_size=2M
#set-variable = innodb_file_io_threads=4
#set-variable = innodb_lock_wait_timeout=50

[mysqldump]
quick
set-variable = max_allowed_packet=16M

[mysql]
no-auto-rehash
Remove the next comment character if you are not familiar with SQL
#safe-updates

[isamchk]
set-variable = key_buffer=20M
set-variable = sort_buffer=20M
set-variable = read_buffer=2M
set-variable = write_buffer=2M

[myisamchk]
set-variable = key_buffer=20M
set-variable = sort_buffer=20M
set-variable = read_buffer=2M
set-variable = write_buffer=2M

[mysqlhotcopy]
interactive-timeout

While you can find a complete reference of configuration at the source (www.mysql.com), the options a
beginner will be most concerned with follow. To set any of these options, simply type the appropriate
line directly in your my.cnf file under the appropriate section.

First, let’s discuss the local-infile option, which can be found in the my.cnf file as follows:

[mysqld]

local-infile =1

This allows you to load large amounts of data from a tab-delimited file or .csv file directly into your
MySQL database. While this option can be very helpful if you are running your own Web site, or if you
are the only one accessing the MySQL configurations, many third-party hosts have this set to 0 to block
their MySQL hosts from accessing this command, primarily for security reasons. If you are contemplat-
ing having your Web site hosted by a third party and you will need this feature, you may want to verify
that they have this setting enabled to save yourself some major headaches later on, such as having to
manually input large amounts of data a bit at a time, or having to write a subroutine that inputs the data
for you. If you haven’t yet chosen your third-party host, this will be an important selling point.

26

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 26

Second, let’s discuss altering the log-bin configuration option that can be found in the following sec-
tion of the my.cnf file:

Uncomment the following if you want to log updates
#log-bin

This is very important if you care at all about monitoring which updates are made to your MySQL tables
(and you should). This logs all activity to the tables, and this topic is covered in greater detail in Chapter
16. We recommend that you uncomment the log-bin line to at least make the data available. Whether
or not you do anything with it is another story.

Setting Up Users and Privileges
Hackers (or the malicious breed known as “crackers”) can be quite crafty in the ways in which they break
into your system, especially if you are directly connected to the Internet. MySQL allows you to pick and
choose what user is allowed to perform what function based on the “privileges” that you establish. All
user privilege information is stored in a database called mysql, which is located, by default, in your
c:\mysql\data directory.

If you’re the only one accessing the MySQL database, you may not have to worry about adding users.
However, what if you have, say, an Aunt Edna who is going to help you out by inputting some back-
logged information? You want her to be able to go into the tables and look at things, and even insert
some information. But you probably don’t want her to be able to delete your entire database. By restrict-
ing her privileges as a user, you help to protect your data.

Try It Out Setting Up Privileges
In order to set up the initial privileges parameters, you need to make sure you’re logged on as “root.”
Then you’re going to GRANT Aunt Edna some privileges as a new user, so type the following:

mysql> GRANT SELECT,INSERT,UPDATE
-> ON *.*
-> TO edna@localhost
-> IDENTIFIED BY ‘ednapass’;

How It Works
You have now established that “edna” is a valid user who will be allowed access to your MySQL system,
provided two things:

❑ She attempts her connection from the “localhost” host—not a different connection from some-
where else.

❑ She supplies the correct password: “ednapass”.

Your Aunt Edna will now be allowed to select information from the database, insert new information in
the database, and update old information in the database. By giving her access to all the tables in the
database (via the use of ON *.*), we have allowed her to modify any table in existence.

27

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 27

As you become more familiar with working with tables and MySQL commands, modifying privileges or
user information will become easier for you, as the information is all stored in a table (just like every-
thing else in MySQL).

A complete list of privileges that you can grant is available at the MySQL Web site, www.mysql.com.

Where to Go for Help and
Other Valuable Resources

While we’ve certainly tried to make this as easy as possible for you, there are so many different variables
in computers and their setups that it is virtually impossible to cover every possible situation. Anyone
who works with computers on a regular basis is surely aware that, while in theory everything seems rel-
atively simple, things don’t always go as planned (or as we think they should). To your advantage, there
are several avenues for help should you find yourself in a difficult situation.

Help within the Programs
Before getting online and searching for help, you may try looking for answers to your problems within
the programs themselves.

In Apache, the manual was installed with the standard installation and can be accessed in c:\program
files\apache group\apache2\manual. A check of your error log will be most helpful as well.

In MySQL, you can enter this realm by typing the following at your DOS prompt:

c:\>c:\mysql\bin\mysql —help

This provides a multitude of commands that will help you find what you need, or at the very least, pro-
vide a valuable “cheat sheet” for administering your MySQL server. In addition, this will allow you to see
the current settings for your server at a glance so you can potentially troubleshoot any problem spots.

Source Web Sites
You undoubtedly know where to find these by now, but just in case, the Web sites associated with each
of our three components have incredibly detailed information to help you work out any issues, or report
any bugs you may find in the programs:

❑ For Apache questions and information: www.apache.org

❑ For PHP questions and information: www.php.net

❑ For MySQL questions and information: www.mysql.com

28

Chapter 1

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 28

AMP Installers
Now that we’ve taken your entire Saturday afternoon to install and configure each of these components,
we can tell you about some third-party software programs that will complete the installation for you.
You can find an extended list of these types of installers at www.hotscripts.com.

Foxserv
This is an Apache/MySQL/PHP installer that can be found at www.foxserv.net. It is offered as an open
source program and is free to the general public. Foxserv allows you to customize your configuration files
during installation and also allows for PEAR modules to be downloaded. (You can read more about the
use of PEAR in Appendix H.) This installer is compatible with both Windows and Linux systems.

PHPTriad
This is another open source installer that is available at no charge. It is available for download at http://
sourceforge.net/projects/phptriad/ but is currently applicable to Windows systems only. Along
with Apache, PHP, and MySQL, the package includes Perl and phpMyAdmin (another powerful database
administration system we discuss in Chapter 3).

NuSphere Technology Platform
The creators of the popular PHP editing program PHPEd have also developed an AMP installer, which
they provide as a free download on their Web site at www.nusphere.com. This installer covers Apache,
MySQL, PHP, and PERL, and offers downloads for both Windows and Linux systems.

Summary
By now, you should be well versed in AMP and open source. You know that the abbreviation AMP refers
to Apache, MySQL, and PHP, all of which work together to help you develop dynamic Web sites.

So now you’ve installed, configured, and tested the installation for Apache, MySQL, and PHP and
should be ready to start making some Web sites!

29

Introduction and Installation Configuration

04 557440 Ch01.qxd 2/6/04 9:13 AM Page 29

Part II: Movie Review
Web Site

Chapter 2: Creating PHP Pages

Chapter 3: Using PHP with MySQL

Chapter 4: Using Tables to Display Data

Chapter 5: Form Elements: Letting the User Work with Data

Chapter 6: Letting the User Edit the Database

Chapter 7: Validating User Input

Chapter 8: Handling and Avoiding Errors

05 557440 PP02.qxd 2/6/04 9:13 AM Page 31

2
Creating PHP Pages

In this chapter, we discuss the basics of PHP and start you on your way to creating your first com-
plete Web site, one featuring movie reviews. After you complete your Web site, your visitors will
be able to locate information about a particular movie, and you will be able to program in PHP.

In this chapter, we cover the following basic PHP commands and structures:

❑ Using echo to display text

❑ Formatting text with both HTML and PHP

❑ Constants and variables

❑ Using a URL to pass variable values

❑ Sessions and cookies

❑ HTML forms

❑ if/else statements

❑ Includes

❑ Functions

❑ Arrays and foreach

❑ while and do/while

By the end of this chapter, if you actually try all the “Try It Out” exercises, you will be able to cre-
ate a simple login form, give your users an option to either see a review of your favorite movie or
see a list of your top favorite movies, and offer them a numbered list of your movies based on how
many they decide they want to see. You can even alphabetize the list for them, if so desired.

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 33

Overview of PHP Structure and Syntax
PHP programs are written using a text editor, such as Notepad or WordPad, just like HTML pages.
However, PHP pages, for the most part, end in a .php extension. This extension signifies to the server that
it needs to parse the PHP code before sending the resulting HTML code to the viewer’s Web browser.

In a five-star restaurant, patrons see just a plate full of beautiful food served up just for them. They don’t
see where the food comes from, nor how it was prepared. In a similar fashion, PHP fits right into your
HTML code and is invisible to the people visiting your site.

How PHP Fits with HTML
We assume that you know some HTML before you embark on your PHP/Apache/MySQL journey,
and you’ve undoubtedly seen how JavaScript code and other languages can be interspersed within the
HTML code in an HTML page. What makes PHP so different is that it not only allows HTML pages to
be zcreated on the fly; it is invisible to your Web site visitors. The only thing they see when they view the
source of your code is the resulting HTML output. This gives you more security for your PHP code and
more flexibility in writing it.

HTML can also be written inside the PHP section of your page; this allows you to format text while
keeping blocks of code together. This will also help you write organized, efficient code, and the browser
(and, more important, the viewer) won’t know the difference.

PHP can also be written as a standalone program, with no HTML at all. This is helpful for storing your
connection variables, redirecting your visitors to another page of your site, or performing other func-
tions that we discuss in this book.

The Rules of PHP Syntax
One of the benefits of using PHP is that it is relatively simple and straightforward. As with any com-
puter language, there is usually more than one way to perform the same function. Once you feel com-
fortable writing some PHP programs, you can research shortcuts to make yourself and your code more
efficient. For the sake of simplicity, we cover only the most common uses, rules, and functions of PHP.

You should always keep in mind these two basic rules of PHP:

❑ PHP is denoted in the page with opening and closing tags as follows:

<?php
?>

❑ PHP lines end with a semicolon, generally speaking:

<?php
// First line of code goes here;
// Second line of code goes here;
// Third line of code goes here;
?>

34

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 34

Comments can be added into your program as we just did through double slashes (//) for one-liners
or /* and */ for opening and closing comment tags that may extend over several lines of code. Indents
don’t matter, and, generally speaking, neither do line returns. This gives you freedom as a programmer,
but a little freedom can be a dangerous thing, as we discuss in the next section.

And there you have it! Now you’re an expert. Okay—there might be a few more things you need to
learn, but this gets you started.

The Importance of Coding Practices
Before we jump in, it is important to realize how the structure of your code can affect your program.
As far as the Web server parsing the PHP code, the structure of your code really doesn’t matter. To the
server, your code will show up as one continuous line regardless of tabs, indents, and line returns. But to
the human eye, how well your code is organized can really make a difference.

Take a look at the following examples:

<?php
if ($_POST[“fname”] == “Joe”) {

echo “<p>Hi $_POST[‘fname’]</p>;
}
else {

echo “<h2>Your name’s not Joe, so you can’t enter the Web site.</h2>”
}

//check to make sure the first name is equal to Joe before granting access
if ($_POST[“fname”] == “Joe”)

{
echo “<p>”;
echo “Hi “;
echo $_POST[‘fname’];
echo “</p>”;
}

else
{
echo “<h2>”;
echo “Your name’s not Joe, so you can’t enter the Web site!”;
echo “</h2>”;
}

?>

You can see that although it involves more typing, it will be much easier to spot any missing syntax or a
specific portion of the code for troubleshooting purposes.

What Makes a Great Program?
Truly professional code follows three general guidelines:

❑ Consistency: Blocks of well-written code always look the same and have the same indents and
ways of coding, such as syntax shortcuts that use bracket placement and formatting styles con-
sistently throughout the program. The great thing about PHP is that it really doesn’t care about
tabs or indents, so you are free to create a style all your own, one that works best for you.

35

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 35

In addition, while there may be more than one syntax for accomplishing the same goal, good
coders will be consistent throughout their code with whichever method they choose. For exam-
ple, as far as PHP is concerned, the following two snippets of code mean the same thing:

<?php
// php code goes here;
?>

<?
// php code goes here;
?>

You should simply pick one and stick with it throughout your program.

❑ Frequent comments: The more you use comments throughout your code, the better off you will
be. While it’s not so important in smaller, simpler programs, when your programs become more
and more complex, it will be hard for you to remember what you did, where you did it, and
why you did it the way you did.

❑ The use of line numbers: Some text editors insert line numbers for you, but others do not. We
discuss text editors later in this chapter, but you should know that it is important to denote line
numbers somehow in your code, if they are not provided for you, because PHP lets you know
when your program generates errors, and it notifies you of the line number in which the error
occurs. If you have to count the lines manually every time you encounter an error, you can
imagine how time consuming and inefficient your debugging will be.

Why Should You Care About What Your Code Looks Like?
It’s important to follow good coding practices for three reasons:

❑ For efficiency: The easier your code is to read and follow, the easier it will be to keep track of
where you are with your code, and the quicker it will be to pick up where you left off after a
break.

❑ For debugging: Knowing where your problem lies is a major debugging tool. If you have used
comments, you can easily follow your own logic, and if you have line numbers and consistent
formatting, you can easily scan your document to pinpoint a trouble area.

❑ For future expansions and modifications: Utilizing comments in your code is especially impor-
tant for future changes, as not all of us can remember the logic behind code that was written
years or even just months ago. Also, if you are working on code that involves a team, if every-
one is utilizing the same coding styles, it will be much easier to make changes or additions to
someone else’s work down the road.

Okay, enough preaching about good code—let’s get to it.

Creating Your First Program
You can’t get much simpler than this first program, but try it out to get a feel for what the results look
like. The PHP function echo, seen in the material that follows, is one of the most commonly used PHP
functions and one that, undoubtedly, you will become intimate with. It is used to send text (or variable
values or a variety of other things) to the browser.

36

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 36

Try It Out Using echo
Try using echo to see what results you achieve:

1. Enter the following program in your favorite text editor (Notepad, WordPad, or whatever), and
save it as firstprog.php.

Make sure you save it in a “plain text” format to avoid parsing problems, and double-check to
ensure that the file is not saved as firstprog.php.txt by default.

<HTML>
<HEAD>
<TITLE>My First PHP Program</TITLE>
</HEAD>
<BODY>
<?php
echo “I’m a lumberjack.”;
?>
</BODY>
</HTML>

2. Open this program using your browser.

Your resulting screen should look like the one in Figure 2-1.

Figure 2-1 37

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 37

Now view the source of the HTML code so you can see what happened with the PHP portions of the
code. As you can see, the PHP portion of the code has vanished, leaving only the resulting HTML code.

Now add the line noted in bold text so you can get a better feel for how your PHP code will be parsed.

<HTML>
<HEAD>
<TITLE>My First PHP Program</TITLE>
</HEAD>
<BODY>
<?php
echo “I’m a lumberjack.”;
echo “And I’m okay.”;
?>
</BODY>
</HTML>

Save the revised file and open it in your browser. As you can see, the line runs together without a line
break, even though you had your PHP code on two different lines.

How It Works
When a browser calls a PHP program, it first searches through the entire code line by line to locate all
PHP sections (those encased in the appropriate tags) and it then processes them one at a time. To the
server, all PHP code is treated as one line, which is why your two lines of code were shown as one con-
tinuous line on the screen. After the PHP code has been parsed accordingly, the server goes back and
gobbles up the remaining HTML and spits it out to the browser, PHP sections included.

While the .php extension commands the server to check for and parse any PHP code contained in the
program, if you are running your own Web site or if you have access to your own httpd.conf file,
you can change what file extensions are able to parse PHP code. For example, if you have an existing
Web site and you simply want to add a small PHP section to your HTML page, you can revise the fol-
lowing line in your httpd.conf file to include .html or .htm files on your server so that they are con-
sidered to be PHP files:

AddType application/x-httpd-php .php3 .php .html .htm
AddType application/x-httpd-php-source .phps

This can also cause a heavy load on your server, so we recommend that you create your site in such a
way that only .php files are parsed.

Using HTML to Spice Up Your Pages
From the previous example, you can see that it is wise to use HTML to make your pages look more pro-
fessional and less utilitarian. HTML can be inserted within your PHP block of code using the echo func-
tion. Anything you can code in HTML, from frames, to tables, to font characteristics, can be inserted
within a PHP section of code.

38

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 38

Integrating HTML with PHP
You will be better able to see how easily we can use HTML in the PHP program with the following prac-
tical example.

Try It Out Using PHP within HTML
Let’s modify the following lines to the current program, as shown in bold:

<HTML>
<HEAD>
<TITLE>My First PHP Program</TITLE>
</HEAD>
<BODY>
<?php
echo “<h1>I’m a lumberjack.</h1>”;
echo “<h2>And I’m okay.”;
?>
</BODY>
</HTML>

Your screen now looks something like the one in Figure 2-2.

Figure 2-2

39

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 39

You can see that by inserting some HTML code within the PHP section of the program, you accomplish
two things:

❑ You can improve the look of your site.

❑ You can keep PHP lines of code together without having to jump back and forth between HTML
and PHP.

If you view the source of your HTML code you will see the HTML code you inserted using the echo
function displayed just as you intended.

Considerations with HTML Inside PHP
Let’s discuss some pitfalls commonly seen with the practice of inserting HTML inside PHP.

❑ You’ll have to check for double quotes. As you may have noted when you worked through the
previous example, using the echo function involves the use of double quotation marks. Because
HTML also uses double quotes, you can do one of two things to avoid problems:

❑ Use single quotes inside your HTML.

❑ Escape your HTML double quotes with a backslash, as in the following:

echo “”;

This is especially useful if you want to display double quotes in your text, such as:

echo “He was about 6’5\” tall.”;

❑ Remember that you still have to follow PHP rules, even though you’re coding in HTML.
Sometimes when you begin to code in HTML within your PHP section, you can temporarily for-
get that you need to follow PHP guidelines and end your sentences with a semicolon, as well as
closing all quotes at the end of your echo statements.

❑ Don’t try to cram too much HTML into your PHP sections. If you find yourself in the middle
of a PHP portion of your program, and your HTML is becoming increasingly complex or
lengthy, consider ending the PHP section and coding strictly in HTML. Consider the following
examples:

<?php
echo “<table width=’100%’ border=’2’ bgcolor=’#FFFFFF’>”;
echo “<tr>”;
echo “<td width=’50%’>”;
echo “”;
echo “First Name:”;
echo “</td”>;
echo “<td width=’50%’>”;
echo “”;
echo $_POST[“fname”]
echo “</td>”;
echo “</tr>”;

40

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 40

echo “</table>”;

?>
<table width=”100%” border=”2” bgcolor=”#FFFFFF”>;

<tr>
<td width=”50%”>

First Name:

</td>

<td width=”50%”>

<?php

echo $_POST[“fname”];
?>

</td>

</tr>
</table>

Although we have not yet discussed variables, you can see in the first example that the only thing PHP
was really needed for was to give us the value held in the variable fname and display it on the screen.
The rest of the related code was in HTML. In this type of instance, you’re better off just staying in HTML
and pulling out the PHP line when you need it, instead of coding the HTML inside the PHP. While it
really doesn’t matter to the server, it makes for easier formatting, easier debugging, and less typing
(which is always a good thing!). In essence, it is up to you to balance your HTML with PHP and discover
what works best for your coding style.

Using Constants and Variables
to Spice Up Your Pages

We’ve covered the basics of using the echo function to display text the way you want it. Really, this
works no differently from coding an HTML page. However, utilizing constants and variables allows you
to take advantage of the power of PHP.

Overview of Constants
A constant is a placeholder for a value that you reference within your code. Constants are typically
named with capital letters (so you can easily find them within your code), and the values are usually
formally defined before using them. Constant names must begin with a letter or underscore and cannot
begin with a number. Names are also case-sensitive.

The values assigned to constants are defined with the PHP function define(). Once they’ve been
defined, they can’t be changed or undefined.

41

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 41

Try It Out Using Constants
Let’s see how you can use constants in your program.

1. Open your text editor and type the following program:

<HTML>
<HEAD>
<TITLE>My Movie Site</TITLE>
</HEAD>
<BODY>
<?php

define (“FAVMOVIE”, “The Life of Brian”);
echo “My favorite movie is “;
echo FAVMOVIE;

?>
</BODY>
</HTML>

2. Save this file as moviesite.php and open it in your browser. You should see the text shown in
Figure 2-3.

Figure 2-3

42

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 42

How It Works
By defining the constant known as FAVMOVIE, you have set the value as “The Life of Brian,” which can
be recalled and displayed later on. While this constant can’t be changed or reset throughout your pro-
gram, it is available for use by any part of your program.

Overview of Variables
Unlike constants, variables are obviously meant to be variable—they are meant to change or be changed
at some point in your program. Variables also do not need to be defined or declared and can simply be
assigned when needed.

Variables are denoted with a dollar sign ($) and are not case-sensitive as are constants. The first letter of
the variable name must be an underscore or letter and cannot be a number.

In PHP4, by default, variables are not passed by reference unless you preface them with an ampersand
to force use of that practice. In PHP5, all variables will be passed by reference with no additional syntax
required. This significantly increases the speed and power of your PHP programs.

Try It Out Using Variables
Let’s use variables in the program.

1. Open your text editor and make the following changes to your moviesite.php file (noted in
bold text):

<HTML>
<HEAD>
<TITLE>My Movie Site</TITLE>
</HEAD>
<BODY>
<?php

define (“FAVMOVIE”, “The Life of Brian”);
echo “My favorite movie is “;
echo FAVMOVIE;
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

?>
</BODY>
</HTML>

2. Save the changes and access the file in your browser. Your screen should now look like the one
in Figure 2-4.

43

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 43

Figure 2-4

How It Works
The value “5” is assigned to the variable movierate, and it is assigned as an integer value instead of a
string. The following line of code would cause the value of “5” to be seen as a string:

$movierate=”5”;

By keeping this as an integer, you can then perform mathematical calculations on this number later on
(such as giving the viewer the average movie rate), as in this example:

<?php
$bobsmovierate=5;
$joesmovierate=7;
$grahamsmovierate=2;
$zabbysmovierate=1;
$avgmovierate=(($bobsmovierate+$joesmovierate+$grahamsmovierate

+$zabbysmovierate)/4);
echo “The average movie rating for this movie is: “;
echo $avgmovierate;

?>

44

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 44

PHP also has numerous built-in mathematical functions such as:

❑ rand([min],[max]): Generates a random integer.

❑ ceil(number): Rounds a decimal up to the next highest integer.

❑ floor(number): Rounds a decimal down to the next lowest integer.

❑ number_format(number [,dec places] [,dec point] [,thousands]): Formats the number based on
the chosen number of decimal places, and uses the designated decimal point and thousands
separator, if applicable.

❑ max(argument1, argument2, ...): Returns the maximum value of the supplied arguments.

❑ min(argument1, argument2, . . .): Returns the minimum value of the supplied arguments.

For a complete listing of PHP’s mathematical functions, please refer to Appendix C.

Passing Variables Between Pages
We’ve talked about how to use variables in code, but wouldn’t it be great if you could move the variable
value from page to page? There are basically three ways to accomplish this task, and the method you
choose is based on the situation and what best fits your needs at the time.

A Word About register_globals
Before we begin discussing the three methods of parsing variables between pages, it is important under-
stand a little concept we call register_globals. This is a configuration setting in your php.ini file that,
when turned off, prevents the variable value from being falsely inserted by an outside source (because
PHP doesn’t require variable initialization). While previous versions of PHP set the default setting in
php.ini to “on,” ever since version 4.2 the default has been switched to “off.” This was the cause of
many a programmer’s sleepless night, as you must refer to your variables differently if
register_globals is turned off, or else find all your variables’ values coming up empty.

While many third-party Web hosts have turned on register_globals, for security reasons not every-
one does; thus the decision was made to make the assumption that register_globals is off for the
purposes of our tutorial. Coding with the assumption that register_globals has been turned off is
the safest way to code because your program will work regardless of the server’s setting.

Instead of calling variable values by the standard $varname syntax, when register_globals is “off”
and you need to pass variables across pages, in the receiving page only you need to refer to them in a
different way. You will see this in action in the next “Try It Out” section, but the various ways to refer to
variables depend on how they are being sent.

Syntax When to Use It

$_GET[‘varname’] When the method of passing the variable is the “GET” method in
HTML forms

$_POST[‘varname’] When the method of passing the variable is the “POST” method in
HTML forms

Table continued on following page

45

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 45

Syntax When to Use It

$_SESSION[‘varname’] When the variable has been assigned the value from a particular
session

$_COOKIE[‘varname’] When the variable has been assigned a value from a cookie

$_REQUEST[‘varname’] When it doesn’t matter ($_REQUEST includes variables passed
from any of the above methods)

$_SERVER[‘varname’] When the variable has been assigned a value from the server

$_FILES[‘varname’] When the variable has been assigned a value from a file upload

$_ENV[‘varname’] When the variable has been assigned a value from the operating
environment

If you do not retrieve the variables using this syntax, the variable value will appear to be empty in your
program and can cause you much grief in debugging!

Passing Variables Through a URL
The first method of passing variables between pages is through the page’s URL. You’ve undoubtedly
seen URLs such as this:

http://www.mydomain.com/news/articles/showart.php?id=12345

This is an example of passing variable values through the URL. In the preceding example, we are
requesting that the article with the ID number of “12345” be chosen for the showart.php program. The
text after the URL is called the query string.

You can also combine variables in a URL by using an ampersand (&), as in this example:

http://www.mydomain.com/news/articles/showart.php?id=12345&lang=en

This asks to retrieve the file with an ID of “12345” and the language presumably equal to “en,” for
English.

There are a few disadvantages to passing variables through a URL:

❑ Everyone can see the values of the variables, so passing sensitive information isn’t really very
secure using this method.

❑ The user can change the variable value in the URL, leaving your site potentially open to show-
ing something you’d rather not show.

❑ A user might also pull up inaccurate or old information using a saved URL with older variables
embedded in it.

46

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 46

Try It Out Using URL Variables
Let’s modify your program to show the URL variables in action.

1. Modify your moviesite.php file as follows (changes are in bold text):

<HTML>
<HEAD>

<TITLE>My Movie Site - <?php echo $favmovie ?></TITLE>
</HEAD>
<BODY>
<?php

//delete this line: define (“FAVMOVIE”, “The Life of Brian”);
echo “My favorite movie is “;
echo $favmovie;
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

?>
</BODY>
</HTML>

2. Save your moviesite.php file and start a new document in your text editor.

3. Type the following code:

<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php

echo “”;
echo “Click here to see information about my favorite movie!”;
echo “”;

?>
</BODY>
</HTML>

4. Save this file as movie1.php and open it in your browser. Your screen should look like the one
in Figure 2-5.

5. Now click the link and see what you get (see Figure 2-6).

47

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 47

Figure 2-5

You see the value for $favmovie as “Stripes” in the URL, as shown in Figure 2-6, but notice there is
nothing shown for the value in the body of your page, nor in the title as it’s supposed to be.

What went wrong? You guessed correctly if you said “register_globals”! This is a prime example of how
not retrieving the variables in the correct way can leave your pages not working and you perplexed.
Let’s modify the moviesite.php file to fix the mistake.

1. Edit the following lines in your program (as shown in bold text):

<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST[‘favmovie’] ?></TITLE>
</HEAD>
<BODY>

48

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 48

<?php
echo “My favorite movie is “;
echo $_REQUEST[‘favmovie’];
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

?>
</BODY>
</HTML>

2. Now save your file and reopen movie1.php. The link should now work fine, and your screen
should look like the one in Figure 2-7.

Figure 2-6

49

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 49

Figure 2-7

How It Works
A few notes about your program we should point out:

❑ As you can see from the “Title” section of your program, PHP code can be inserted in a straight
line in the midst of your HTML code. This is helpful when you just need to insert one tidbit of
information grabbed from PHP.

❑ Also from that same line, you can insert PHP information anywhere in your HTML program,
including the title.

❑ You saw firsthand the effects of not taking into account register_globals when accessing a
variable from another page, but did you notice that when we referred to $movierate, we did
not have to include the register_globals syntax? This is because we kept the variable’s value
within our page and did not get the information from another page or source.

❑ We chose $_REQUEST for our variable syntax because it really didn’t matter to us in our example
where the value for $favmovie came from. We were not trying to validate anything or prevent
an unauthorized user from entering this page of the site: We simply wanted to pass the value
across.

50

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 50

Special Characters in URLs
Passing variables through a URL poses an interesting problem if there are spaces, ampersands, or other spe-
cial characters in the value of your variable. Luckily, there are substitutes for special characters that maintain
the integrity of the variables’ values. There is a special function to use when passing these values through a
URL called urlencode(). If you wanted to change your favorite movie from “Stripes” to “Life of Brian,”
you would use urlencode() to encode the value and insert the proper HTML special characters.

To try this out, perform these steps:

1. Add the following line in your movie1.php file:

$myfavmovie=urlencode(“Life of Brian”);

2. Change this line:

echo “”;

3. Save the file and open it again in your browser. Clicking the link now displays the page shown
in Figure 2-8.

Figure 2-8

51

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 51

Passing Through Sessions
As mentioned before, passing a value through a URL is fine if the information is not of a particularly
sensitive nature or if it is relatively static and there is no danger of a user pulling up old information
from a previously saved page. If you are transmitting information such as usernames or passwords,
however, or personal information such as addresses and phone numbers, there are better methods for
passing the information while keeping it private.

What Is a Session?
A session is basically a temporary set of variables that exists only until the browser has shut down (unless
you set this up differently in your php.ini file, which is another story altogether). Examples of session
information include a session ID, and whether or not an authorized person has “logged in” to the site.
This information is stored temporarily for your PHP programs to refer back to whenever needed.

Every session is assigned a unique session ID, which keeps all the current information together. Your
session ID can either be passed through the URL or through the use of cookies. Although for security
reasons, it is preferable to pass the session ID through a cookie so that it is hidden from the human eye,
if cookies are not enabled, the backup method is through the URL.

This setting is determined in your php.ini file. If you would like to force the user to pass variables
through cookies (instead of allowing a backup plan), you would set the following line in your file:

session.use_only_cookies = 1

To begin a session, use the function session_start(). Because we have register_globals set to
“off,” you should not use the session_register() function you may have seen in other PHP scripts.
Make sure before using sessions that your php.ini file has been modified to show a valid path in the
session.save_path variable, as described in Chapter 1.

First, you need to decide what information will be stored in your session. Anything that has been stored
in a database can be retrieved and stored temporarily along with your session information. Usually, it is
information such as username and login information, but it can also be preferences that have been set at
some point by the user. An SID (session ID) will also be stored in the session array of variables.

Try It Out Passing the Visitor’s Username
Let’s say you want to pass your visitor’s username and whether or not he or she has authentically
logged into the site between the first page and the second page. Because we won’t discuss the use of
forms until later in this chapter, we’ll fake it for now.

Follow these steps:

1. Change your movie1.php file to include the following lines (shown in bold).

<?php
session_start();
$_SESSION[‘username’]=”Joe12345”;
$_SESSION[‘authuser’]=1;

52

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 52

?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php

$myfavmovie=urlencode(“Life of Brian”);
echo “”;
echo “Click here to see information about my favorite movie!”;
echo “”;

?>
</BODY>
</HTML>

2. Now save your movie1.php file.

3. Open moviesite.php to make the following changes (shown in bold text).

<?php
session_start();
//check to see if user has logged in with a valid password

if ($_SESSION[‘authuser’]!=1) {
echo “Sorry, but you don’t have permission to view this page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST[‘favmovie’] ?></TITLE>
</HEAD>
<BODY>

<?php
echo “Welcome to our site, “;
echo $_SESSION[‘username’];
echo “!
”;
echo “My favorite movie is “;
echo $_REQUEST[‘favmovie’];
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

?>
</BODY>
</HTML>

4. Click the link in movie1.php, and you should see the text for moviesite.php shown in
Figure 2-9.

53

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 53

Figure 2-9

How It Works
There are a few important things to point out about this procedure:

❑ All the session information is at the top of the page, before any HTML code. This is very important!
If there is even a leading space before the PHP code at the top of the page, you will get this error:

Warning: session_start(): Cannot send session cache limiter - headers already sent
(output started at c:\program files\Apache Group\Apache2\test\moviesite.php:1) in

c:\program files\Apache Group\Apache2\test\moviesite.php on line 2

There are some other situations that will give you the “headers already sent” error, which we
discuss in Chapter 17.

❑ Refer to the session variables using the register_globals syntax, $_SESSION[‘varname’]; if you
don’t, the variables will contain empty values.

❑ You must use the function session_start() at the beginning of every page that references the
session variables.

❑ We used an if statement, which we delve into later in this chapter. It’s a good idea to take a
quick glance at this syntax, just to familiarize yourself with it.

54

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 54

What Is a Cookie?
Cookies are tiny bits of information stored on your Web site visitor’s computer. There appears to be
some sort of paranoia about using cookies; thus, many people choose to disable this feature in their Web
browsers. While cookies can, in theory, be intercepted to gain information such as a person’s IP address
and operating system, cookies are primarily used for storing information only. There are also a few ad
campaigns that have developed technology to utilize cookies to track your browsing habits, and many
people see this as an invasion of privacy. Also, because cookies are stored in a commonly named direc-
tory, anyone with access to someone else’s computer (either via a hack or physical location) can poten-
tially open cookie files and glean information about the owner. Because of these possibilities it’s not a
good idea to store any potentially private information on a computer.

For more information on cookies and the potential security risks (however minute), you are encouraged
to visit the W3 Security FAQ Web site at www.w3.org/Security/faq/wwwsf2.html.

All that being said, because your visitors may either have cookies turned off or may physically delete
cookies from their computers, relying on cookie information from a Web development standpoint proba-
bly isn’t the brightest idea.

So why do developers use cookies, anyway? The advantage to storing information in a cookie versus a ses-
sion is longevity. Sessions alone can’t store information for more than the length of time the browser win-
dow is open. Like the elusive and mean-spirited video game that loses all high scores once it’s unplugged,
once a browser closes, all session information is lost. Cookies, on the other hand, can live on a person’s
computer until the developer has decided it’s been long enough and they automatically “die.” It is because
of this longevity that cookies are fabulous for storing information such as a visitor’s username or language
preferences. These are the pieces of information that users won’t have to retype every time they visit your
site, but if for some reason someone did get wind of the information, it wouldn’t be the end of the world.

We mentioned earlier that sessions alone can’t store information for very long. However, we can alter
this limitation if we use sessions in conjunction with cookies. If your sessions are passing variables using
cookies, you can set the life of these cookies to longer than the life of the browser using the
session.cookie_lifetime configuration in your php.ini file. Keep in mind, however, that not only
will the session information be stored on the person’s computer; the session ID will be stored, and that
can cause you problems later on.

To set a cookie, you use the appropriately named setcookie() function. When setting a cookie, you can
determine that the following information be set along with it:

❑ Cookie name (this is mandatory).

❑ Value of the cookie (such as the person’s username).

❑ Time in seconds when the cookie will expire. (Based on a UNIX timestamp, but you can set it
using the following syntax: time()+60*60*24*365 keeps the cookie alive for a year. This is
optional, but if it is not set, the cookie will expire when browser is closed.)

❑ Path (the directory where the cookie will be saved—default is usually sufficient; this is optional).

❑ Domain (domains that may access this cookie—this is optional).

❑ Whether a cookie must have a secure connection to be set (defaults to 0; to enable this feature
set this to 1).

55

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 55

You make each of these settings as follows:

setcookie(‘cookiename’, ‘value’, ‘expiration time’, ‘path’, ‘domain’,

‘secure connection’);

As you know by now, those values will be referenced in the script as $_COOKIE[‘cookiename’].

Try It Out Setting a Cookie
Let’s have the Web site set a cookie on Joe’s machine so that he (theoretically) doesn’t have to type his
username (Joe12345) every time he comes back to visit. To do this, follow these steps:

1. Modify your movie1.php file as shown:

<?php
setcookie(‘username’, ‘Joe’, time()+60);
session_start();
//delete this line: $_SESSION[‘username’]=”Joe12345”;
$_SESSION[‘authuser’]=1;
?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php

$myfavmovie=urlencode(“Life of Brian”);
echo “”;
echo “Click here to see information about my favorite movie!”;
echo “”;

?>
</BODY>
</HTML>

2. Save the file.

3. Make the following changes to your moviesite.php file:

<?php
session_start();
//check to see if user has logged in with a valid password

if ($_SESSION[‘authuser’]!=1) {
echo “Sorry, but you don’t have permission to view this

page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST[‘favmovie’] ?></TITLE>
</HEAD>
<BODY>

56

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 56

<?php
echo “Welcome to our site, “;
echo $_COOKIE[‘username’];
echo “!
”;
echo “My favorite movie is “;
echo $_REQUEST[‘favmovie’];
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

?>
</BODY>
</HTML>

4. Save the file.

5. Open a new browser window (in case we have any session information from the previous
example lingering about) and open the movie1.php file. Your screen should look like the one in
Figure 2-10.

Figure 2-10

57

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 57

How It Works
When using cookies, remember the following:

❑ Like sessions, cookies must be placed at the very tip-top of the page, before your first <HTML>
line. Otherwise, you get the ol’ “headers already sent” error.

❑ If you didn’t notice, we changed the username from Joe12345 when we were using sessions, to
Joe when we were using cookies. This was to double-check that the information was coming
from the cookie and not the session.

❑ We set the expire time for the cookie to 60 seconds so we could play with and test our cookies
without having to wait around for them to kick off. For a normal application storing usernames,
it would be logical to set this higher.

❑ Unlike sessions, cookie information can’t be accessed in the current page where the cookies
have been set. You have to move on to the next page for the cookie to be set and accessible to
your program.

Passing Through Forms
Up until now, we’ve passed information among pages successfully, but we’ve been the ones to supply all
the information, not the visitor. While it would be a great world if we really knew that much about our
Web site visitors, it might get a little labor-intensive on our part. What do you say we let them supply us
with information for a change?

If you’ve never filled out a form online, then you have probably been living in a cave somewhere with
no Internet access. Forms are the great Venus Fly Traps just lying in wait to gobble up useful information
from Web site visitors. Forms allow your Web site to be truly interactive; they take data from the user
and send it off somewhere where it gets massaged, manipulated, perhaps stored, and then some result is
sent back to the user. While we discuss forms in greater detail in Chapter 5, we will briefly touch on
them here so you get a basic understanding of how they work.

Fast Primer on Forms
In case you are a bit rusty on the syntax of forms, or if you just need a quick reference, here is a quick,
down-and-dirty discussion of forms.

Forms are coded in HTML and stay in HTML.

A form is made up of four parts:

❑ Opening tag line, indicated by <FORM> tag. This tag line must include an action and a method.
An action gives the form a URL or path to another program that will take the data included in
the form and carry it from there. A method (GET or POST) tells the form how the data is to be
carried. (POST is, generally speaking, the preferred method because it’s more secure.)

❑ Content of the form, including input fields. Input fields are the areas where the user types in
the information (or selects it in the case of a checkbox or radio button). An input field must
include a type and a name, and can include other parameters, such as maxlength.

58

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 58

The type of input field can be one of many different selections, the most common being:

❑ Text. Used for collecting from 2 characters up to 2,000 characters. The parameter used to
limit the number of accepted characters for a particular input field is maxlength. For
large input fields (such as comments) the input field text area is recommended over
text.

❑ Checkbox. Used to allow users to make a selection from a list of choices; also permits
users to make more than one choice. Individual choices must be indicated with a value
parameter.

❑ Radio. Also known as radio buttons. Used for allowing users to choose from a list, but they
permit only one choice. Individual choices must be indicated with a value parameter.

❑ Options. Also known as drop-down boxes. Used for allowing users to choose from a
list, Individual choices must be indicated with a value parameter.

❑ Password. Hides what the user is typing behind asterisks, but does not compromise the
value of the variable.

The name of the input field will be known as your variable name in your PHP program. In
order to avoid issues with PHP parsing, you should name your input fields according to the
PHP variable naming guidelines covered earlier in this chapter.

❑ Action button(s) or images typically submit/clear or user-defined button, technically consid-
ered input types as well. These are indicated with the input types submit, reset, and image
for user-created buttons.

❑ Closing tag line, indicated with </FORM> tag.

Got it?

Try It Out Using Forms to Get Information
Because our program is slowly increasing in size, for this section switch to a text editor that will add line
numbers to your document. If you are using a text editor that inserts these line numbers already, you do
not need to worry about adding these in. Otherwise, you may want to add periodic line numbers as
comments to help you keep track. Besides adding line numbers to our program, you are also going to
insert comments to help you keep track of what is going on.

Now let’s look at how to use forms to get information from visitors:

1. Open your movie1.php file and make the following changes:

<?php
//delete this line: setcookie(‘username’, ‘Joe’, time()+60);
session_start();
$_SESSION[‘username’]=$_POST[‘user’];
$_SESSION[‘userpass’]=$_POST[‘pass’];

59

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 59

$_SESSION[‘authuser’]=0;

//Check username and password information

if (($_SESSION[‘username’]== ‘Joe’) AND
($_SESSION[‘userpass’]== ‘12345’))

{
$_SESSION[‘authuser’]=1;
}
else
{
echo “Sorry, but you don’t have permission to view this

page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php

$myfavmovie=urlencode(“Life of Brian”);
echo “”;
echo “Click here to see information about my favorite movie!”;
echo “”;

?>
</BODY>
</HTML>

2. Now make these changes to your moviesite.php file.

<?php
session_start();
//check to see if user has logged in with a valid password

if ($_SESSION[‘authuser’]!=1) {
echo “Sorry, but you don’t have permission to view this

page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST[‘favmovie’] ?></TITLE>
</HEAD>
<BODY>
<?php

echo “Welcome to our site, “;
//delete this line: echo $_COOKIE[‘username’];

60

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 60

echo $_SESSION[‘username’];
echo “!
”;
echo “My favorite movie is “;
echo $_REQUEST[‘favmovie’];
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

?>
</BODY>
</HTML>

3. Start a new file:

<?php
session_unset();

?>
<html>
<head>
<title>Please Log In</title>
</head>

<body>
<form method=”post” action=”http://localhost/movie1.php”>

<p>Enter your username:
<input type=”text” name=”user”>

</p>
<p>Enter your password:

<input type=”password” name=”pass”>
</p>
<p>

<input type=”submit” name=”Submit” value=”Submit”>
</p>

</form>
</body>
</html>

4. Save this file as login.php.

5. Load this file into your browser and login with the username of Joe12345 and the password
12345.

Let’s see what happens; if the authorization script works, the screen you should see looks like the one
shown in Figure 2-11.

Now try logging in with the correct Username=Joe/Password=12345 combination. Your movie1.php
site should load as it did before, and the link should take you to the moviesite.php page.

61

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 61

Figure 2-11

How It Works
In login.php, we first release any variables from sessions that may be lingering around with the com-
mand session_unset(). Then we ask for two variables from the user: username and password (vari-
able names user and pass, respectively). These are submitted to movie1.php (the “action” in the form)
via the POST method (the “method” in the form). This is why we have to refer to them using the $_POST
syntax beginning of movie1.php.

Our file movie1.php actually accomplishes several things. It:

❑ Starts the session and, by default, registers the variables. Values are set based on the information
sent from the form in login.php.

❑ Checks to see if the username and password are acceptable. In real life we would match this
information to a database for authentication and verification.

❑ Sets the authuser to 1 if the acceptable username/password combination has been supplied, which
grants the user permission to then proceed to other pages in the site, such as moviesite.php.

❑ If the username/password combination is not acceptable, a tactful error message is displayed to
the user.

62

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 62

As the information is passed on to moviesite.php as before, the only thing moviesite.php has to
check for is that the user is authorized through the authuser variable.

Using if/else Arguments
You’ve just seen how if/else arguments can be used to set variables and display messages; you will
find this an invaluable tool for doing many other things. Like a big floppy-eared, slobbery hound dog,
if and if/else statements can be a programmer’s best friend.

Using if Statements
Unlike with some other programming languages, in PHP, the if statement can be used alone. The syn-
tax is as follows:

if (condition1 operator condition2) action to be taken if true;

As in this example:

if ($stockmarket >= 10000) echo “Hooray! Time to Party!”;

If you are creating more than a simple statement that will easily fit on one line, you must use brackets
({}) to enclose your “action to be taken if true” section:

if ($stockmarket >= 10000) {
echo “Hooray! Time to Party!”;
$mood = “happy”;
$retirement = “potentially obtainable”;
}

Operators
The operators used to compare the two conditions are similar to those you’re likely to be familiar with.
A list of these operators follows. Please note that these are only for use within the if statement itself and
are not to be used when assigning values to variables.

Operator Appropriate Syntax

equal to ==

not equal to != or <>

greater than >

less than <

greater than or equal to >=

less than or equal to <=

equal to, and data types match ===

63

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 63

Special Syntax Considerations
You should pay special attention to the use of semicolons in if statements. Please note semicolons are
needed in individual lines within the if statement, but not at the end of the if statement itself. Also,
please take special note of the use of the double equals sign when comparing condition1 and condition2.
This takes some getting used to for the newbie and can slip you up if you’re not careful.

The way you indent your lines does not matter to PHP, but it matters to the human eye, so if possible,
try to keep your indents consistent and easy to read.

Try It Out Using if
Let’s start off by trying a brief program to illustrate if by itself.

1. Open your text editor and type the following program:

<html>
<head>
<title>How many days in this month?</title>
</head>
<body>
<?php
$month=date(“n”);
if ($month==1) echo “31”;
if ($month==2) echo “28 (unless it’s a leap year)”;
if ($month==3) echo “31”;
if ($month==4) echo “30”;
if ($month==5) echo “31”;
if ($month==6) echo “30”;
if ($month==7) echo “31”;
if ($month==8) echo “31”;
if ($month==9) echo “30”;
if ($month==10) echo “31”;
if ($month==11) echo “30”;
if ($month==12) echo “31”;
?>
</body>
</html>

2. Save this as date.php and open it in your browser.

The result should display the number of days in the current month.

How It Works
We get the value for variable $month by tapping in to one of PHP’s numerous built-in date functions;
date(“n”) returns a value equal to the numerical equivalent of the month as set in your server, such as
1 for January, 2 for February, and so on. (We talk more about date() in Appendix C.)

Then we test the if statements on each potential value for $month until we get the right answer. If the first
if statement is false, the program immediately goes to the next line and executes it. When it gets to the
right month, it carries out the rest of the statement in the line, and then goes to the next line and executes
it as well. It does not stop once it comes across a true statement, but continues on as if nothing happened.

64

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 64

Using if and else Together
Using if by itself is fine and dandy in some cases, but there are other times when the if/else combina-
tion is more appropriate. For example, suppose you want to show a certain message on your site, but
have a holiday message you’d like shown for the month of December? Or suppose that on your movie
review site you want to show an abbreviated version of a movie review for those who haven’t yet seen the
movie? It’s these “either/or” cases where you need to whip out the all-powerful if/else combination.

Try It Out Using if and else
Let’s keep with the date theme to let the user know whether or not the current year is a leap year.

Follow these steps to accomplish this:

1. Open your text editor and enter the following code:

<html>
<head>
<title>Is it a leap year?</title>
</head><body>
<?php
$leapyear=date(“L”);
if ($leapyear==1) echo “Hooray! It’s a leap year!”;
else echo “Aww, sorry, mate. No leap year this year.”;
?>
</body>
</html>

2. Save this file as leapyear.php and open it in your browser.

You should now see a statement based on whether or not the current year is a leap year.

How It Works
When the program evaluates the if statement, if it is false, it jumps down to the next line of code as in
the previous example. When the program reads the else part of that statement, it executes it and moves
down to the next line. This part is basically the same as when if is used alone. However, when the if
statement is true, the rest of the line is executed and the program jumps down to the next line. Upon
seeing the else statement, it skips over that and continues on with the program.

If you were to take out the word else and leave the rest of the statement, the “Aww, sorry, mate”
message would appear every time, which is something we don’t want to happen.

Using Includes for Efficient Code
Are you getting sick of typing the same things over and over again? The makers of PHP have blessed us
frustrated developers with a little time-saving device called “includes” that save you from reentering
frequently used text over and over.

65

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 65

Includes are PHP files tucked into other PHP files. Imagine that you wanted to type the same message on
every page of your site. Perhaps it is your company’s name and address, or maybe today’s date. If you
are coding each page of your site from scratch, this is not very efficient for a couple of reasons:

❑ You are typing the same information over and over again, which is never good.

❑ In the case of an update or a change, you have to make the change in every single page of your
site. Again, this is redundant and time consuming, and it elevates the potential for human error.

A solution to this problem is to use an include. Includes can use any extension, but are sometimes refer-
enced as .inc files. If you are adding potentially sensitive information, for example server variables such
as passwords, then it is advisable to save these in .php files so they are never accessible to anyone
because the information is parsed before it is sent to the browser. An “include” is included in another file
while it is being parsed, and then the final output is sent to the browser. You can add an include in any
other file, and it doesn’t have to be inserted all the time.

Try It Out Adding a Welcome Message
Let’s say we want every page in the movie review site to show a welcome message and perhaps today’s
date. We want to create a file that includes this information, so follow these steps:

1. Open your text editor and type the following:

<div align=”center”>Welcome to my movie review site!

<?php
echo “Today is “;
echo date(“F d”);
echo “, “;
echo date(“Y”);
?>
</div>

2. Save this file as header.php.

3. To include this file in the three existent movie Web site files, add the following line in the begin-
ning of the <body> section of the HTML to login.php, movie1.php, and moviesite.php:

<?php include “header.php” ?>

4. Save your files.

Let’s look at the files again. If you open login.php, you should see the screen shown in Figure 2-12.

You will see the same two lines on every page where you have included the header.php file.

66

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 66

Figure 2-12

How It Works
When PHP comes across an include line in a script, it stops working on the current program and imme-
diately shoots on over to whatever file it’s told to include. The server parses that second file and carries
the results back to the original file, where the parsing continues from where it left off.

Suppose we decided we didn’t really want the date to be shown with the trailing zeroes. Luckily, PHP
has a solution for that when formatting the date function. Make the following change to your
header.php file and see what happens:

<div align=”center”>Welcome to my movie review site!

<?php

67

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 67

echo “Today is “;
echo date(“F j”);
echo “, “;
echo date(“Y”);
?>
</div>

Your problem is fixed, and it’s fixed in all the pages in your site, in one fell swoop.

Using Functions for Efficient Code
As with includes, using functions makes your code (and your typing) more efficient and easier to debug.

Functions are blocks of code that can be called from anywhere in your program. They enable you to exe-
cute lines of code without having to retype them every time you want to use them. Functions can help
set or update variables, and can be nested. You can also set a function to execute only if a certain crite-
rion has been fulfilled.

Functions are mini-programs within themselves. They don’t know about any other variables around
them unless you let the other variables outside the function in through a door called “global.” We use
the global $varname command to make an outside variable’s value accessible to the function. This
does not apply to any variables passed with any variables that are global by default, such as $_POST,
$_GET, and so on.

Your function can be located anywhere within your program and can be called from anywhere within
your program (this is a change from PHP3). Therefore, you can list all your commonly used functions at
the top of your program, and they can all be kept together for easier debugging. Better yet, you can put
all your functions in a file and include them in your programs. Now we’re rolling!

PHP provides you with a comprehensive set of built-in functions (which can be found in Appendix C),
but sometimes you need to create your own customized functions.

Try It Out Working with Functions
Let’s see functions in action by following these steps:

1. Open your movie1.php page and modify it as shown in bold text:

<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php include “header.php”; ?>
<?php

$myfavmovie=urlencode(“Life of Brian”);
echo “”;
echo “Click here to see information about my favorite movie!”;
echo “”;
echo “
”;
echo “”;
echo “Click here to see my top 5 movies.”;

68

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 68

echo “”;
echo “
”;
echo “”;
echo “Click here to see my top 10 movies.”;
echo “”;

?>
</BODY>
</HTML>

2. Now modify moviesite.php as shown:

<?php
session_start();
//check to see if user has logged in with a valid password

if ($_SESSION[‘authuser’]!=1) {
echo “Sorry, but you don’t have permission to view this

page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST[‘favmovie’] ?></TITLE>
</HEAD>
<BODY>
<?php include “header.php”; ?>
<?php
function listmovies_1()
{

echo “1. Life of Brian
”;
echo “2. Stripes
”;
echo “3. Office Space
”;
echo “4. The Holy Grail
”;
echo “5. Matrix
”;

}

function listmovies_2()
{

echo “6. Terminator 2
”;
echo “7. Star Wars
”;
echo “8. Close Encounters of the Third Kind
”;
echo “9. Sixteen Candles
”;
echo “10. Caddyshack
”;

}

if (ISSET($_REQUEST[‘favmovie’])) {
echo “Welcome to our site, “;
echo $_SESSION[‘username’];
echo “!
”;
echo “My favorite movie is “;
echo $_REQUEST[‘favmovie’];
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

69

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 69

}
else {

echo “My top “;
echo $_REQUEST[‘movienum’];
echo “ movies are:”;
echo “
”;

listmovies_1();
If ($_REQUEST[‘movienum’] == 10) listmovies_2();

}
?>
</BODY>
</HTML>

3. Now you must go through the login.php file before you can see your changes. Log in as Joe
and use the password 12345. Your movie1.php page should look like the one in Figure 2-13.

4. Click the “5 Movies” link. Your screen should look like Figure 2-14.

5. Go back and click the “Top 10” link; your screen will look like the one in Figure 2-15.

Figure 2-13

70

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 70

Figure 2-14

How It Works
This has been a rudimentary look at how to use functions, but you can see how they work. The
movie1.php page gave users the option of looking at five or ten of our favorite movies. Whichever link
they choose sets the value for $movienum.

In addition, moviesite.php accomplishes several other tasks:

❑ It sets up the functions listmovies_1() and listmovies_2(), which prints a portion of the
total top 10 list.

❑ We also added this line:

if (isset($_REQUEST[‘favmovie’])) {

71

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 71

The isset function checks to see if a variable has been set yet (this doesn’t check the value, just
whether or not it has been used). We didn’t want to show users the information about our
favorite movie if they didn’t click on the link to see it, so we if/else’d it right outta there. If
the variable favmovie has not yet been sent, the program jumps on down to the else portion.

❑ The program performs another if statement to check the value of movienum to run the correct
corresponding functions.

❑ It also references the movienum variable for the title of our list, so the program displays the cor-
rect number of movies in the list.

As you get more advanced in your PHP programming skills, you might store a list of all your favorite
movies in a database and reference them that way, changing your listmovies() function to list only
one movie at a time and running the function movienum a number of times. You could also give your
users the option of choosing how many movies they want displayed, perhaps through a drop-down box
or radio buttons. That would be your new movienum variable.

Figure 2-15

72

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 72

A Word About Arrays
We’ve talked about variables and how they are used, but what if we had more than one value assigned
to that variable? That, my friends, is a good old-fashioned array. Arrays are nothing more than lists of
bits of information mapped with keys and stored under one variable name. For example, you can store
a person’s name and address or a list of states in one variable.

Array Syntax
Let’s store a person’s name and age under one variable name. We can do this as follows:

<?php
$name = array(“firstname”=>”Albert”, “lastname”=>”Einstein”, “age”=”124”);

echo $name[“firstname”];

?>

This gives you an output of “Albert” and all the values are still stored in the variable name name. You
can also see how we keep track of the information inside the variable with the use of keys such as
“firstname” and “lastname.”

You can also set an array value in the following way:

<?php
$name[“firstname”] = “Albert”;
$name[“lastname”] = “Einstein”;
$name[“age”] = 124;
?>

This is the equivalent of the preceding example.

If you wanted to simply store a list and not worry about the particular order, or what each value should
be mapped to (such as a list of states or flavors of shaved ice), you don’t need to explicitly name the keys
and PHP will assign invisible internal keys for processing. This would be set up as follows:

<?php
$flavor[] = “blue raspberry”;
$flavor[] = “root beer”;
$flavor[] = “pineapple”;
?>

Sorting Arrays
PHP gives us many easy ways to sort array values. We’ve listed some of the more common array-sorting
functions in the table that follows, although a more extensive list can be found in Appendix C.

73

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 73

Function Description

arsort(array) Sorts the array in descending value and maintains the
key/value relationship

asort(array) Sorts the array in ascending value and maintains the
key/value relationship

rsort(array) Sorts the array in descending value

sort(array) Sorts the array in ascending value

Try It Out Sorting Arrays
Before we go further, let’s do a quick test on sorting arrays so you can see how the array acts when it is
sorted. Type the following program in your text editor and call it sorting.php.

<?php
$flavor[] = “blue raspberry”;
$flavor[] = “root beer”;
$flavor[] = “pineapple”;

sort($flavor);
print_r($flavor);
?>

How It Works
Notice anything weird in the preceding code? Yes, we’ve introduced a new function: print_r. This sim-
ply prints out information about a variable so that people can read it. It is frequently used to check array
values, specifically. So the output would look like that in Figure 2-16.

You can see that the sort() function has done what it’s supposed to and sorted the values in ascending
alphabetical order. You can also see the invisible keys that have been assigned to each value (and reassigned
in this case).

foreach Constructs
There exists a foreach command that will apply a set of statements for each value in an array. What an
appropriate name, eh? It works only on arrays, however, and will give you a big old error if you try to
use it with another type of variable.

Your syntax for the foreach command looks like this:

<?php
$flavor[] = “blue raspberry”;
$flavor[] = “root beer”;
$flavor[] = “pineapple”;
echo “My favorite flavors are:
”;
foreach ($flavor, as $currentvalue) {

//these lines will execute as long as there is a value in $flavor
echo $currentvalue “
\n”;

}
?>

74

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 74

Figure 2-16

This produces a list of each of the flavors in whatever order they appear in your array.

Try It Out Adding Arrays
Let’s see what happens when we add arrays to the moviesite.php file. Let’s also sort them and use the
foreach construct. Changes are in bold:

<?php
session_start();
//check to see if user has logged in with a valid password

if ($_SESSION[‘authuser’]!=1) {
echo “Sorry, but you don’t have permission to view this

page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST[‘favmovie’] ?></TITLE>
</HEAD>

75

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 75

<BODY>
<?php include “header.php”; ?>
<?php
$favmovies = array(“Life of Brian”,”Stripes”,”Office Space”,”The Holy Grail”,
“Matrix”, “Terminator 2”, “Star Wars”, “Close Encounters of the Third Kind”,
“Sixteen Candles”, “Caddyshack”);

//delete these lines:
function listmovies_1()
{

echo “1. Life of Brian
”;
echo “2. Stripes
”;
echo “3. Office Space
”;
echo “4. The Holy Grail
”;
echo “5. Matrix
”;

}

function listmovies_2()
{

echo “6. Terminator 2
”;
echo “7. Star Wars
”;
echo “8. Close Encounters of the Third Kind
”;
echo “9. Sixteen Candles
”;
echo “10. Caddyshack
”;

}
//end of deleted lines

if (ISSET($_REQUEST[‘favmovie’])) {
echo “Welcome to our site, “;
echo $_SESSION[‘username’];
echo “!
”;
echo “My favorite movie is “;
echo $_REQUEST[‘favmovie’];
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

}
else {

echo “My top 10 movies are:
”;

if (ISSET($_REQUEST[‘sorted’])) {
sort($favmovies);
}

//delete these lines
echo $_REQUEST[‘movienum’];
echo “ movies are:”;
echo “
”;

listmovies_1();
If ($_REQUEST[‘movienum’] == 10) listmovies_2();

76

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 76

//end of deleted lines

foreach ($favmovies as $currentvalue) {
echo $currentvalue;
echo “
\n”;

}
}
?>
</BODY>
</HTML>

And let’s change movie1.php as shown here:

<?php
session_start();
$_SESSION[‘username’]=$_POST[‘user’];
$_SESSION[‘userpass’]=$_POST[‘pass’];
$_SESSION[‘authuser’]=0;

//Check username and password information

if (($_SESSION[‘username’]== ‘Joe’) AND
($_SESSION[‘userpass’]== ‘12345’))

{
$_SESSION[‘authuser’]=1;
}
else
{
echo “Sorry, but you don’t have permission to view this page, you

loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>
<?php include “header.php” ?>
<?php

$myfavmovie=urlencode(“Life of Brian”);
echo “”;
echo “Click here to see information about my favorite movie!”;
echo “”;
echo “
”;
//delete these lines
echo “”;
echo “Click here to see my top 5 movies.”;
echo “”;
echo “
”;
//end of deleted lines

77

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 77

echo “”;
echo “Click here to see my top 10 movies.”;
echo “”;
echo “
”;

echo “”;
echo “Click here to see my top 10 movies, sorted alphabetically.”;
echo “”;

?>
</BODY>
</HTML>

Now let’s log in with the login.php file (logging in as Joe, with password 12345), and when we get the
choice, let’s click both links that list the top 10 movies.

How It Works
Your screens should look like Figures 2-17 and 2-18.

Figure 2-17

78

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 78

Figure 2-18

We first put the movie list in one variable, $favmovies, with the array function. Then we were able to
list them individually using the foreach construct in moviesite.php. We also added a link that would
allow users to show the list sorted alphabetically, by adding a variable named $_REQUEST[sorted].
When this variable was set to “true,” the sort() function would execute, and we passed that “true”
variable through the URL in the link.

You may have noticed a shortcoming in the program . . . okay, you may have noticed many shortcom-
ings, but one in particular stands out. We can no longer control how many movies are shown in our list.
We are stuck with showing the total number of movies in our array. There’s a way to fix that, which we
talk about next.

While You’re Here . . .
If you’ve had any background in programming, you’ve undoubtedly had some experience with a while
or do/while function. Just in case you’ve never heard of this (and maybe been living on Mars or some-
thing), let’s give a brief synopsis of this concept. A while command simply tells the server to execute a
command or block of commands repeatedly, as long as the given condition equals “true.”

79

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 79

while checks for the condition at the beginning of the block of code, but do/while checks for the
condition at the end of the block, guaranteeing that the block executes at least once.

The following is an example of the while and do/while commands:

$num = 1;
while ($num <= 5) {

echo $num;
echo “
”;
$num = $num + 1;

}

$num = 1;
do {

echo $num;
echo “
”;
$num = $num + 1

} while ($num <= 5);

Both of the preceding snippets of code print the numbers 1 through 5, each on a separate line.

Try It Out Using the while Function
Let’s allow users to tell us how many movies they want to see, and let’s number the list as we did before,
using the while function.

Make the following changes to your movie1.php program:

<?php
session_start();
$_SESSION[‘username’]=$_POST[‘user’];
$_SESSION[‘userpass’]=$_POST[‘pass’];
$_SESSION[‘authuser’]=0;

//Check username and password information

if (($_SESSION[‘username’]== ‘Joe’) AND
($_SESSION[‘userpass’]== ‘12345’))

{
$_SESSION[‘authuser’]=1;
}
else
{
echo “Sorry, but you don’t have permission to view this

page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>Find my Favorite Movie!</TITLE>
</HEAD>
<BODY>

80

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 80

<?php include “header.php” ?>
<?php

$myfavmovie=urlencode(“Life of Brian”);
echo “”;
echo “Click here to see information about my favorite movie!”;
echo “”;
echo “
”;

//delete these lines
echo “”;
echo “Click here to see my top 10 movies.”;
echo “”;
echo “
”;
echo “”;
echo “Click here to see my top 10 movies, sorted alphabetically.”;
echo “”;
//end of deleted lines

echo “Or choose how many movies you would like to see:”;
echo “”;
echo “
”;

?>
<form method=”post” action=”http://localhost/moviesite.php”>

<p>Enter number of movies (up to 10):
<input type=”text” name=”num”>

Check here if you want the list sorted alphabetically:
<input type=”checkbox” name=”sorted”>

</p>
<input type=”submit” name=”Submit” value=”Submit”>

</form>
</BODY>
</HTML>

And make the following changes to moviesite.php:

<?php
session_start();
//check to see if user has logged in with a valid password

if ($_SESSION[‘authuser’]!=1) {
echo “Sorry, but you don’t have permission to view this

page, you loser!”;
exit();
}

?>
<HTML>
<HEAD>
<TITLE>My Movie Site - <?php echo $_REQUEST[‘favmovie’] ?></TITLE>
</HEAD>
<BODY>
<?php include “header.php”; ?>
<?php
$favmovies = array(“Life of Brian”,”Stripes”,”Office Space”,”The Holy Grail”,

81

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 81

“Matrix”, “Terminator 2”, “Star Wars”, “Close Encounters of the Third Kind”,
“Sixteen Candles”, “Caddyshack”);

if (ISSET($_REQUEST[‘favmovie’])) {
echo “Welcome to our site, “;
echo $_SESSION[‘username’];
echo “!
”;
echo “My favorite movie is “;
echo $_REQUEST[‘favmovie’];
echo “
”;
$movierate=5;
echo “My movie rating for this movie is: “;
echo $movierate;

}
else {

echo “My top “. $_POST[“num”]. “ movies are:
”;

if (ISSET($_REQUEST[‘sorted’])) {
sort($favmovies);
}

//list the movies
$numlist = 1;
while ($numlist <= $_POST[“num”]) {

echo $numlist;
echo “. “;
echo pos($favmovies);
next($favmovies);
echo “
\n”;
$numlist = $numlist + 1;
}

//delete these lines
foreach ($favmovies as $currentvalue) {
echo $currentvalue;
echo “
\n”;

}
//end of deleted lines

}
?>
</BODY>
</HTML>

Now let’s play around with our new movie1.php and moviesite.php files.

How It Works
Your code should show a list of the top movies based on how many you as the user chose to see and
whether or not you wanted them listed alphabetically.

82

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 82

You’ll notice several things in our code:

❑ We added a little trick to our normal echo statement: the use of periods to amend the statement
as such:

echo “My top “. $_POST[“num”]. “ movies are:
”;

This way we can slip in and out of quotes virtually undetected.

❑ We set $numlist to 1, and this will keep track of what number we’re on.

❑ We are using the variable $_POST[“num”] to place a limit on the number of movies to be listed;
this is the number the user input from the form in movie1.php.

❑ The function pos($favmovies) is also a new one for you. This function returns the current
value where the array “pointer” is (starts at the beginning). We echo’d this function because we
wanted to see the current value.

❑ The function next($favmovies) is another new array function that moves the array pointer to
the next value in line. This gets us ready for the next iteration of while statements.

Now see, that wasn’t so hard, was it? We’re really cooking now!

Alternate Syntax for PHP
As a programmer, it’s always great when you can find a quicker and easier way to make something hap-
pen. We have included some useful shortcuts or alternate syntax for tasks you are already familiar with.

Alternates to the <?php and ?> php Tags
You can denote PHP code in your HTML documents in other ways:

❑ <? and ?>. This must be turned on in your php.ini file with the short open tags configuration.

❑ <% and %>. This must be turned on in your php.ini file with the ASP tags configuration.

❑ <script language=”PHP”> and </script>. These are available without changing your php.ini file.

Alternates to the echo Command
You already got a taste of print_r(), but you can also use the print() command to display text or
variable values in your page. The difference between echo() and print() is that when using print(),
a value of 1 or 0 will also be returned upon the success or failure of the print command. In other words,
you would be able to tell if something didn’t print using the print() command, whereas echo() just
does what it’s told without letting you know whether or not it worked properly. For all other intents and
purposes, the two are equal.

83

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 83

Alternates to Logical Operators
You may remember that and and or are obvious logical operators we use when comparing two values,
but there are other ways to express these operators:

❑ && can be used in place of and, the only difference being the order in which the operator is eval-
uated during a mathematical function.

❑ || can be used in place of or, the only difference being the order in which the operator is evalu-
ated during a mathematical function.

Alternates to Double Quotes: Using heredoc
Besides using double quotes to block off a value, you can also use the heredoc syntax:

$value = <<<ABC
This is the text that will be included in the value variable.
ABC;

This is especially helpful if you have double quotes and single quotes within a block of text, such as:

$value = <<<ABC
Last time I checked, I was 6’-5” tall.
ABC;

This keeps us from having to escape those characters out, and keeps things much simpler. Your “ABC”
syntax can consist of any characters.

Alternates to Incrementing Values
You can have variable values incremented automatically in two different ways:

$value = $value+1

or

$value++

These are equivalent and both add 1 to the current value of $value.

Summary
Although we’ve covered many different topics in this chapter, our goal was to give you enough ammu-
nition to get started on your own Web site. Our hope is that you are beginning to realize the power of
PHP and how easy it is to jump in and get started. As we talk about database connectivity in Chapter 3,
you will start to see how PHP can work with a database to give you a very impressive site.

84

Chapter 2

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 84

PHP is straightforward, powerful, and flexible. There are numerous built-in functions that can save you
hours of work (date() for example, which takes one line to show the current date). You can find a com-
plete list of PHP functions in Appendix B; browse that list to find bits and pieces you can use in your
own site development.

Exercises
To build your skills even further, here is an exercise you can use to test yourself. The answers are provided
in Appendix A, but keep in mind that there is always more than one way to accomplish a given task, so if
you choose to do things a different way, and the results display the way you want, more power to you.

Try modifying your PHP files in the following ways:

1. Go back to your date.php file and instead of displaying only the number of days in the current
month, add a few lines that say:

The month is ______.

There are ____ days in this month.

There are _____ months left in the current year.

2. On your movie Web site, write a file that displays the following line at the bottom center of
every page of your site, with a link to your e-mail address. Set your font size to 1.

This site developed by: ENTER YOUR NAME HERE.

3. Write a program that displays a different message based on the time of day. For example, if it is
in the morning, have the site display “Good Morning!”

4. Write a program that formats a block of text (to be input by the user) based on preferences cho-
sen by the user. Give your user options for color of text, font choice, and size. Display the output
on a new page.

5. In the program you created in Step 4, allow your users the option of saving the information for
the next time they visit, and if they choose “yes,” save the information in a cookie.

6. Using functions, write a program that keeps track of how many times a visitor has loaded the
page.

85

Creating PHP Pages

06 557440 Ch02.qxd 2/6/04 9:13 AM Page 85

3
Using PHP with MySQL

So now that you’ve done some really cool stuff with PHP in Chapter 2, such as using includes and
functions, it’s time to make your site truly “dynamic” and show users some real data. You may or
may not have had experience with databases, so we’ll take a look at what MySQL is and how PHP
can tap into the data. We will also show you what a MySQL database looks like in terms of the dif-
ferent tables and fields, and give you some quickie shortcuts to make your life much easier (you
can thank us later for those).

By the end of this chapter, you will be able to:

❑ Understand a MySQL database

❑ View data contained in the MySQL database

❑ Connect to the database from your Web site

❑ Pull specific information out of the database, right from your Web site

❑ Use third-party software to easily manage tables

❑ Use the source Web site to troubleshoot problems you may encounter

Although some of this information is expanded upon in later chapters, this chapter lays the
groundwork for more complex issues.

Overview of MySQL Structure and Syntax
MySQL is a relational database system, which basically means that it can store bits of information
in separate areas and link those areas together. You can store virtually anything in a database.
Information such as the contents of an address book, product catalog, or even a wish list of things
you want for your birthday can be stored in your database.

In the sites you create as you work through this book, you are storing information pertinent to a
movie review site (such as movie titles and years of release) and comic book fan information (such
as a list of authentic users/comic book fans and their passwords).

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 87

MySQL commands can be issued through the command prompt, as you did in Chapter 1 when you
were installing it and granting permissions to users, or through PHP. We primarily use PHP to issue
commands in this book and will discuss more about this shortly.

MySQL Structure
Because MySQL is a relational database management system, it allows you to separate information into
tables or “areas of pertinent information.” In nonrelational database systems, all the information is
stored in one big area, which makes it much more difficult and cumbersome to sort and extract only the
data you want. In MySQL, each table consists of separate fields, which represent each bit of information.
For example, one field could contain a customer’s first name, and another field could contain his last
name. Fields can hold different types of data, such as text, numbers, dates, and so on.

You create database tables based on what type of information you want to store in them. The separate
“areas” or tables of MySQL are then linked together with some common denominator, where the values
of the common field are the same.

For an example of this structure, imagine a table that includes a customer’s name, address, and ID num-
ber, and another table that includes the customer’s ID number and past orders he has placed. The com-
mon field is the customer’s ID number, and the information stored in the two separate tables would be
linked together via fields where this number is equal. This enables you to see all the information related
to this customer at one time.

Let’s take a look at the ways in which you can tailor database tables to fit your needs.

Field Types
When you create a table initially, you need to tell MySQL server what types of information will be stored
in each field. The different types of fields and some examples are listed in the table that follows.

MySQL Field Type Description Example

char(length) Any character can be in this field, but Customer’s State field
the field will have a fixed length. always has two characters.

varchar(length) Any character can be in this field, and Customer’s Address field
the data can vary in length from 1 to will has letters and numbers
255 characters. Maximum length of and varies in length.
field is denoted in parentheses.

int(length) Numeric field that stores integers Quantity of a product
that can range from -2147483648 to on hand.
+2147483647, but can be limited with
the length parameter. The length
parameter limits the number of
characters that can be shown, not the
value. Mathematical functions can be

performed on data in this field.

88

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 88

MySQL Field Type Description Example

int(length) unsigned Numeric field that stores positive Customer ID (if entirely
integers (and zero) up to 4294967295. numerical).
The length parameter limits the
number of characters that can be
displayed. Mathematical functions can
be performed on data in this field.

text Any character can be in this field, and Comments field that
the maximum size of the data is 65536 allows longer text to be
characters. stored, without limiting

field to 255 characters.

decimal(length,dec) Numeric field that can store decimals. Prices.
The length parameter limits the
number of characters that will be
displayed, and the dec parameter limits
the number of decimal places that can
be stored. For example, a price field
that would store prices up to 999.99
would be defined as decimal(6,2).

enum(“option1”, Allows only certain values to be stored Gender field for your users
“option2”, . . .) in this field, such as “true” and “false,” will have a value of either

or a list of states. 65535 different options “male” or “female.”
are allowed.

date Stores a date as yyyy-mm-dd. Date of order, birthday, date
joined as a registered user.

time Stores time as hh:mm:ss. Time a news article was
added to the Web site.

datetime Multipurpose field that stores date and Last date and time a user
time as yyyy-mm-dd hh:mm:ss. visited your Web page.

While the preceding field types should suffice for most needs, we’ve listed some perhaps less-often-used
types in the table that follows.

MySQL Field Type Description

tinyint(length) Numeric field that stores integers from -128 to 127. (Adding the
unsigned parameter allows storage of 0 to 255.)

smallint(length) Numeric field that stores integers from -32768 to 32767. (Adding the
unsigned parameter allows storage of 0 to 65535.)

mediumint(length) Numeric field that stores integers from -8388608 to 8388607. (Adding the
unsigned parameter allows storage of 0 to 16777215.)

Table continued on following page

89

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 89

MySQL Field Type Description

bigint(length) Numeric field that stores integers from -9223372036854775808 to
9223372036854775807. (Adding the unsigned parameter allows storage
of 0 to 18446744073709551615.)

tinytext Allows storage of up to 255 characters.

mediumtext Allows storage of up to 1677215 characters.

longtext Allows storage of up to 4294967295 characters.

blob Equal to a text field, except it is case-sensitive when sorting and compar-
ing. Stores up to 65535 characters.

tinyblob Equal to the tinytext field, except it is case-sensitive when sorting and
comparing.

mediumblob Equal to the mediumtext field except it is case-sensitive when sorting
and comparing.

longblob Equal to the longtext field except it is case-sensitive when sorting and
comparing.

year(length) Stores a year in four-character format (by default). It is possible to specify
a two-year format by signifying that with the length parameter.

Believe it or not, there are even more data types supported by MySQL; a comprehensive list of them can
be found in Appendix D.

Checklist for Choosing the Right Field Type
Although you won’t actually be creating a database from scratch just yet, it’s important to understand how
to figure out what field type will best serve your needs. We’ve put together a list of questions about fields
that you can ask yourself before your database tables have been created. As you answer each of these ques-
tions, keep in mind the potential values that could exist for the particular field you’re setting up.

Will the field contain letters and numbers both?

❑ Yes (look at char, varchar, text, tinytext, mediumtext, longtext, blob, tinyblob, mediumblob,
longblob).

❑ How many characters will need to be stored? Will it vary from entry to entry?

❑ Less than 255 characters, fixed length: Use char.

❑ 1–255 characters, variable length: Use varchar if you want to delete any trailing
spaces, or if you want to set a default value. Use tinytext if you don’t care about trail-
ing spaces or a default value or if your text does not need to be case-sensitive. Use
tinyblob if you don’t care about trailing spaces or a default value, but your text does
need to be case-sensitive.

❑ 256–65536 characters: Use text if your text does not need to be case-sensitive in searches,
sorts, or comparisons, use blob if your text is case-sensitive.

90

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 90

❑ 65537–1677215 characters: Use mediumtext if your text does not need to be case-
sensitive, use mediumblob if your text is case-sensitive.

❑ 1677216–4294967295 characters: Use longtext if your text does not need to be case-
sensitive, use longblob if your text is case-sensitive.

❑ Yes. It may contain letters or numbers, but it must be one of a finite number of values. Use enu.

❑ No. It will consist of dates and/or times.

Use timestamp if you need to store the time and date the information was entered or updated.
Any other, date only: use date. If you need to store date and time both, use datetime. If you
need only the year, use year.

❑ No. It will consist only of numbers, and mathematical functions will be performed on this field.

❑ Integers from -127 to 127, use tinyint.

❑ Integers from -32768 to 32767, use smallint.

❑ Integers from -8388608 to 8388607, use mediumint.

❑ Integers from -2147483648 to 2147483647, use int.

❑ Integers from -9223372036854775808 to 9223372036854775807, use bigint.

❑ Integers from 0 to 255, use tinyint unsigned.

❑ Integers from 0 to 65535, use smallint unsigned.

❑ Integers from 0 to 16777215, use mediumint unsigned.

❑ Integers from 0 to 4294967295, use int unsigned.

❑ Integers from 0 to 18446744073709551615, use bigint unsigned.

❑ Decimals with fixed decimal places, use dec.

❑ No. It will consist of only numbers, but mathematical functions will not be performed on this
field. Use the preceding guidelines for text/number mix in the field.

If your field requirements do not fall into any of the previous categories, check Appendix D for a com-
plete list of all available field types. If you are still unsure about what type of field you need, you can
also check the documentation at the MySQL source Web site, www.mysql.com.

null/not null
Your MySQL server also wants to know whether or not the field can be empty. You do this with the null
or not null option. null tells MySQL that it is okay if nothing is stored in the field, and not null tells
MySQL to require something, anything, to be stored there. If a field has been defined as not null and
nothing is entered by the user, an error pops up.

Don’t forget that a number zero is different from a null entry.

Indexes
MySQL uses indexes to expedite the process of searching for a particular row of information. Here’s how
indexes work: Imagine you have a room full of stacks and stacks of receipts from everything you have

91

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 91

ever bought in your life. Then you find you have to return some zippered parachute pants you bought
in 1984, but unfortunately you need the receipt. So you start sifting through the massive stacks of
papers. Lo and behold, five days later you find the receipt in the last pile in the room. After cursing to
yourself that perhaps you should get a little more organized, you realize you could at least group them
by year of purchase. And then you start getting really organized and group them further into categories,
such as apparel, 8-track tapes, and so on. So the next time you need to return something you purchased
many years ago, you can at least jump to the correct pile and even know what category to look in. Makes
sense, right?

Now imagine that your data is stored willy-nilly in your table so that every time you wanted to search
for something, it would start at the first record and make its way down through all the rows until it
found what it was looking for. What if you had 10,000 rows and the one you happened to be looking for
was at the very end? Pull up your chair and take your shoes off, because it could be a while.

By using an internal filing system, MySQL can jump to the approximate location of your data much
more quickly. It does this through the use of indexes, also known as keys. In our preceding “receipt”
example, you decided to group your receipts by year, so if your receipts were stored in a database, an
index entry would be “year.” You also decided to further group your receipts, so another index would
be “category.”

MySQL requires at least one index on every table, so that it has something to go by. Normally, you would
use a primary key, or unique identifier that helps keep the data separate. This field must be “not null”
and “unique”; an example would be a customer ID number to keep your customers separate. (You could
easily have two “John Smiths,” so you need a way to tell the difference.) In your “receipts” table exam-
ple, you would create a primary key and assign each receipt its own identifying number so you can tell
each receipt apart.

MySQL also provides a feature that allows a value in a field to be automatically incremented by one.
This auto_increment parameter is useful for making sure your primary key is being populated with
unique numbers.

Unique
We all like to think we’re unique, but when this parameter is turned on, MySQL makes sure that abso-
lutely no duplicates exist for a particular field. Typically, this is used for only the primary key in your
table, but it can be used with any field.

For example, what if you ran a contest in which only the first person from every state who visited would
be allowed to join your Web site? You could use the unique parameter; then anyone who tries to insert
data into your database from a state where someone has already filled the slot will get an error message.

Auto Increment
Say you have a field that you want to automatically increase by one whenever a new record is added.
This can be a quite useful function when assigning ID numbers. You don’t have to worry about what the
last ID number was; the field automatically keeps track for you.

You can designate a field to be auto incremented by simply adding this command when setting up your
table. You can also determine what the first number in the count will be, if you don’t want it to be 1. You
will see this in action later in the chapter.

92

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 92

Other Parameters
There are other specifications you can make when creating your database, but these are for more
advanced MySQL users. For a complete list of these parameters, we encourage you to visit the source:
www.mysql.com.

Types of MySQL Tables
Now that you understand some of the general features of tables, you should know that there are
different types of tables. There are five main types of tables in the current version of MySQL:

❑ MyISAM

❑ ISAM

❑ HEAP

❑ InnoDB

❑ BDB

A brief summary of each of these types follows, but if you would like to find out more about them, we
encourage you to visit the source at www.mysql.com.

MyISAM
This is the default table and will usually be sufficient for the average user’s needs. It supports all the
field types, parameters, and functions we’ve talked about.

ISAM
This is basically the same as the MyISAM table, except that it can’t handle data larger than 4GB and the
data is stored in a machine-specific format; this means it isn’t portable across operating systems. The
maximum key length is 256, which means that blob and text fields can’t be indexed.

There are other differences that you can read about at the mysql.com Web site.

This table type will no longer be available in PHP5.

HEAP
These are mostly used for temporary tables because of their incredible speed, but they don’t support a
lot of the common features of the MyISAM table, such as auto_increment and blob/text columns.
This type should be used in unique circumstances only. You might use it, for example, if you were work-
ing with user logs and you wanted to store the information in a temporary table to massage the data, but
you didn’t necessarily need to keep the data long-term.

InnoDB
This type, along with the BDB type, is considered to be “transaction safe,” which means that you can
recover data from crashes. It is meant for extremely large and frequently accessed applications. It fea-
tures a “row-locking” mechanism to prevent users from attempting to change or add the same row to

93

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 93

the table. According to the source Web site, one instance of this type of table has been shown to support
800 inserts and updates per second—not too shabby! You can also read more about this type at its own
Web site: www.innodb.com.

BDB
BDB, or BerkeleyDB, is the other type of table that is “transaction safe.” It is actually its own entity that
works closely with the MySQL server and can be downloaded from www.sleepycat.com. Like InnoDB
tables, it is meant to support very large applications with literally thousands of users attempting to
insert and update the same data at the same time. There is a complete reference manual available at its
source Web site, which we invite you to read.

MySQL Syntax and Commands
Although it is quite possible to access MySQL directly through a shell command prompt, for the pur-
poses of this book, we are going to access it through PHP. Regardless of the mode by which the MySQL
server gets its information and requests, the syntax is basically the same.

Typically, you keep the MySQL commands in all caps, although this is not necessary. The purpose of this
is to help keep the MySQL syntax separate from the variables and table or database names.

Common commands we will be using in this book include:

❑ CREATE: Creates (duh) new databases and tables

❑ ALTER: Modifies existing tables

❑ SELECT: Chooses the data you want

❑ DELETE: Erases the data from your table

❑ DESCRIBE: Lets you know the structure and specifics of the table

❑ INSERT INTO tablename VALUES: Puts values into the table

❑ UPDATE: Lets you modify data already in a table

❑ DROP: Deletes an entire table or database

How PHP Fits with MySQL
You can use MySQL commands within PHP code almost as seamlessly as you do with HTML. There are
numerous PHP functions that work specifically with MySQL to make your life easier, a comprehensive
list of which can be found in Appendix C.

Some of the more commonly used functions are:

❑ mysql_connect ("hostname", "user", "pass"): Connects to the MySQL server.

❑ mysql_select_db("database name"): Equivalent to the MySQL command USE; makes the
selected database the active one.

94

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 94

❑ mysql_query("query"): Used to send any type of MySQL command to the server.

❑ mysql_fetch_rows("results variable from query"): Used to return a row of the entire results of a
database query.

❑ mysql_fetch_array("results variable from query"): Used to return several rows of the entire
results of a database query.

❑ mysql_error(): Shows the error message that has been returned directly from the MySQL server.

You will most likely become very familiar with these commands, and many more!

You can also send any MySQL command to the server through PHP and the mysql_query command,
as in the preceding example. You do this by sending the straight text through PHP either through a vari-
able or through the mysql_query command directly, like this:

$query = “SELECT * from TABLE”;
$results = mysql_query($query);

or

$results = mysql_query(“SELECT * from TABLE”);

The results of your query are then put into a temporary array known as $results, which you’ll learn
more about later.

Connecting to the MySQL Server
Before you can do anything with MySQL, you must first connect to the MySQL server using your spe-
cific connection variables. Connection variables consist of the following parameters, which you must
know before you can connect successfully:

❑ Host name. In our case, it’s the local host because we’ve installed everything locally. You will
need to change this to whatever host is acting as your MySQL server.

❑ User name. We’ve used just the root user for simplicity’s sake, but you may have another user
name that you’ll need to insert to access your specific server.

❑ User name’s password. Again, we’ve used the password that we set up in Chapter 1, but you
need to use your own password.

We issue this connection command with the PHP function called mysql_connect. As with all of our
PHP/MySQL statements, you can either put the information into variables, or leave them as text in
your MySQL query.

Both of the following snippets have the same effect; first:

$host = “localhost”;
$user = “root”;
$pass = “mysqlpass”;
$connect = mysql_connect($host, $user, $pass);

95

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 95

then:

$connect = mysql_connect(“localhost”, “root”, “mysqlpass”);

For the most part, your specific needs and the way you are designing your table dictate what piece of
code you use. Most people use the first method, for security’s sake, and they may even put those vari-
ables in a different file and include them wherever they need to, to make a connection to the database.

So now that we’ve hooked you up with the server, whaddya say we actually do something with a
database?

Looking at a Ready-Made Database
Let’s create the database that you will be using for your movie site. It consists of three tables:

❑ movie table, which stores the names of the movies and information about them

❑ movietype table, which stores the different categories of movies

❑ people table, which stores the names of the actors and directors in the movies

Try It Out Creating a Database
Perform the following steps to create the database and tables:

1. Open your browser and type the following code. This creates our database and the tables you
need to hold the data.

<?php
//connect to MySQL; note we’ve used our own parameters- you should use
//your own for hostname, user, and password
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//create the main database
mysql_create_db(“wiley”)

or die(mysql_error());

//make sure our recently created database is the active one
mysql_select_db (“wiley”);

//create “movie” table
$movie = “CREATE TABLE movie (

movie_id int(11) NOT NULL auto_increment,
movie_name varchar(255) NOT NULL,
movie_type tinyint(2) NOT NULL default 0,
movie_year int(4) NOT NULL default 0,
movie_leadactor int(11) NOT NULL default 0,
movie_director int(11) NOT NULL default 0,
PRIMARY KEY (movie_id),
KEY movie_type (movie_type,movie_year)

96

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 96

) TYPE=MyISAM AUTO_INCREMENT=4 “;

$results = mysql_query($movie)
or die (mysql_error());

//create “movietype” table
$movietype = “CREATE TABLE movietype (

movietype_id int(11) NOT NULL auto_increment,
movietype_label varchar(100) NOT NULL,
PRIMARY KEY (movietype_id)

) TYPE=MyISAM AUTO_INCREMENT=9” ;

$results = mysql_query($movietype)
or die(mysql_error());

//create “people” table
$people = “CREATE TABLE people (

people_id int(11) NOT NULL auto_increment,
people_fullname varchar(255) NOT NULL,
people_isactor tinyint(1) NOT NULL default 0,
people_isdirector tinyint(1) NOT NULL default 0,
PRIMARY KEY (people_id)

) TYPE=MyISAM AUTO_INCREMENT=7”;

$results = mysql_query($people)
or die(mysql_error());

echo “Movie Database successfully created!”;

?>

2. Save this file as createmovie.php.

3. Fill the database with this file, which you should save as moviedata.php:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

//insert data into “movie” table
$insert=”INSERT INTO movie (movie_id, movie_name, movie_type, movie_year,

movie_leadactor, movie_director)
VALUES (1, ‘Bruce Almighty’, 5, 2003, 1, 2),

(2, ‘Office Space’, 5, 1999, 5, 6),
(3, ‘Grand Canyon’, 2, 1991, 4, 3)”;

$results = mysql_query($insert)
or die(mysql_error());

//insert data into “movietype” table
$type=”INSERT INTO movietype (movietype_id, movietype_label)

VALUES (1,’Sci Fi’),

97

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 97

(2, ‘Drama’),
(3, ‘Adventure’),
(4, ‘War’),
(5, ‘Comedy’),
(6, ‘Horror’),
(7, ‘Action’),
(8, ‘Kids’)” ;

$results=mysql_query($type)
or die(mysql_error());

//insert data into “people” table
$people=”INSERT INTO people

(people_id, people_fullname, people_isactor, people_isdirector)
VALUES (1, ‘Jim Carrey’, 1, 0),

(2, ‘Tom Shadyac’, 0, 1),
(3, ‘Lawrence Kasdan’, 0, 1),
(4, ‘Kevin Kline’, 1, 0),
(5, ‘Ron Livingston’, 1, 0),
(6, ‘Mike Judge’, 0, 1)”;

$results=mysql_query($people)
or die(mysql_error());

echo “Data inserted successfully!”;
?>

4. First, run createmovie.php from your browser; then run moviedata.php.

How It Works
We hope you didn’t have too many errors when running the previous files and you saw the two “suc-
cess” statements. Although we tried to insert useful comments throughout the code, let’s dissect this
thing one step at a time.

First, we connected to the MySQL server so that we could begin sending MySQL commands and work-
ing with the database and tables. We also wanted to be told if there was an error, and we wanted our
program to immediately stop running. We did this in the first few lines of code:

<?php
//connect to MySQL; note we’ve used our own parameters- you should use
//your own for hostname, user, and password
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

Then we actually created the database itself, and if for some reason the database could not be created,
we told the server to stop running and show us what the problem was:

//create the main database
mysql_create_db(“wiley”)

or die(mysql_error());

We also made sure to select our database so the server would know which database we would be work-
ing with next:

98

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 98

//make sure our recently created database is the active one
mysql_select_db (“wiley”);

Then we began making our individual tables, starting with the movie table. We defined the individual
field names and set up their parameters. We also set the database type and started the table auto incre-
menting of the movie_id at 4 (because we will be entering records 1–3 with the moviedata.php file).
We discuss much more about this feature later on in this chapter, but this gives you a glimpse of things
to come:

//create “movie” table
$movie = “CREATE TABLE movie (

movie_id int(11) NOT NULL auto_increment,
movie_name varchar(255) NOT NULL,
movie_type tinyint(2) NOT NULL default 0,
movie_year int(4) NOT NULL default 0,
movie_leadactor int(11) NOT NULL default 0,
movie_director int(11) NOT NULL default 0,
PRIMARY KEY (movie_id),
KEY movie_type (movie_type,movie_year)

) TYPE=MyISAM AUTO_INCREMENT=4 “;

Once we had our MySQL statement ready to go, we just had to send it to the server with the
mysql_query command. Again, we told the server to stop executing the program and let us know what
the error was, if there was one:

$results = mysql_query($movie)
or die (mysql_error());

We also created a movie type and people tables in much the same way:

//create “movietype” table
$movietype = “CREATE TABLE movietype (

movietype_id int(11) NOT NULL auto_increment,
movietype_label varchar(100) NOT NULL,
PRIMARY KEY (movietype_id)

) TYPE=MyISAM AUTO_INCREMENT=9” ;

$results = mysql_query($movietype)
or die(mysql_error());

//create “people” table
$people = “CREATE TABLE people (

people_id int(11) NOT NULL auto_increment,
people_fullname varchar(255) NOT NULL,
people_isactor tinyint(1) NOT NULL default 0,
people_isdirector tinyint(1) NOT NULL default 0,
PRIMARY KEY (people_id)

) TYPE=MyISAM AUTO_INCREMENT=7”;

$results = mysql_query($people)
or die(mysql_error());

99

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 99

We assume that everything was successful if our program runs all the way to the end, so we echoed our-
selves a success statement, just so we know:

echo “Movie Database successfully created!”;

?>

With our moviedata.php file, we populated the tables with information. As always, we have to connect
to the MySQL server and select the database. (Hint: Wouldn’t this be great as an included file?!)

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

Then we began by inserting data into the movie table. We first listed the columns we would be access-
ing. We then listed the values for each record, as follows:

//insert data into “movie” table
$insert=”INSERT INTO movie (movie_id, movie_name, movie_type, movie_year,

movie_leadactor, movie_director)
VALUES (1, ‘Bruce Almighty’, 5, 2003, 1, 2),

(2, ‘Office Space’, 5, 1999, 5, 6),
(3, ‘Grand Canyon’, 2, 1991, 4, 3)”;

$results = mysql_query($insert)
or die(mysql_error());

We did the same with the other tables, movie type, and people.

//insert data into “movietype” table
$type=”INSERT INTO movietype (movietype_id, movietype_label)

VALUES (1,’Sci Fi’),
(2, ‘Drama’),
(3, ‘Adventure’),
(4, ‘War’),
(5, ‘Comedy’),
(6, ‘Horror’),
(7, ‘Action’),
(8, ‘Kids’)” ;

$results=mysql_query($type)
or die(mysql_error());

//insert data into “people” table
$people=”INSERT INTO people

(people_id, people_fullname, people_isactor, people_isdirector)
VALUES (1, ‘Jim Carrey’, 1, 0),

(2, ‘Tom Shadyac’, 0, 1),
(3, ‘Lawrence Kasdan’, 0, 1),
(4, ‘Kevin Kline’, 1, 0),
(5, ‘Ron Livingston’, 1, 0),

100

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 100

(6, ‘Mike Judge’, 0, 1)”;
$results=mysql_query($people)

or die(mysql_error());

Then, because we instructed our program to die if there is any error, we echoed a success statement to
ourselves to let us know that the entire program executed and we received no errors:

echo “Data inserted successfully!”;
?>

Querying the Database
Once you have some data in the database, you may want to actually retrieve it once in a while. You use
the SELECT statement to choose data that fits your criteria.

Typical syntax for this command is as follows:

SELECT [fieldnames]
AS [alias]
FROM [tablename]
WHERE [criteria]
ORDER BY [fieldname to sort on] [DESC]
LIMIT [offset, maxrows]

You can set numerous other parameters, but these are the most commonly used:

❑ SELECT [fieldnames]: First decide what specific fieldnames you want to retrieve; if you want
to see them all, you simply insert *.

❑ AS: You use the alias to group two or more fieldnames together so that you can reference them
later as one giant variable. An example would be:

SELECT first_name, last_name AS full_name. . . ORDER BY full_name . . .

You cannot use the AS parameter with the WHERE parameter, as this is a limitation of MySQL. When the
WHERE clause is executed, the column value may not be known.

❑ FROM: This is pretty self-explanatory: You just need to name the table or tables you are pulling
the data from.

❑ WHERE: List your criteria for filtering out the data.

❑ ORDER BY: Use this parameter if you want the data sorted on a particular field; if you want the
results returned in descending order, add DESC.

❑ LIMIT: This enables you to limit the number of results returned and offset the first record
returned to whatever number you choose. An example would be:

LIMIT 9, 10

101

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 101

This would show records 10–19. This is a useful feature for showing only a certain number of records on
a page, and then allowing the user to click a “next page” link to see more.

For a complete reference, you are advised to—yet again—visit the source at www.mysql.com.

WHERE, oh WHERE
The beast clause called WHERE deserves its own little section because it’s really the meat of the query. (No
offense to the other guys, but they are pretty much “no brainers.”) WHERE is like a cool big brother that
can really do some interesting stuff:

❑ Comparison operators are the heart of the WHERE clause, and they include the following:

❑ =, <, >, <=, >=, !=

❑ LIKE and %: Oh how we like LIKE. LIKE lets you compare a piece of text or number
and gives you the % as a wildcard.

Example:

SELECT * FROM products WHERE description LIKE “%shirt%”

This gives you any records that have the word or text pattern of “shirt” in the descrip-
tion. Fabulous. (Like, totally.)

❑ Logical operators are also accepted in the WHERE clause:

SELECT * FROM products WHERE description LIKE “%shirt%” AND price < 25

This gives you all the products that have the word or text pattern of “shirt” in the description
and that have a price of less than $25.

Now that you have the SELECT query down to a science, let’s look at this baby in action, shall we?

Try It Out Using the SELECT Query
Open your text editor and save this file as select.php:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

$query=”SELECT movie_name, movie_type
FROM movie
WHERE movie_year>1990
ORDER BY movie_type”;

$results=mysql_query($query)

102

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 102

or die(mysql_error());

while ($rows=mysql_fetch_array($results)) {
extract($rows);
echo $movie_name;
echo “ - “;
echo $movie_type;
echo “
”;

}

?>

How It Works
You should see the screen shown in Figure 3-1 after running select.php.

Figure 3-1

First, as always, we had to connect to the MySQL server and the specific database. Next we plan out our
query and assign it to the $query variable.

103

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 103

We wanted to choose only the fieldnames movie_name and movie_type because we decided we didn’t
care about seeing the rest of the information contained in the table at this time. If we wanted to retrieve
everything, we simply would have written:

SELECT * FROM ...

but instead we wrote:

$query=”SELECT movie_name, movie_type

Next, we told the server from what table we want to retrieve the information.

FROM movie

Then we gave it the conditions of our query. In this case, we wanted to see only movies made since 1990,
so we wrote:

WHERE movie_year>1990

And we asked the server to sort the results by movie type and ended our query and the PHP line:

ORDER BY movie_type”;

Pretty easy, eh? Let’s try using the foreach function instead of the while function and see how it
works.

Working with PHP and Arrays of Data: foreach
We touched upon arrays in the previous chapter, but there is a handy-dandy PHP function we didn’t
discuss. It’s the foreach function, and it is quite helpful when working with arrays of data from the
database.

The foreach function is similar to the while function if you’re using while to scroll down through a
list of results from your query. Its purpose is to apply a block of commands to every row in your results
set. It is used in this way:

foreach ($row as $value) {
echo $value;
echo “
”;

}

The preceding code would take all the variables in the $row array and list each value with a line break in
between them. You can see this in action in Chapters 4 and 5 and get a better idea of how it can be used.

Try It Out Using foreach
In your select.php file, make the following changes (shown in bold).

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

104

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 104

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

$query=”SELECT movie_name, movie_type
FROM movie
WHERE movie_year>1990
ORDER BY movie_type”;

$results=mysql_query($query)
or die(mysql_error());

while ($rows=mysql_fetch_assoc($results)) {
foreach($rows as $val1) {
echo $val1;
echo “ “;
}

echo “
”;
}
?>

You should see the same results as before, except that there is now no dash between the elements. Pretty
sneaky, huh? Because using mysql_fetch_array actually returns two sets of arrays (one with associa-
tive indices, one with number indices), you see duplicate values if you use this function without clarify-
ing. You can therefore either use mysql_fetch_array(MYSQL_ASSOC) or mysql_fetch_assoc to
perform the same thing and return only one array at a time. We still need to use the while function to
proceed through the selected rows one at a time, but you can see that using foreach applies the same
sets of commands to each value in the array regardless of their contents.

Sometimes you will need to have more control over a specific value, and can’t apply the same formatting
rules to each value in the array, but the foreach function can also come in handy when using formatting
functions such as creating tables. Let’s create another version of the select.php program that illustrates
this.

Open your text editor and save the following as select2.php:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

$query=”SELECT *
FROM movie
WHERE movie_year>1990
ORDER BY movie_type”;

$results=mysql_query($query)
or die(mysql_error());

echo “<table border=’1’>\n”;
while ($rows=mysql_fetch_assoc($results)) {

105

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 105

echo “<tr>\n”;
foreach($rows as $value) {
echo “<td>\n”;
echo $value;
echo “</td>\n”;
}

echo “</tr>
\n”;
}
echo “</table>\n”;
?>

You can see that this would easily show a long string of array variables with a few lines of code, whereas
if we had to echo out each separate variable with the accompanying HTML code, this script would be
quite lengthy.

A Tale of Two Tables
The preceding code is all nice and neat and pretty, but it doesn’t do you a whole lot of good if you don’t
have a secret decoder ring to tell you what those cryptic “movie type” numbers correspond to in plain
English. That information is all stored in a separate table, the movietype table. So how do we get this
information?

There are two ways to get information from more than one table:

❑ Reference the individual tables in your query

❑ Join the individual tables in your query

Let’s try out these methods and then talk about each of them in more detail.

Try It Out Referencing Individual Tables
You can distinguish between two tables in your database by referencing them in the SELECT statement
as follows:

$query = “SELECT table1.field1, table2.field2
FROM table1, table2
WHERE table1.field1 = table2.field3

Change your select2.php program as shown here in bold:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

$query=”SELECT movie.movie_name, movietype.movietype_label
FROM movie, movietype

106

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 106

WHERE movie.movie_type = movietype.movietype_id
AND movie.movie_year>1990

ORDER BY movie_type”;
$results=mysql_query($query)

or die(mysql_error());
echo “<table border=’1’>\n”;
while ($rows=mysql_fetch_assoc($results)) {
echo “<tr>\n”;

foreach($rows as $value) {
echo “<td>\n”;
echo $value;
echo “</td>\n”;
}

echo “</tr>
\n”;
}
echo “</table>\n”;
?>

How It Works
You should now see a table with the movie names and actual words for the type of movie instead of our
cryptic code. The common fields were linked in the WHERE portion of the statement. ID numbers from
the two different tables (fieldname movie_type in the movie table and fieldname movietype_id in
the movietype table) represented the same thing, so that’s where we linked them together.

Try It Out Joining Two Tables
In life as in code, regardless of the circumstances under which two things join together, it is rarely a sim-
ple thing, and more often than not, it comes with conditions and consequences.

In the world of MySQL, joins are also complex things that we discuss in greater detail later; mean-
while, we walk you through a very simple and commonly used join so you can get a taste of what join-
ing is all about.

Make the following changes to select2.php, as shown in bold:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

$query=”SELECT movie_name, movietype_label
FROM movie
LEFT JOIN movietype
ON movie_type = movietype_id
WHERE movie.movie_year>1990
ORDER BY movie_type”;

$results=mysql_query($query)
or die(mysql_error());

107

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 107

echo “<table border=’1’>\n”;
while ($rows=mysql_fetch_assoc($results)) {
echo “<tr>\n”;

foreach($rows as $value) {
echo “<td>\n”;
echo $value;
echo “</td>\n”;
}

echo “</tr>
\n”;
}
echo “</table>\n”;
?>

How It Works
You should see the same result as in the previous example. As you can see, we simply listed all the fields
we wanted to see, regardless of the table they were in. (MySQL will find them as long as the tablename
is referenced there somewhere.) We did this in the first line of the SELECT statement:

SELECT movie_name, movietype_label

Then we told MySQL what tables we wanted to access and what type of join should be used to bring
them together in these statements:

FROM movie
LEFT JOIN movietype

We used the most common LEFT join statement in this case. Although there are other things that go
along with this, the LEFT join in layman’s terms simply means that the second table (movietype in our
example) is dependent on the first table (movie). We are getting the main information from movie, and
“looking up” a bit of information from movietype.

We then told the server which field to use to join them together in this line:

ON movie_type = movietype_id

Again, we don’t need to clarify which table is being used, but if you have overlapping fieldnames across
tables, you can add this if you like, to avoid confusion.

We kept our condition about only showing the movies that were made after 1990, and sorted them by
numerical movie type with these lines:

WHERE movie.movie_year>1990
ORDER BY movie_type”;

And the rest of the code is the same. See, joining wasn’t that bad, was it?

108

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 108

Helpful Tips and Suggestions
Now and then, we all get into a little trouble. Instead of sitting in the corner and sucking your thumb, or
banging your fist against your keyboard (as seen in the infamous “bad day” mpeg floating around the
Internet), relax! We are here to help.

Documentation
The guys over there at MySQL have provided wonderfully thorough documentation covering more than
you ever wanted to know about its capabilities, quirks, and plans for the future. We have stated this time
and time again, but the source Web site really can provide you with the most up-to-date and accurate
information.

You can search the documentation, or even add your own comments if you’ve discovered something
especially helpful that might help out other folks just like you. Because this is all open source, you really
do get a community feeling when you read through the documentation.

Once again, the manual can be found at www.mysql.com.

Using PHPMyAdmin
Okay, now that we’ve given you the task of learning MySQL and PHP on your own from scratch, we’re
going to let you in on a dirty little secret: It’s called PHPMyAdmin and it will probably be your new best
friend.

PHPMyAdmin is another wonderful open source project that enables you to access your MySQL databases
through a GUI. It’s easy to set up and manage, and it makes administering your databases, tables, and data
a breeze. It does have some limitations, but for the most part, it will make you a lot more efficient.

With this software, you can easily:

❑ Drop and create databases

❑ Create, edit, and delete tables

❑ Create, edit, and delete fields

❑ Enter any MySQL statements

❑ View and print table structure

❑ Generate PHP code

❑ View data in table format

You can download the software by visiting the source Web site at www.phpmyadmin.net. This software
works whether your MySQL server is on your local machine, or if it is hosted by a third party.

109

Using PHP with MySQL

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 109

Summary
We’ve covered some pretty fundamental programming concepts here and delve more into those in
future chapters. But for now you should have a pretty good handle on the basics, anyway.

You should have a good understanding of databases and tables and how to insert and retrieve informa-
tion stored within those tables. You should also have a good understanding of how MySQL works with
PHP to make dynamic pages in your Web site. In the next few chapters, we build on this knowledge to
create more complex applications.

Exercises
We have started you on the MySQL/PHP journey, and in the next few chapters we take you places
you’ve never dreamed of. To fine-tune your skills, here are a few exercises to really make sure you know
your stuff.

1. Create a PHP program that prints the lead actor and director for each movie in the database.

2. Pick only comedies from the movie table, and show the movie name and year it was produced.
Sort the list alphabetically.

3. Show each movie in the database on its own page, and give the user links in a “page 1, page 2 . . . “
type navigation system.

110

Chapter 3

07 557440 Ch03.qxd 2/6/04 9:13 AM Page 110

4
Using Tables to Display Data

So now that you can successfully marry PHP and MySQL to produce dynamic pages, what hap-
pens when you have rows and rows of data that you need to display? You need to have some
mechanism for your viewers to easily read the data, and it needs to be in a nice, neat, organized
fashion. The easiest way to do this is to use tables.

In this chapter, we cover the following:

❑ Creating a table to hold the data from the database

❑ Creating column headings automatically

❑ Populating the table with the results of a basic MySQL query

❑ Populating the table with the results of more complex MySQL queries

❑ Making the output user-friendly

Creating a Table
Before you can list your data, you need to set up the structure, column headings, and format of
your table.

Try It Out Defining the Table Headings
Let’s define the table headings for our table.

1. Open your favorite text/HTML editor and enter the following code.

<?php
$movie=<<<EOD
<h2><center>Movie Review Database</center></h2>
<table width=’70%’ border=’1’ cellpadding=’2’

cellspacing=’2’ align=’center’>
<tr>

<th>Movie Title</th>

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 111

<th>Year of Release</th>
<th>Movie Director</th>
<th>Movie Lead Actor</th>
<th>Movie Type</th>

</tr>
</table>

EOD;

echo $movie;
?>

2. Save this file as table1.php and upload it to your Web server.

3. Load your favorite browser and view the page that you have just uploaded.

Your table should look like the one shown in Figure 4-1.

Figure 4-1

How It works
All the code between <<<EOD and EOD; is held in the variable $table, so instead of printing each ele-
ment of the HTML table, we are adding that element to the variable $table. Incidentally, we have left
the border on just to show ourselves that it is actually working.

112

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 112

Then we simply echo the contents of $table. And finally, we close the PHP script using the ?> tag.

By using these two tags, we can use raw HTML code (that is, HTML code that does not need any modifi-
cation at all).

As you may recall from Chapter 2 in the discussion regarding using heredoc, we can change the text
“EOD” to whatever we’d like, but the beginning and ending tags must match. For example, this will
work fine:

$table =<<<HAHAHA
code here

HAHAHA;

but this:

$table =<<<HAHAHA
code here

BOOHOO;

will not work. You will receive an error such as the one shown in Figure 4-2.

Figure 4-2

113

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 113

Note that there must be no spaces after the =<<<EOD and the EOD; tags. In addition, there can be no lead-
ing space, indents, or any other characters on the closing tag line (semicolons are permissible). If there is
even one space, you’ll receive an error. (You can potentially spend hours trying to fix an error as a result
of having a single space after these tags!) Always remember to delete all spaces after these tags.

Now that you can create a table, let’s fill it with some data from your movie review database. After all,
that’s what you’re here for!

Populating the Table
Looking at our empty skeleton of a table gives us the blueprint for how our data will be laid out once it
is retrieved from the database.

Try It Out Filling the Table with Data
As this is quite a large piece of code, we’ll explain what’s going on as we go through it. All changes are in
bold. A few things are taken out from the original script (we’ll soon see who has been paying attention).

1. Open the file table1.php, and with your favorite text/HTML editor make the following
changes to the existing code. We use the databases created in Chapter 3 for the purposes of the
example here.

Remember to replace servername, username, userpassword, and databasename with your
own values.

<?php
$link = mysql_connect(“servername”,”username”,”userpassword”) or

die(mysql_error());
mysql_select_db(“wiley”) or die (mysql_error());

2. Start by making a connection to the database. (You have remembered to change the settings to
reflect your own, haven’t you? Good.)

$query = “SELECT
movie_name,
movie_director,
movie_leadactor

FROM
movie”;

$result = mysql_query($query,$link) or die(mysql_error());
$num_movies = mysql_num_rows($result);

3. Run a SQL query against the database and get the results. And while you are at it, count how
many records were returned from the query.

As we discuss in Chapter 3, we’ve put the SQL words in capital letters. This is good practice, as it
allows you to easily identify what words are field names and which ones are SQL keywords. It is also
good practice to make your SQL query as easy to read as possible. That is why we have written the SQL
query over several lines.

114

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 114

$movie_header =<<<EOD
<h2><center>Movie Review Database</center></h2>
<table width=’70%’ border=’1’ cellpadding=’2’ cellspacing=’2’ align=’center’>

<tr>
<th align=’left’>Movie Title</th>
<th align=’left’>Movie Director</th>
<th align=’left’>Movie Lead Actor</th>

</tr>
EOD;

4. Then enter the block of code that was originally there (minus the echo statement).

Pay attention to the fact that it’s called $movie_header, not $movie (as it was in the first example).

while($row = mysql_fetch_array($result))
{

$movie_name = $row[‘movie_name’];
$movie_director = $row[‘movie_director’];
$movie_leadactor = $row[‘movie_leadactor’];

$movie_details .=<<<EOD
<tr>

<td>$movie_name</td>
<td>$movie_director</td>
<td>$movie_leadactor</td>

</tr>
EOD;

}

$movie_details .=<<<EOD
<tr>

<td> </td>
</tr>
<tr>

<td>Total :$num_movies Movies</td>
</tr>
EOD;

How It Works
The preceding code does quite a lot of work for us, so let’s look at it in more detail.

As you know, the while { } statement loops through the records that have been returned. For each record,
it executes the block of code that is between the brackets. Don’t worry; PHP is smart enough to know how
many records there are and what record number is currently on in this case. There is no danger of having
the wrong values assigned to the wrong record.

The first line within the while loop (after the {) tells the script to pull out the value of the field movie_name
in the current record and put it into a variable called $movie_name. The next four lines do the same thing
(well, almost the same—they simply assign different field values to differently named variables).

115

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 115

Then you come across the familiar tag that you saw at the beginning of this chapter. It’s not quite the
same as the one before because this one has .=<<<EOD instead of just =<<<EOD. So instead of just having
one record’s values, $movie_details contains all of the record values that have been returned. Then at
the end we have included the total number of movies in our database.

By adding a period (.) in front of =<<<EOD, you are adding the current value to the existing values. If
you forget to add the period (.) then all you will get is the last record’s values. That’s because in PHP
$var = “1” means “make $var become equal to the value of 1.”

In the preceding example, notice that we’ve assigned the name of the movie to the variable
$movie_name and then used $movie_name instead of doing the following.

while($row = mysql_fetch_row($result))
{

$movie_details .=<<<EOD
<tr>

<td>$row[‘movie_name’]</td>
</tr>

EOD;
}

The preceding snippet does exactly the same thing, but it would then limit you if you wanted to do any
formatting on the variable’s values (you’ll see what we mean a bit later on).

Try It Out Putting it All Together
The data has now been retrieved, but we need to send it all to the browser so it will display in the table.

1. We assign the $movie_footer variable by entering the following:

$movie_footer =”</table>”;

$movie =<<<MOVIE
$movie_header
$movie_details
$movie_footer

MOVIE;

print “There are $num_movies movies in our database”;
print $movie;

?>

2. Save this file as table2.php and upload it to your Web server.

3. Load that page into your Web browser.

You should see something similar to the screen shown in Figure 4-3.

116

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 116

Figure 4-3

Try It Out Improving Our Table
The table may look pretty, but as in Chapter 3, it doesn’t do us much good if we don’t have our secret
decoder ring to decipher what actors and directors were associated with our movies. You need to link
your tables to pull this information.

1. Modify your table2.php file as shown in bold text:

<?php
$link = mysql_connect(“localhost”,”root”,”mysqlpass”) or die(mysql_error());

mysql_select_db(“wiley”) or die (mysql_error());

$query = “SELECT
movie_name,

movie_director,
movie_leadactor
FROM

117

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 117

movie”;

$result = mysql_query($query,$link) or die(mysql_error());
$num_movies = mysql_num_rows($result);

$movie_header=<<<EOD
<h2><center>Movie Review Database</center></h2>
<table width=’70%’ border=’1’ cellpadding=’2’
cellspacing=’2’ align=’center’>

<tr>
<th>Movie Title</th>
<th>Movie Director</th>
<th>Movie Lead Actor</th>

</tr>

EOD;

function get_director() {
global $movie_director;
global $director;

$query_d = “SELECT people_fullname
FROM people
WHERE people_id=’$movie_director’ “;

$results_d = mysql_query($query_d) or die(mysql_error());
$row_d = mysql_fetch_array($results_d);
extract ($row_d);
$director = $people_fullname;

}

function get_leadactor() {
global $movie_leadactor;
global $leadactor;

$query_a = “SELECT people_fullname
FROM people
WHERE people_id=’$movie_leadactor’”;

$results_a = mysql_query($query_a) or die(mysql_error());
$row_a = mysql_fetch_array($results_a);
extract ($row_a);
$leadactor = $people_fullname;

}

while($row = mysql_fetch_array($result))
{

$movie_name = $row[‘movie_name’];
$movie_director = $row[‘movie_director’];

118

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 118

$movie_leadactor = $row[‘movie_leadactor’];

//get director’s name from people table
get_director($movie_director);

//get lead actor’s name from people table
get_leadactor($movie_leadactor);

$movie_details .=<<<EOD
<tr>

<td>$movie_name</td>
<td>$director</td>
<td>$leadactor</td>

</tr>
EOD;

}

$movie_details .=<<<EOD
<tr>

<td>Total :$num_movies Movies</td>
</tr>
EOD;

$movie_footer =”</table>”;

$movie =<<<MOVIE
$movie_header
$movie_details
$movie_footer

MOVIE;

print “There are $num_movies movies in our database”;
print $movie;

?>

2. Save your file and reload it in your browser. Your screen should now look like that in Figure 4-4.

How It Works
With the functions get_director and get_leadactor added, the script requests that specific informa-
tion be requested from the server for each separate row in the table. This enables you to pull the infor-
mation you want without muddling up your original query. You also cleaned up the formatting for the
last two rows with the change in code near the end of the script.

Congratulations! You have successfully developed a powerful script that will query a database and put
its contents into an HTML table. Give yourself a pat on the back. But like all good explorers, onward we
must go.

119

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 119

Figure 4-4

Who’s the Master?
Now let’s build on the good work that you’ve done so far and add more information and functionality
to your table.

Try It Out Adding Links to the Table
The steps in this section will enable you to load extra information depending on the movie that you
click. This requires you to do the following:

1. Open table2.php in your favorite text/HTML editor and add the lines of code that appear
in bold.

We haven’t displayed the whole page of code, as we’re sure you know it by heart already.

$query = “SELECT
movie_id,
movie_name,
movie_director,
movie_leadactor
FROM

120

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 120

movie”;

$result = mysql_query($query,$link) or die(mysql_error());
$num_movies = mysql_num_rows($result);

while($row = mysql_fetch_array($result))
{

$movie_id = $row[‘movie_id’];
$movie_name = $row[‘movie_name’];
$movie_director = $row[‘movie_director’];
$movie_leadactor = $row[‘movie_leadactor’];

//get director’s name from people table
get_director($movie_director);

//get lead actor’s name from people table
get_leadactor($movie_leadactor);

$movie_details .=<<<EOD
<tr>

<td><a href=’movie_details.php?movie_id=$movie_id’title=
‘Find out more about $movie_name’>$movie_name</td>

<td>$director</td>
<td>$leadactor</td>

</tr>
EOD;

}

2. Save the file as table3.php, upload the file to your Web server, and open the page with your
browser.

Your screen should look like that in Figure 4-5.

How It Works
You should notice a change between Figure 4-4 (table2.php) and Figure 4-5 (table3.php). You now
have links to more detailed information about each movie for your visitor to click.

The first change made in the previous section altered the MySQL query to include the $movie_id field.

Then we added the new field to the results set returned from the query. (Otherwise, we’d just be selecting a
field and not actually doing anything with it, and what’s the point of that?)

The final change created the HTML code that produces a hyperlink on the movie name. We’ve also
added a nice little touch with the inclusion of “tooltips” for each of the movies in the list. Unfortunately,
some Web browsers don’t support this (apologies to those of you who have such browsers).

So now that the changes have been made, what does it actually do?

Place your mouse over some hyperlinks, and if you view your status bar, you’ll see that each link is
unique and is created dynamically.

This page is known as the “master page,” and the page that we are going to link to is known as the
“child page.”

121

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 121

Good, eh? No more having to type lots of different hyperlinks (what a bore that used to be).

Figure 4-5

Try It Out Adding Data to the Table
Before you can go any further, you need to add some data to your existing database that you can use for
your movie details. If you recall from Chapter 3, for each movie, you currently have the movie name,
director, lead actor, type, and year of release. Let’s also add the running time, how much the movie
made, and how much it cost to produce. For all you sticklers out there, a word of warning: the dollar
amounts we are using are for instructional purposes only. In fact, we have no idea how much money these
movies actually made, nor how much they cost to produce. Work with us on this one, okay?

1. Open your text editor and type the following code:

<?php
$link = mysql_connect(“localhost”,”root”,”mysqlpass”) or die(mysql_error());

mysql_select_db(“wiley”) or die (mysql_error());

//alter “movie” table to include running time/cost/takings fields
$add = “ALTER TABLE movie ADD COLUMN (

movie_running_time int NULL,
movie_cost int NULL,

122

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 122

movie_takings int NULL)”;
$results = mysql_query($add)

or die(mysql_error());

//insert new data into “movie” table for each movie
$update=”UPDATE movie SET

movie_running_time=102,
movie_cost=10,
movie_takings=15

WHERE movie_id = 1”;
$results = mysql_query($update)

or die(mysql_error());

$update=”UPDATE movie SET
movie_running_time=90,
movie_cost=3,
movie_takings=90

WHERE movie_id = 2”;
$results = mysql_query($update)

or die(mysql_error());

$update=”UPDATE movie SET
movie_running_time=134,
movie_cost=15,
movie_takings=10

WHERE movie_id = 3”;
$results = mysql_query($update)

or die(mysql_error());

?>

2. Open this file in your browser. Don’t worry—you will see a blank screen, but your table has
been altered and the information has been entered automatically.

How It Works
First, the script used the ALTER TABLE command to add the appropriate fields into the existing movie
table, and then it used the UPDATE command to insert the new data into those fields. If you aren’t famil-
iar with these commands, you might try rereading Chapter 3.

Try It Out Calculating Movie Takings
Now that you have the data in place, you need to create a new page that you’ll use to display the extra
movie information (movie_details.php).

1. Open your text editor and type the following program:

<?php
$link = mysql_connect(“localhost”,”root”,”mysqlpass”)
or die(mysql_error());

mysql_select_db(“wiley”) or die (mysql_error());

/* Function to calculate if a movie made a profit,
loss or broke even */

123

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 123

function calculate_differences($takings,$cost)
{

$difference = $takings - $cost;

if($difference <0)
{

$difference = substr($difference,1);
$font_color =’red’;
$profit_or_loss = “$”.$difference.”m”;

}elseif($difference >0){
$font_color =’green’;
$profit_or_loss = “$”.$difference.”m”;

}else{
$font_color =’blue’;
$profit_or_loss = “Broke even”;

}
return “”.$profit_or_loss.””;

}
?>

This function will make life easier for you. This will become clearer as we proceed through the
rest of this example.

2. Save this file as movie_details.php.

How It Works
The line that contains the code substr is placed before the $profit_or_loss line because a loss will
return a negative number, and no one actually says, “The movie made a loss of minus 10 million dol-
lars.” Instead we say, “The movie lost 10 million dollars.” However, what happens when the movie
takings are the same as the movie production costs? That’s where the last “else” comes into play. We’ve
covered all eventualities.

The important thing to remember is that in PHP you can very easily create new variables by performing
actions on existing ones. Just because you don’t hold the information in the database doesn’t mean you
can’t create it.

Try It Out Displaying the New Information
Now you are going to alter the original master table to include the new data, and this will serve as your
new “child” table.

1. Add the following code to movie_details.php:

/* Function to get the director’s name from the people table */
function get_director() {

global $movie_director;
global $director;

$query_d = “SELECT people_fullname
FROM people
WHERE people_id=’$movie_director’ “;

$results_d = mysql_query($query_d) or die(mysql_error());
$row_d = mysql_fetch_array($results_d);
extract ($row_d);

124

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 124

$director = $people_fullname;
}

/* Function to get the lead actor’s name from the people table */
function get_leadactor() {

global $movie_leadactor;
global $leadactor;

$query_a = “SELECT people_fullname
FROM people
WHERE people_id=’$movie_leadactor’”;

$results_a = mysql_query($query_a) or die(mysql_error());
$row_a = mysql_fetch_array($results_a);
extract ($row_a);
$leadactor = $people_fullname;

}

$query = “SELECT
*

FROM
movie

WHERE
movie_id =’”.$_GET[‘movie_id’].”’”;

$result = mysql_query($query,$link) or die(mysql_error());

$movie_table_headings=<<<EOD
<tr>

<th>Movie Title</th>
<th>Year of Release</th>
<th>Movie Director</th>
<th>Movie Lead Actor</th>
<th>Movie Running Time</th>
<th>Movie Health</th>

</tr>
EOD;

while($row = mysql_fetch_array($result))
{

$movie_name = $row[‘movie_name’];
$movie_director = $row[‘movie_director’];
$movie_leadactor = $row[‘movie_leadactor’];
$movie_year = $row[‘movie_year’];
$movie_running_time = $row[‘movie_running_time’].” mins”;
$movie_takings = $row[‘movie_takings’];
$movie_cost = $row[‘movie_cost’];

//get director’s name from people table
get_director($movie_director);

//get lead actor’s name from people table
get_leadactor($movie_leadactor);

}

125

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 125

How It Works
Because we’ve already written the functions to get the director’s and lead actor’s names, we “borrowed”
this from the table2.php file. Then we’ve changed the query to return everything in each record, as
opposed to only a few fields. It does mean that we are returning one field that we are not actually using.
The query now contains a WHERE clause. This determines which record we are going to retrieve the data
from.

Take a look at the WHERE clause (it’s not as daunting as it first seems).

We have used $_GET[‘movie_id’] in the WHERE clause. This is the ID of the movie that was passed
from the hyperlink in table3.php.

We’ve also created the variable $movie_table_headings to contain the headings for the fields that
we’ll be using.

The rest of the code is very similar to the code in table3.php. We’ve added four extra fields to the
while control loop.

Didn’t we say previously that returning fields that you don’t need is not good practice? Yes, we did.
However, in this case we are returning only one more field than we need, as opposed to returning many
redundant fields. So are we going against our own advice? Well, to be 100 percent truthful, yes.
However, as we are using the vast majority of fields in each record, PHP will not suffer from this tradeoff
and it is worth it. You would not want to do this when, for example, you want the values of (say) 5 fields
and the record structure contains 50 fields. If you did this in that instance, PHP would be “wasting”
resources to return the other 45 fields.

Try It Out Displaying Movie Details
So now that you’ve arranged to return information from records, what next? Now you put this extra
information to work.

1. Add the following lines of code to movie_details.php.

$movie_health =
calculate_differences($movie_takings,$movie_cost);

$page_start =<<<EOD
<HTML>

<head>
<title>Details and Reviews for: $movie_name</title>

</head>
<body>

EOD;
$movie_details =<<<EOD
<table width=’70%’ border=’0’ cellspacing=’2’ cellpadding=’2’ align=’center’>

<tr>
<th colspan=’6’><u><h2>$movie_name: Details</h2></u></th>

</tr>
$movie_table_headings

<tr>
<td width=’33%’ align=’center’>$movie_name</td>
<td align=’center’>$movie_year</td>
<td align=’center’>$director</td>
<td align=’center’>$leadactor</td>

126

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 126

<td align=’center’>$movie_running_time</td>
<td align=’center’>$movie_health</td>

</tr>
</table>

EOD;
$page_end =<<<EOD

</body>
</HTML>
EOD;
$detailed_movie_info =<<<EOD

$page_start
$movie_details
$page_end

EOD;

echo $detailed_movie_info;
mysql_close();

2. Save the file as movie_details.php, upload the file to your Web server, and browse to
table3.php.

3. Click a movie name and you should see a page similar to Figure 4-6.

Figure 4-6

127

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 127

How It Works
Remember the function we created at the top? When we add the line in Step 1 of the previous “Try It Out”
section, we call the function and ask it to execute. Whatever value is returned from the calculate_
difference function will be placed in the variable $movie_health (after all, if a movie is healthy then it
has made a profit). Passing the $movie_takings and the $movie_costs to the function will produce the
correct result.

When we define the $page_start variable, we start sorting out the actual page structure. By adding the
variable $movie_name, we can get it displayed in the browser’s title bar. You can see now how handy
the =<<<EOD syntax is becoming.

Next, we define the $movie_details variable. This should be fairly self-explanatory. Remember the
$movie_table_headings variable we created previously? All we’ve done is slot it into place within the
$movie_details variable and, hey presto, it appears.

Finally, we define the $page_end variable and bring it all together in the closing lines.

Phew! That was a lot of code there! Now is a good time to take a break and reward yourself (mine’s cof-
fee with milk and two sugars, thanks).

A Lasting Relationship
What if you wanted to find all the reviews for a particular movie? As it stands, you’d need to create a
new SQL query in the movies_details.php page and execute it when the page loads, which would
make a total of two SQL queries in one page. It would work, but it would not be very efficient. (We’re
all efficient coders, aren’t we?) This also results in unnecessary code.

It’s time for us to answer the question, what’s a relationship?

A relationship is a way of joining tables so that you can access the data in all those tables.

The benefit of MySQL is that it is a relational database and, as such, supports the creation of relationships
between tables. When used correctly (this can take a bit of time to get your head around) relationships can
be very, very powerful and can be used to retrieve data from many, many tables in one SQL query.

The best way to demonstrate this is to build upon what we have done so far, so let’s do it.

Try It Out Creating and Filling a Movie Review Table
Before you can access movie reviews in your movie review table, you need to create the table and then
fill it with data.

1. Open your text editor and type the following code:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“wiley”);

128

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 128

//create “reviews” table
$reviews = “CREATE TABLE reviews (

review_movie_id int(11) NOT NULL,
review_date date NOT NULL,
review_name varchar(255) NOT NULL,
review_reviewer_name varchar(255) NOT NULL,
review_comment varchar(255) NOT NULL,
review_rating int(11) NOT NULL default 0,
KEY (review_movie_id),
) TYPE=MyISAM”;

$results = mysql_query($reviews)
or die (mysql_error());

//populate the “reviews” table
$insert = “INSERT INTO reviews

(review_movie_id, review_date, review_name,
review_reviewer_name, review_comment, review_rating)

VALUES
(‘1’, ‘2003-08-02’, ‘This movie rocks!’,

‘John Doe’,’I thought this was a great movie even though
my girlfriend made me see it against my will.’ ,’4’),

(‘1’,’2003-08-01’,’An okay movie’,
‘Billy Bob’,’This was an okay movie. I liked Eraserhead better.’,’2’),
(‘1’,’2003-08-10’,’Woo hoo!’,
‘Peppermint Patty’,’Wish I\’d have seen it sooner!’,’5’),
(‘2’,’2003-08-01’,’My favorite movie’,
‘Marvin Marian’,’I didn\’t wear my flair to the movie but I loved
it anyway.’,’5’),
(‘3’,’2003-08-01’,’An awesome time’,
‘George B.’,’I liked this movie, even though I thought it was
an informational video from our travel agent.’,’3’)”;

$insert_results = mysql_query($insert)
or die(mysql_error());

?>

2. Save this file as createreviews.php, upload it to your server, and open it in your browser.
Your reviews table has now been created and filled!

How It Works
By now you should be familiar with creating tables using MySQL and PHP, and this should be pretty
self-explanatory. If you’re having trouble, you might try going back to Chapter 3.

Try It Out Querying for the Reviews
In this example, you’re going to link two tables (movies and reviews) to show the reviews for a particu-
lar movie. This requires a lot of changes to the movie_details.php page, so you’d best make a copy of
the file (can’t ever be too careful). Then follow these steps:

129

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 129

1. Open movie_details.php in your favorite text/HTML editor.

2. Make the following changes to the code (changes are in bold):

$movie_query = “SELECT
*

FROM
movie

WHERE
movie_id =’”.$_GET[‘movie_id’].”’

$movie_result = mysql_query($movie_query,$link) or die(mysql_error());

And later in the code, change the following:

while($row = mysql_fetch_array($movie_result))
{

$movie_name = $row[‘movie_name’];
$movie_director = $row[‘movie_director’];

3. Add the following lines:

$review_query = “SELECT
*

FROM
reviews

WHERE
review_movie_id =’”.$_GET[‘movie_id’].”’

ORDER BY
review_date DESC”;

$review_result = mysql_query($review_query,$link) or die(mysql_error());

How It Works
We’ve changed the name of $query to $movie_query, and also changed $result to $movie_result.
This was done to ensure that we do not confuse ourselves when accessing the relevant results set
returned from a SQL query. There is also an “order by” clause, which ensures that the most recent
reviews are at the top of the page.

A fundamental mistake that a lot of beginners make is to simply use the same variable names when cre-
ating SQL queries (for example, $sql = “SELECT ...). Let’s assume that we simply copied and pasted,
and then modified the movie query and movie result when it was called query. We’d have two SQL
queries called query and two results sets called $result. When the first result ran it would produce the
expected results, as would the second one. However, if we ever wanted to refer to the results set that
was returned from the first SQL, we’d have a big problem.

Why? The first results set would have been overwritten by the results of the second SQL query. For this
reason, always ensure that you use different names for additional SQL queries and results sets returned
from the query.

130

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 130

Try It Out Displaying the Reviews
The next chunk of code is the function that allows you to display a cool little graphic for the rating that
each film received from the reviewer.

1. Enter this code:

function generate_ratings($review_rating)
{

for($i=0;$i<$review_rating;$i++)
{

$movie_rating .= “ ”;
}
return $movie_rating;

}

2. Now add the code in the following lines immediately below the $movie_table_headings
variable.

$review_table_headings=<<<EOD
<tr>

<th>Date of Review</th>
<th>Review Title</th>
<th>Reviewer Name</th>
<th>Movie Review Comments</th>
<th>Rating</th>

</tr>
EOD;

3. You need to add the next few lines to the page following the review table headings:

while($review_row = mysql_fetch_array($review_result))
{

$review_flag =1;
$review_title[] = $review_row[‘review_name’];
$reviewer_name[] = ucwords($review_row[‘review_reviewer_name’]);
$review[] = $review_row[‘review_comment’];
$review_date[] = $review_row[‘review_date’];
$review_rating[] = generate_ratings($review_row[‘review_rating’]);}

4. Next, you need to add the following lines to the page:

$i=0;
while($i<sizeof($review))
{

$review_details .=<<<EOD
<tr>

<td width=’15%’ valign=’top’ align=’center’>$review_date[$i]</td>
<td width=’15%’ valign=’top’>$review_title[$i]</td>
<td width=’10%’ valign=’top’>$reviewer_name[$i]</td>
<td width=’50%’ valign=’top’>$review[$i]</td>
<td width=’10%’ valign=’top’align=’center’>$review_rating[$i]</td>

</tr>
EOD;

$i++;
}

131

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 131

5. Make the changes (in bold) as shown here. Go slowly, and ensure that you make all the changes
correctly.

<td>$movie_health</td>
</tr>
</table>

EOD;

if($review_flag)
{

$movie_details .=<<<EOD
<table width=’95%’ border=’0’ cellspacing=’2’

cellpadding=’20’ align=’center’>
$review_table_headings
$review_details

</table>
EOD;
}

6. Save the file as movie_details.php (overwriting the existing one—we hope you have made a
backup copy as suggested).

7. Upload to your Web server and load table3.php.

8. Click a movie and you’ll see something similar to Figure 4-7.

Figure 4-7
132

Chapter 4

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 132

How It Works
The generate_ratings function is fairly straightforward. You send it the value that is in the ratings
field for a movie and it creates a “rating” image for that movie and returns it. Notice that we are using
.= (which is similar to .=<<<). This ensures that movies with a rating of more than 1 will get additional
images added to the single rating image

The $review_table_headings variable contains the table headings for the reviews that we have just
pulled out via the previous SQL query. This uses exactly the same concept as the movie table headings in
the previous example. So now we have all the review table headings in a nice, neat variable.

While the script is collecting rows of reviews, if there are any reviews for the movie, you set a flag indi-
cating this using the $review_flag variable. The code creates arrays to hold the values that will be
returned. Why are we putting them into arrays and not just ordinary variables? This allows the variables
to hold data for more than one review for the movie. After all, we expect that there’ll be many, many
reviews for each film. If you didn’t create the review variables as arrays, then you’d return only the last
review for the movie. In the previous discussion, we looked at why we preferred to put the field values
into a variable rather than echo out the field values. Take a look at the line reviewer_name. You’ll notice
that we have placed the line $review_row[‘review_name’] inside the PHP function ucwords. This
allows us to automatically perform the ucwords function (which capitalizes the first letter of each word)
on the value returned from that field.

The code then loops through the array and assigns values to each of the fields that we are going to dis-
play to the user for the review. We use the PHP sizeof function to calculate how many records have
been returned.

Finally, we’ve broken the $movie_details variable up into several smaller chunks and added them
through the use of .=<<<. Just as we have done before, we used an already-defined variable (in this case,
$review_table_headings and $review_details) and just slotted it into the correct place. If the
review flag has been set, then we’ll see the items that make up the reviews (review table headings and
the reviews).

We’ve made quite a few changes in this section. But as you can see, the changes have been well worth it.
Now you know how to use MySQL to create relationships between tables. We successfully retrieved all
the reviews from the review table depending on the movie_id variable. We also looked at using the
$_GET superglobal variable to pass values from one page to another.

Summary
We’ve shown you how to work with HTML tables to display your data, how to pull data from more than
one database table and have it displayed seamlessly with data from another table, and how to create
dynamic pages that display detailed information about the rows in your database. You should also be
able to include those nifty little images to graphically display data to your Web site visitors.

What more could you possibly need to know about PHP and MySQL? Plenty!

133

Using Tables to Display Data

08 557440 Ch04.qxd 2/6/04 9:13 AM Page 133

5
Form Elements: Letting

the User Work with Data

An interactive Web site requires user input, which is generally gathered through forms. As in
the paper-based world, the user fills in a form and submits its content for processing. In the Web-
application instance, the processing is performed by a PHP script, not a sentient being. Hence, the
script requires coded intelligence.

When you fill in a paper form, you generally use a means to deliver its content (for example, the
postal service) to a known address (such as a mail order bookstore). The same logic applies to
online forms. An HTML form is sent to a specific location and processed.

In HTML, the form element is rather simple; it states where and how it will send the contents of
the elements it contains once submitted. At this point, PHP comes into play. Your PHP script
receives the data from the form and uses it to perform an action, such as updating the contents
of a database, sending an e-mail, testing data format, and so on.

PHP uses a set of simple yet powerful expressions that, once combined, provide you with the means
to do virtually anything you want.

In this chapter, you begin to build a simple application that allows you to add, edit, or delete
members of a data set (in this instance, movies, actors, and directors). This chapter welcomes you
into a world of PHP/MySQL interaction by covering:

❑ Creating forms using buttons, text boxes, and other form elements

❑ Creating PHP scripts to process HTML forms

❑ Mastering $_POST and $_GET to retrieve data

❑ Passing hidden information to the form processing script via hidden form controls and
a URL query string

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 135

Your First Form
As a wise man once said, every journey starts with a single step. To start this particular journey, we will
focus on a very simple form. It will include only a text field and a submit button in a table layout. The
processing script will display only the value entered in the text field.

Try It Out Say My Name
In this exercise, you are going to get PHP to respond to a name entered in a form. This is a simple varia-
tion of the typical “hello world,” allowing you to take your first step into interactivity.

1. Create a text file named form1.html and open it in your favorite text editor.

2. Enter the following code:

<html>
<head>

<TITLE>Say My Name</TITLE>
</head>
<body>
<form action=”formprocess1.php” method=”post”>

<table border=0 cellspacing=1 cellpadding=3 bgcolor=”#353535” align=”center”>
<tr>

<td bgcolor=”#ffffff” width=”50%”>
Name

</td>
<td bgcolor=”#ffffff” width=”50%”>

<INPUT type=”TEXT” name=”Name”>

</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”SUBMIT” value=”Submit”>

</td>
</tr>

</table>
</form>
</body>
</html>

3. Create another empty file named formprocess1.php and enter the following code:

<html>
<head>

<title>Say My Name</title>
</head>
<body>
<?php

echo “Hello “.$_POST[‘Name’];
?>

<PRE>

136

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 136

DEBUG :
<?php

print_r($_POST);
?>

</PRE>
</body>
</html>

4. Upload the files to your Apache work directory.

5. Type test in the name text box (as shown in Figure 5-1) and click the Submit button.

You can see two distinct parts on the resulting page: the “Hello Test” portion and the DEBUG part
shown in Figure 5-2.

You just coded your first form processing script.

Figure 5-1

137

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 137

Figure 5-2

How It Works
As with any recipe, it’s a good idea to start working on forms by understanding the ingredients. To
familiarize yourself with forms, you’ll need some background information about HTML form elements
and a few new PHP functions.

Let’s start with the HTML form.

HTML references can be found at the World Wide Web Consortium Web site at www.w3.org/MarkUp.

FORM Element
First, we’ll introduce the first HTML element you’ll need: FORM. It delimits the form area in the page and
holds the fields you want your Web site users to fill in.

<FORM action=”formprocess1.php” method=”post”>
<!—form controls here—>
</FORM>

138

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 138

Notice that the FORM element has an ending tag and two attributes.

The first attribute (action) is the recipient page address (the form processing script).

The second attribute (method) is the way in which you will send the data to the recipient. There are two
separate ways of sending a form to its processing script: the POST and the GET methods.

The POST method (see Figure 5-3) takes the data from the form fields and sends it through an HTTP
header. In this case, the data cannot be seen in the URL.

Figure 5-3

The GET method gets the data from the form fields, encodes it, and adds it to the destination URL, as
shown here:

http://localhost/formprocess1.php?field1=valuea&field2=value%20b

As you can see, the field names and their values are easy to read inside the script URL.

INPUT Element
The second new HTML element included here is INPUT. This is the basis of most forms and can be used
in many different ways to gather many different types of information.

In this case, we use two different types of INPUT: the text and submit types.

Here’s the INPUT TEXT type:

<INPUT type=”TEXT” name=”Name”>

The INPUT text type is a standard, single-line text box. As with all form controls, it needs a name so that
the processing script can access its content using the following syntax:

139

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 139

<?php
echo $_POST[‘Name’]; // will display the value typed in

?>

And here’s the INPUT submit type:

<INPUT type=”SUBMIT” name=”SUBMIT” value=”Submit”>

As its name cleverly hints, the submit element displays a button that, when pressed, submits the form.
The button text is set through the value attribute. As mentioned for the text INPUT, this form control
needs a name for a processing reference.

Processing the Form
In this little script, you may have noticed a few new functions and syntaxes, and you are probably curi-
ous about them.

The first form processing script is an interactive variation of the famous “hello world,” but in this case it
displays “hello” and the name you type in the text box.

To make this happen, you need to print the value of the text field you filled in on the form. You know the
echo command, so let’s move on to the other piece, $_POST[‘Name’].

The $_POST global array contains all form data submitted with the POST method. The array index of
the field is its name. See the next item for hints on checking the content of your $_POST array using the
print_r() function.

<?php
echo “Hello “.$_POST[‘Name’];

?>

In this example, $_POST[‘name’] displays what you entered in the “Name” box.

Hello test

(A debugging tip: Dump the global arrays.)

You might wonder what print_r($_POST) does. It simply dumps the whole contents of the super global
$_POST array to the output. This is a great way to debug your forms, as you will see.

The $_POST array, as with all arrays, has case-sensitive indexes. Use this tip to check for case and display
the state of your objects when building a script.

Your formprocess1.php script outputs something similar to the following:

Hello test
DEBUG :
Array
(

140

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 140

[Name] => test
[SUBMIT] => Submit

)

When receiving the submitted form, PHP sets the POST array with the data that the form sends. As with
any array, you can directly access any of the indexes by name. In this instance, you can clearly see that
the Name index contains the value test. This trick works for all forms, even the most complicated ones.

Let’s move on to see how you can use more HTML elements during form input to interact with the user.

Driving the User Input
The form in this example allows you to lead the user to choose values from a set of values you provide.
Defining a value set is done through the use of specific HTML elements, such as list boxes, radio but-
tons, and checkboxes.

Two kinds of predefined user input are in HTML forms. The first kind allows you to choose one item from
the available options; the second allows the user to choose multiple items. Drop-down list boxes and radio
buttons allow for one selection only. Checkboxes and multiline list boxes provide for multiple choices.

Try It Out Limiting the input choice
Let’s start with the simple type of input. Follow these steps to create a single selection list:

1. Create a text file named form2.html and open it in your favorite text editor.

2. Enter the following code:

<html>
<head>

<TITLE>Greetings Earthling</TITLE>
</head>
<body>
<form action=”formprocess2.php” method=”post”>

<table border=0 cellspacing=1 cellpadding=3 bgcolor=”#353535”
align=”center”>

<tr>
<td bgcolor=”#ffffff” width=”50%”>

Name
</td>
<td bgcolor=”#ffffff” width=”50%”>

<INPUT type=”TEXT” name=”Name”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Greetings

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”Greeting”>

141

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 141

<option value=”Hello”>Hello</option>
<option value=”Hola”>Hola</option>
<option value=”Bonjour”>Bonjour</option>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” width=”50%”>
Display Debug info

</td>
<td bgcolor=”#ffffff” width=”50%”>

<INPUT type=”checkbox” name=”Debug” CHECKED>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”SUBMIT” value=”Submit”>

</td>
</tr>

</table>
</form>
</body>
</html>

3. Create another empty file named formprocess2.php and enter the following code:

<html>
<head>

<TITLE>Greetings Earthling</TITLE>
</head>
<body>
<?php

if ($_POST[‘Debug’] == “on”){
?>
<PRE>
<?php

print_r($_POST);
?>
</PRE>
<?php

}
?>

<p align=”center”><?php echo $_POST[‘Greeting’]?> <?php echo $_POST[‘Name’]?></p>
</body>
</html>

4. Save formprocess2.php and upload it to your work folder.

5. Call the page from your browser.

As you can see from the resulting page displayed in Figure 5-4, the form got a bit more
complicated.

142

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 142

Figure 5-4

6. Enter your name and click the Submit button.

The display page that appears, shown in Figure 5-5, is rather simple; it holds only debug infor-
mation and a greeting.

How It Works
As you see, this code uses logic similar to that in formprocess1.php. Two fields have been added (a
drop-down list box and a checkbox).

formprocess2.php does the same thing as formprocess1.php but with an added twist. It displays the
debugging information only if the Debug checkbox is selected and greets you using any of the drop-
down list choices in the subsections that follow.

143

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 143

Figure 5-5

INPUT Checkbox Type
The checkbox can represent only two possibilities: When checked, it passes the value on to the $_POST
array, but otherwise it just doesn’t send anything. This is a great way to represent Boolean typed data.

* SELECT element
<SELECT name=”Greeting”>

<option value=”Hello”>Hello</option>
<option value=”Hola”>Hola</option>
<option value=”Bonjour”>Bonjour</option>

</SELECT>

The SELECT element (also known as list) allows you to display a fixed list of choices from which the user
has to choose an element. The item selected won’t be sent as displayed but will be sent as its value. In
this example, the value and its display are identical, but in a database-driven system you would proba-
bly see record IDs as the values and their text label as list choices. A good example is a product number
and its name.

144

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 144

When using lists, be sure to set the value part of the OPTION items. If these are not set, the list looks all
the same but is totally useless because all choices will send the same null value.

One Form, Multiple Processing
Forms always react in a predefined way based on how you code your processing script to handle the
data that the user sends to the system. A single form can have more than one defined action by using dif-
ferent submit buttons.

Try It Out Radio Button, Multi-Line List Boxes
In the following example, you create a form that prepares a search and creates a movie/actor/director
interface.

1. Create a text file named form3.php and open it in your text editor. Then type the following
code:

<html>
<head>

<TITLE>Add/Search Entry</TITLE>
</head>
<body>
<form action=”formprocess3.php” method=”post”>

<table border=0 cellspacing=1 cellpadding=3 bgcolor=”#353535” align=”center”>
<tr>

<td bgcolor=”#ffffff” width=”50%”>
Name

</td>
<td bgcolor=”#ffffff” width=”50%”>

<INPUT type=”TEXT” name=”Name”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
What you are looking for

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”MovieType”>
<option value=”” SELECTED>Select a movie type...</option>
<option value=”Action”>Action</option>
<option value=”Drama”>Drama</option>
<option value=”Comedy”>Comedy</option>
<option value=”Sci-Fi”>Sci-Fi</option>
<option value=”War”>War</option>
<option value=”Other”>Other...</option>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Add what?

</td>

145

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 145

<td bgcolor=”#ffffff”>
<INPUT type=”radio” name=”type” value=”Movie” CHECKED>
Movie

<INPUT type=”radio” name=”type” value=”Actor”>
Actor

<INPUT type=”radio” name=”type” value=”Director”>
Director

</td>
</tr>
<tr>

<td bgcolor=”#ffffff” width=”50%”>
Display Debug info

</td>
<td bgcolor=”#ffffff” width=”50%”>

<INPUT type=”checkbox” name=”Debug” CHECKED>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”Submit” value=”Search”>
<INPUT type=”SUBMIT” name=”Submit” value=”Add”>

</td>
</tr>

</table>
</form>
</body>
</html>

2. Create another file named formprocess3.php and edit it to add the following code:

<?php
if ($_POST[‘type’] == “Movie” && $_POST[‘MovieType’] == “”){

header(“Location:form3.php”);
}
$title = $_POST[‘Submit’].” “.$_POST[‘type’].” : “.$_POST[‘Name’];

?>
<html>
<head>

<TITLE><?php echo $title?></TITLE>
</head>
<body>
<?php

if ($_POST[‘Debug’] == “on”){
?>
<PRE>
<?php

print_r($_POST);
?>
</PRE>
<?php

}
$name = $_POST[‘Name’];
$name[0] = strtoupper($name[0]);

146

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 146

if ($_POST[‘type’] == “Movie”){
$foo = $_POST[‘MovieType’] .” “. $_POST[‘type’];

} else {
$foo = $_POST[‘type’];

}
?>

<p align=”center”>
You are <?php echo $_POST[‘Submit’]?>ing
<?php echo $_POST[‘Submit’] == “Search” ? “for “ : “”;?>
a <?php echo $foo ?>
named “<?php echo $name?>”

</p>
</body>
</html>

3. Start your browser and open http://localhost/myform3.php.

The form shown in Figure 5-6 appears. Notice that the form has two submit buttons. One is
labeled Search, the other Add.

Figure 5-6

147

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 147

4. Type Kevin Kline in the Name field.

5. Leave Movie Type as is; then move on to the Item Type field, in which you’ll select Actor.

6. Clear the Display Debug Dump checkbox if you like; then click the Search button.

The results appear, as shown in Figure 5-7.

Figure 5-7

Now play around a bit with the form. Look at the output and how it changes when you modify the data.

How It Works
You just coded a simple form with two possible actions. Depending on the button you click and the data
you choose to enter, this code outputs different information.

What’s new in the form page itself? A group of radio buttons and a new submit button have been added.
Let’s have a closer look at these.

148

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 148

Radio INPUT Element
The radio button is a very simple element. By default, if no radio button is specified as CHECKED, no
default choice is made. Always remember that choosing the default value is a very important part of
building a form. Users often leave defaults in forms. (It is a form of laziness, so to speak.)

<INPUT type=”radio” name=”type” value=”Movie” CHECKED>
Movie

<INPUT type=”radio” name=”type” value=”Actor”>
Actor

<INPUT type=”radio” name=”type” value=”Director”>
Director

For multiple radio buttons to be linked together to form a group and be processed as a single form ele-
ment, they need to share the same name and different values (quite obviously). In the preceding code,
the name is always type. This tells the browser that selecting one of the radio buttons clears the others.

Multiple Submit Buttons
As with radio buttons, submit buttons share the same name with a different value. Clicking one of these
buttons simply submits the form.

<INPUT type=”SUBMIT” name=”Submit” value=”Search”>
<INPUT type=”SUBMIT” name=”Submit” value=”Add”>

As you can see in the DEBUG block, the submit button sends its own information to the script. You can
access the submit button value through the $_POST[‘Submit’] array.

Basic Input Testing
What about the processing script? What’s new in there?

The following code checks that the item type is Movie, and, if it is, it checks that the user has selected a
valid movie type from the list. If he or she has not, he or she is redirected to the form page.

The test is a simple if with an and operator. (In simple Monopoly parlance, if the item type is movie
and the movie type is not specified, you go back to square one and you do not collect $2,000.)

if ($_POST[‘type’] == “Movie” && $_POST[‘MovieType’] == “”){
header(“Location:form3.php”);

}
...

The header function allows you to send a raw HTTP header. It is useful for handling security problems
and access restrictions. In this instance it redirects the user to the specified page.

A very common error with beginning PHP users is that they fail to understand a very simple fact: Once
sent, the headers cannot be sent again. This means that any echo, any space, any tabulation left before
the call to the header function will trigger a warning in the script execution. Here are a few typical
errors:

149

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 149

<?php
header(“Location:form3.php”);
?>

This code will fail. The empty line starting the script will send the headers with a carriage return and a
line feed (depending on the operating system).

<?php
echo “foobar”;
header(“Location:form3.php”);
?>

This code will fail. The echo function will send the headers with the text “foobar”.

Dynamic Page Title
This code is rather simple to understand: You don’t start outputting as soon as you start executing the
PHP script. What often happens is that at the start of the scripts there will be a check for intrusion and
context verification. In this instance, you dynamically set the page title using the action type and item
type you will use to handle the page.

...
$title = $_POST[‘Submit’].” “.$_POST[‘type’].” : “.$_POST[‘Name’];

?>
<html>
<head>

<TITLE><?php echo $title?></TITLE>
...

Manipulating a String as an Array to Change
the Case of the First Character

Single string characters can be accessed through a very simple syntax that is similar to array index
access. Specify the index of the character you want to access and voilà! To change the case of a character
or an entire string, use the strtoupper() function:

...
$name = $_POST[‘Name’];
$name[0] = strtoupper($name[0]);
...

We could have used the ucfirst() function (which essentially does what the code explained previ-
ously did), but a bit of creativity can’t hurt.

Ternary Operator
This line holds a ternary comparison operation. Ternary operators are not PHP-specific; many other lan-
guages, such as C, use them.

150

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 150

...
<?php echo $_POST[‘Submit’] == “Search” ? “for “ : “”;?>
...

These work in a very simple way and can be compared to an if-else structure:

[expression]?[execute if TRUE]: [execute if FALSE];

The ternary operator is a known maintainability hazard. Using this operator will make your code less
readable and will probably cause errors during maintenance stages.

Using Them All
Now that you know most of the form elements, let’s create a skeleton for the application. The system
will add new items or search for existing ones. As we have no database interfacing so far, this form will
just display the information typed in.

Try It Out Hidden and password input
1. Create a file named form4.php and open it in your text editor.

2. Enter the following code:

<?php
// Debug info Display
function debugDisplay(){
?>
<PRE>
$_POST
<?php

print_r($_POST);
?>
$_GET
<?php

print_r($_GET);
?>
</PRE>
<?php
}

// Switch on search/add wizard step
switch($_GET[‘step’]){
// #################
// Search/Add form
// #################

case “1”:
$type = explode(“:”,$_POST[‘type’]);
if ($_POST[‘Submit’]==”Add”){

require($_POST[‘Submit’].$type[0].’.php’);
} else {

if ($_POST[‘type’] == “Movie:Movie” &&

151

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 151

$_POST[‘MovieType’] == “”){
header(“Location:form4.php”);

}
?>
<h1>Search Results</h1>
<p>You are looking for a “<?php echo $type[1]?>” named “<?php echo
$_POST[‘Name’]?>”</p>
<?php

}
if ($_POST[‘Debug’] == “on”){

debugDisplay();
}
break;

// #################
// Add Summary
// #################

case “2”:
$type = explode(“:”,$_POST[‘type’]);

?>
<h1>New <?php echo $type[1]?> : <?php echo $_POST[‘Name’]?></h1>
<?php

switch($type[0]){
case “Movie”:

?>
<p>Released in <?php echo $_POST[‘MovieYear’]?></p>
<p><?php echo nl2br(stripslashes($_POST[‘Desc’]))?></p>
<?php

break;
default:

?>
<h2>Quick Bio</h2>
<p><?php echo nl2br(stripslashes($_POST[‘Bio’]))?></p>
<?php

break;
}
break;

// ###############
// Starting form
// ###############

default:
require(‘startform.php’);
break;

}
?>

3. Create a new file called startform.php, and enter the following code:

<html>
<head>

<TITLE>Multipurpose Form</TITLE>
</head>
<body>
<FORM action=”form4.php?step=1” method=”post”>

152

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 152

<table border=0 width=”750” cellspacing=1 cellpadding=3 bgcolor=”#353535”
align=”center”>

<tr>
<td bgcolor=”#ffffff” width=”30%”>

Name
</td>
<td bgcolor=”#ffffff” width=”70%”>

<INPUT type=”TEXT” name=”Name”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Item Type

</td>
<td bgcolor=”#ffffff”>

<INPUT type=”radio” name=”type” value=”Movie:Movie” CHECKED>
Movie

<INPUT type=”radio” name=”type” value=”Person:Actor”>
Actor

<INPUT type=”radio” name=”type” value=”Person:Director”>
Director

</td>
</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie type (if applicable)

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”MovieType”>
<option value=”” SELECTED>Movie type...</option>
<option value=”Action”>Action</option>
<option value=”Drama”>Drama</option>
<option value=”Comedy”>Comedy</option>
<option value=”Sci-Fi”>Sci-Fi</option>
<option value=”War”>War</option>
<option value=”Other”>Other...</option>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” width=”50%”>
Display Debug Dump

</td>
<td bgcolor=”#ffffff” width=”50%”>

<INPUT type=”checkbox” name=”Debug” CHECKED>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”Submit” value=”Search”>
<INPUT type=”SUBMIT” name=”Submit” value=”Add”>

</td>
</tr>

</table>

153

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 153

</FORM>
</body>
</html>

4. Create another new, empty file named AddMovie.php, in which you will add this code:

<?php
if ($_POST[‘type’] == “Movie:Movie” &&

$_POST[‘MovieType’] == “”){
header(“Location:form4.php”);

}
$title = $_POST[‘Submit’].” “.$_POST[‘type’].” : “.$_POST[‘Name’];
$name = $_POST[‘Name’];
$name[0] = strtoupper($name[0]);

?>
<html>
<head>

<TITLE><?php echo $title?></TITLE>
</head>
<body>
<FORM action=”form4.php?step=2” method=”post”>

<input type=”hidden” name=”type” value=”<?php echo $type[1]?>”>
<input type=”hidden” name=”action” value=”<?php echo $_POST[‘Submit’]?>”>
<table border=0 width=”750” cellspacing=1 cellpadding=3 bgcolor=”#353535”

align=”center”>
<tr>

<td bgcolor=”#ffffff” width=”30%”>
Movie Name

</td>
<td bgcolor=”#ffffff” width=”70%”>

<?php echo $name?>
<input type=”hidden” name=”Name” value=”<?php echo $name?>”>

</td>
</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Type

</td>
<td bgcolor=”#ffffff”>

<?php echo $_POST[‘MovieType’]?>

<input type=”hidden” name=”type” value=”Movie: <?php echo

$_POST[‘MovieType’]?>”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Year

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”MovieYear”>
<option value=”” SELECTED>Select a year...</option>

<?php
for ($year=date(“Y”); $year >= 1970 ;$year—){
?>

154

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 154

<option value=”<?php echo $year?>”><?php echo $year?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Description

</td>
<td bgcolor=”#ffffff”>

<textarea name=”Desc” rows=”5” cols=”60”></textarea>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”SUBMIT” value=”Add”>

</td>
</tr>

</table>
</FORM>
</body>
</html>

5. Create a file named AddPerson.php and enter the following code:

<?php
$title = $_POST[‘Submit’].” “.$_POST[‘type’].” : “.$_POST[‘Name’];
$name = $_POST[‘Name’];
$name[0] = strtoupper($name[0]);

?>
<html>
<head>

<TITLE><?php echo $title?></TITLE>
</head>
<body>
<FORM action=”form4.php?step=2” method=”post”>

<input type=”hidden” name=”type” value=”Person: <?php echo $type[1]?>”>
<input type=”hidden” name=”action” value=”<?php echo $_POST[‘Submit’]?>”>
<table border=0 width=”750” cellspacing=1 cellpadding=3 bgcolor=”#353535”

align=”center”>
<tr>

<td bgcolor=”#ffffff” width=”30%”>
<?php echo $type[1]?> Name

</td>
<td bgcolor=”#ffffff” width=”70%”>

<?php echo $name?>
<input type=”hidden” name=”Name” value=”<?php echo $name?>”>

</td>
</tr>
<tr>

<td bgcolor=”#ffffff”>
Quick Bio

155

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 155

</td>
<td bgcolor=”#ffffff”>

<textarea name=”Bio” rows=”5” cols=”60”></textarea>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”SUBMIT” value=”Add”>

</td>
</tr>

</table>
</FORM>
</body>
</html>

6. Upload the files to your Apache server and launch a browser, entering the address
http://localhost/chapter5/form4.php (adapt this URL to your setup).

A new form, shown in Figure 5-8, pops up, asking for more details.

Figure 5-8

156

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 156

7. Enter the name of the movie you want to add: “Grand Canyon.”

8. Select a date for the year the movie was made (1998, if memory serves).

9. Select Drama in the Movie type list

10. Click the Add button; this takes you to the add form shown in Figure 5-9.

Figure 5-9

11. Type a quick movie description, making sure you enter multiple lines, and press the Enter key
between them.

12. Click the Add button and see how the information is displayed (see Figure 5-10).

157

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 157

Figure 5-10

How It Works
This script is designed around a simple idea: one skeleton script and multiple flesh-and-muscle scripts
doing the job under one URL with query strings.

This raises a question, however: Why use one skeleton script and multiple flesh-and-muscle scripts? One
word: maintainability. One of the things most beginners never think about when they start a new lan-
guage is maintainability. It is a very common error that most people regret.

Let’s say that you have a site you made in the month after reading this book and you made a darn good
job of it for a first site. Six months later you’ve learned a lot and want to improve this site.

At this very moment, the full force of chaos theory hits you square in the face: You can’t read your code
anymore. How unfortunate. Our goal now is to help you to separate things out in such a way that, when
you come back to your code in six months, you won’t have to start from scratch (which, trust me, hap-
pens to most of us).

158

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 158

So, let’s get back to work. How does this thing work, anyway? We discuss the elements you must deci-
pher in the sections that follow.

The Skeleton Script
The skeleton here is the form4.php script. It all revolves around a use of the switch case structure. It
starts with a function definition for the debug display (which now holds the display of the $_GET super
global array).

The trick resides in the fact that the forms will use the POST methods and thus transmit their information
through the $_POST array; the actual page content switching will be made through query strings passed
through the $_GET array.

Each step in the building of the data is guided by the $_GET[‘step’] index value. It holds the informa-
tion passed on by the ?step=1 part of the URL.

Each value of the step has a specific script attached to it.

Default Response
What happens when you call the page the first time and the step URL parameter is not set? Logically
enough, it evaluates the switch condition and finds that it doesn’t match any of the specified cases, so it
executes the default behavior:

switch($_GET[‘step’]){
...

default:
require(‘startform.php’);
break;

}

The require() function gets the content of the file that is specified and includes it in the script at inter-
pretation time. The require() function differs from the include() in that it triggers a fatal error
instead of a warning if the file is not found. In this instance, not having the form script would slightly
reduce our script’s functionality, so we want to know if it doesn’t find the file.

Adding Items
When adding a person or a movie, you need two different forms (at least if you consider that you store
the same data in the database for the actors and directors). So you need a second branching (the first
branching being the step switch) to determine which form will be displayed.

Now we hit a part of the script in which there is a little trick. The list item value is used to store two val-
ues instead of one. The trick is to use a separator, and then to explode the value into an array and access
the piece you need (the explode() function takes each bit of text delimited by the separator and inserts
it as new array elements). Let’s take a closer look.

159

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 159

In this case we have three types of items (Actors, Directors, and Movies), each of which requires a form
to create. But we have decided that, so far, an Actor and a Director form hold the same information. So
we don’t need two different forms, just one. You handle this by adding a tree structure level above the
item level, Person or Movie. Under Person you include the Actor and Director level. The whole point is
to be able to use the new hierarchy level name to name the file so that the including is automatic and
you can add new levels later without too much effort.

In startform.php we have:

<INPUT type=”radio” name=”type” value=”Person:Actor”>
Actor

You can clearly see that the value part of the type element is composed of two different values, sepa-
rated by a semicolon.

In form4.php you have:

...
$type = explode(“:”,$_POST[‘type’]);
if ($_POST[‘Submit’]==”Add”){

require($_POST[‘Submit’].$type[0].’.php’);
}
...

In this script, you retrieve the type element value using the $_POST[‘type’] array index and then use
the explode() function on its content. The explode() function is fairly easy to use; it just needs a
string that specifies the delimiter and a string that holds the text to be exploded.

For example, we have “Person:Actor” as the value to explode and a colon (:) as the delimiter. The
resulting $type variable will be an array holding the pieces of the string cut at each instance of the semi-
colon. If you represent it in the print_r format, you have:

Array
(

[0] => Person
[1] => Actor

)

The goal of having simple file names inclusion is achieved. We have two Add scripts, and one name:
AddPerson.php and AddMovie.php.

require($_POST[‘Submit’].$type[0].’.php’);

This line recomposes our filenames automatically.

160

Chapter 5

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 160

Summary
You’ve learned a lot of about forms in this chapter. Forms are composed of fields. Each field type has a
specific purpose and allows a certain data type to be entered. Text fields can be used to enter text or
numeric data. Lists can be used to enter any type of data and have a limited set of possible values. Lists
are a good way to drive user input when multiple choices are available.

Forms are processed by the PHP script using the super global array $_GET and $_POST, which is a sub-
array of $_QUERY. Each super global array has its use, as you saw, and contributes to making your script
access the form data.

Always remember to keep your forms simple. Some studies have shown that a form with more than 15
items is often too complex for many users to use. (Readability and layout are the keys to having a usable
system.)

161

Form Elements: Letting the User Work with Data

09 557440 Ch05.qxd 2/6/04 9:13 AM Page 161

6
Letting the User Edit

the Database

Retrieving data from a database is all well and good when you’ve fed the database some data.
Most databases don’t generate their own contents (well, none do), and only a few get fed data by
other systems (integrated systems and so on). So we have to feed our system with data that comes
from PHP.

Our database of choice (out of many available) is MySQL, as you have probably figured out. (It’s
in the title of the book, right?)

All database interaction is based on SQL (you will one day encounter XML and other sources, but
let’s not go there now). You know the basic SQL syntax to get data from a table; now let’s look at
the other side of the equation.

Most people use SQL to insert data that PHP modifies or generates. We will try a slightly different
approach and let SQL do its thing.

This chapter covers database editing, including:

❑ Adding entries, which is quite simple, but you will find that adding entries in a relational
database is yet another exercise

❑ Deleting entries without corrupting the database structure and referential integrity

❑ Modifying entries to replace some existing fields with new content in an existing record

Preparing the Battlefield
This may sound a bit Vulcan, but if you want to manage a database, the first logical thing to do is
to create one. To save time, let’s use an existing database to avoid any problems in the coming

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 163

exercises. Create a new empty database in phpMyAdmin named chapter6. In the new-born database,
execute the chapter6.mysql script, which holds the database definition and its start data.

Then you’re ready to go.

Try It Out Setting Up the Environment
First, you need a start page. Follow these steps to create one:

1. Create a new directory called chap6 under your htdocs (or create an alias, if you wish).

2. Create an index.php script and enter the following code:

<?php
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘chapter6’, $link) or die (mysql_error());

?>
<html>
<head>

<TITLE>Movie database</TITLE>
</head>
<body>

<table border=0 width=”600” cellspacing=1 cellpadding=3 bgcolor=”#353535”
align=”center”>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
Movies [ADD]

</td>
<?php

$moviesql = “SELECT
*

FROM
`movie`

“;
$result = mysql_query($moviesql)

or die(“Invalid query: “ . mysql_error());
while($row = mysql_fetch_array($result, MYSQL_ASSOC)){

?>
<tr>

<td bgcolor=”#ffffff” width=”50%”>
<?php echo $row[‘movie_name’]?>

</td>
<td bgcolor=”#ffffff” width=”50%” align=”right”>

<a href=”movie.php?action=edit&id=<?php echo
$row[‘movie_id’]?>”>[EDIT]

<a href=”delete.php?type=movie&id=<?php echo
$row[‘movie_id’]?>”>[DELETE]

</td>
</tr>

<?php

164

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 164

}
?>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
People [ADD]

</td>
<?php

$moviesql = “SELECT
*

FROM
`people`

“;
$result = mysql_query($moviesql)

or die(“Invalid query: “ . mysql_error());
while($row = mysql_fetch_array($result, MYSQL_ASSOC)){

?>
<tr>

<td bgcolor=”#ffffff” width=”50%”>
<?php echo $row[‘people_fullname’]?>

</td>
<td bgcolor=”#ffffff” width=”50%” align=”right”>

<a href=”people.php?action=edit&id=<?php echo
$row[‘people_id’]?>”>[EDIT]

<a href=”delete.php?type=people&id=<?php echo
$row[‘people_id’]?>”>[DELETE]

</td>
</tr>

<?php
}

?>
</table>

</body>
</html>

3. Now open your browser and go to http://localhost/chapter6/index.php as shown in
Figure 6-1.

Remember that all links are broken, so do not worry; that’s perfectly normal because we haven’t yet cre-
ated the pages.

How It Works
You must always have a central administration interface that allows you to perform actions on the data
and easily see the content. This script is the admin interface. It shows you everything and allows you to
manage everything in sight.

What does it do and how does it do what it does? As in Chapter 4, where we connected to the database
and displayed its contents, we will do the same thing here. The table holds the name of each known
movie and person, and generates EDIT and DELETE links.

165

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 165

Figure 6-1

Inserting a Simple Record from phpMyAdmin
Note that in the following scripts, we will follow a simple rule concerning SQL: Always try the query in
MySQL before trying to insert it in your code. The simple reason is that you are probably better off
debugging one language at a time.

Try It Out Inserting Simple Data
Now follow these steps to insert some data:

1. Open your database in phpMyAdmin and enter the following SQL code (yes, there is an error)
as in Figure 6-2.

INSERT INTO
`movie`

(`movie_name` , `movie_type` , `movie_year`)
VALUES

(‘Bruce Almighty’,’1’,’2003)

166

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 166

Figure 6-2

2. The following message appears (see Figure 6-3 for details):

You have an error in your SQL syntax. Check the manual that corresponds to your
MySQL server version for the right syntax to use near ‘’2003)’ at line 5

3. Fix the error as this suggests (quite simple to do with the line number reference) and run.

phpMyAdmin then displays the executed SQL and takes you back to the table content display
as shown in Figure 6-4.

Before doing any SQL query in PHP, you should always test your SQL statement in phpMyAdmin. It
will enable you to debug the SQL before inserting it in your code and prevent debugging in two differ-
ent languages at the same time.

167

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 167

Figure 6-3

How It Works
When inserting a record in a table, you don’t need to insert the id if you set the primary key field to auto
increment. The engine will gladly handle that for you. This enables you to be sure you don’t have dupli-
cate keys in the table.

To get the just-inserted record auto increment id, just use the PHP mysql_insert_id() function right
after the mysql_query() function call. This function returns the primary key field when inserting a new
record.

The mysql_insert_id function syntax can be found on the PHP site at www.php.net/
mysql_insert_id.

Because we have created the SQL query on more than one line, we can use the line number returned in
the following error message.

You have an error in your SQL syntax. Check the manual that corresponds to your
MySQL server version for the right syntax to use near ‘’2003)’ at line 5

168

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 168

Figure 6-4

This line corresponds to the value part of our SQL statement, as shown here:

(‘Bruce Almighty’,’1’,’2003)

If our SQL query had been on one line, we’d have had only a useless “error in line 1” message. Here you
can see that on the guilty line we forgot to close a quote in the movie_year value.

Now you can see that we omitted the `movie.``movie_id` field. We did this on purpose (yes, we did).
Not specifying the primary key value forces the MySQL engine to automatically determine the auto
increment value. Thanks to this trick, we don’t need to know what the next key will be.

Inserting a Record in a Relational Database
Databases often hold more than just one table. All those tables can be totally independent but that would
be like using your car to store some things in the trunk but never to drive you around.

In old systems in which relational databases didn’t exist, every row held all the information. Imagine
your system running with only one table holding all the information. Your movie table would store all

169

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 169

the data about the actors and the directors and the movie types. Let’s say that one day you were to
decide that a movie category should change from action to adventure (things change). You would then
have to go through all records to change the movie type label.

In modern RDBMS (relational database management systems), this is not the case anymore; you will cre-
ate a `movietype` table storing a reference of all movie types possible, and you will link movies to the
relevant movie type.

To link those tables, you will use a primary key/foreign key team. The primary key of the `movietype`
table is a numeric identification of each type of movie. For example, in our database the id 1 references
comedy. The foreign key is the reference in the movie table to the `movietype` primary key.

In the following exercise, you use PHP and SQL to insert a movie in your database. This movie is of a
known movie type from the `movie type` reference table.

Try It Out Inserting a Movie with Known Movie Type and People
This time, let’s do something a bit more complicated. You need to be able to add a movie to the system
while specifying an existing movie type and existing actor and director.

1. Create a new empty file named movie.php and enter the following code:

<?php
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘chapter6’, $link) or die (mysql_error());
$peoplesql = “SELECT

*
FROM

`people`
“;

$result = mysql_query($peoplesql)
or die(“Invalid query: “ . mysql_error());

while($row = mysql_fetch_array($result , MYSQL_ASSOC)){
$people[$row[‘people_id’]] = $row[‘people_fullname’];

}
?>
<html>
<head>

<TITLE>Add movie</TITLE>
</head>
<body>
<FORM action=”commit.php?action=add&type=movie” method=”post”>

<table border=0 width=”750” cellspacing=1 cellpadding=3 bgcolor=”#353535”
align=”center”>

<tr>
<td bgcolor=”#ffffff” width=”30%”>

Movie Name
</td>
<td bgcolor=”#ffffff” width=”70%”>

<input type=”text” name=”movie_name”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>

170

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 170

Movie Type
</td>
<td bgcolor=”#ffffff”>
<SELECT id=”game” name=”movie_type” style=”width:150px”>

<?php
$sql = “SELECT

`movietype_id`,
`movietype_label`

FROM
`movietype`

ORDER BY
`movietype_label`

“;
$result = mysql_query($sql)

or die(“Query Error”.mysql_error());
while ($row = mysql_fetch_array($result)){

echo ‘<OPTION
value=”’.$row[‘movietype_id’].’”>’.$row[‘movietype_label’].’</OPTION>’.”\r\n”;

}
?>

</SELECT>

</td>
</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Year

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_year”>
<option value=”” SELECTED>Select a year...</option>

<?php
for ($year=date(“Y”); $year >= 1970 ;$year—){
?>

<option value=”<?php echo $year?>”><?php echo $year?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Lead Actor

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_leadactor”>
<option value=”” SELECTED>Select an actor...</option>

<?php
foreach($people as $people_id => $people_fullname){
?>

<option value=”<?php echo $people_id?>” ><?php echo
$people_fullname?></option>
<?php
}
?>

171

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 171

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Director

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_director”>
<option value=”” SELECTED>Select a director...</option>

<?php
foreach($people as $people_id => $people_fullname){
?>

<option value=”<?php echo $people_id?>” ><?php echo
$people_fullname?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”SUBMIT” value=”Add”>

</td>
</tr>

</table>
</FORM>
</body>
</html>

2. Save your file and upload it to a new chapter6 directory on your server.

3. Create a new empty file named commit.php and enter the following code:

<?php
// COMMIT ADD

$link = mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(‘chapter6’, $link) or die (mysql_error());
switch($_GET[‘action’]){

case “add”:
switch($_GET[‘type’]){

case “movie”:
$sql = “INSERT INTO

`movie`
(`movie_name` ,
`movie_year` ,
`movie_type` ,
`movie_leadactor` ,
`movie_director`)

VALUES
(‘“.$_POST[‘movie_name’].”’ ,
‘“.$_POST[‘movie_year’].”’ ,
‘“.$_POST[‘movie_type’].”’ ,
‘“.$_POST[‘movie_leadactor’].”’ ,
‘“.$_POST[‘movie_director’].”’)

172

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 172

“;
break;

}
break;

}
if (isset($sql) && !empty($sql)){

echo “<!—”.$sql.”—>”;
$result = mysql_query($sql)

or die(“Invalid query: “ . mysql_error());
?>

<p align=”center” style=”color:#FF0000”>
Done. Index

</p>
<?php

}
?>

4. Save your file and upload it to a new chapter6 directory on your server.

5. Open your browser on the index.php page and click ADD next to the `movie` table header.

6. Add a movie named “Test” with random type, actor, and director in the form shown in Figures
6-5 and 6-6.

Figure 6-5

173

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 173

Figure 6-6

7. Click the “add” button and you will see the confirmation message as in Figure 6-7.

How It Works
Inserting data is always easier when you have an actual method to insert (remember these wise words).
We generally use HTML forms.

HTML forms allow us to drive the way the user enters the data. Once submitted, the form sends the
server information that PHP can use to generate and run the SQL INSERT statement.

As you see in the movie insertion form in movie.php, we have four combo boxes and a text field. The
text field content is left to your discretion, but the combos are quite directive. Let’s review the content of
the combos generated from the database contents.

174

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 174

Figure 6-7

First, let’s concentrate on the people combos. Each combo lists all persons present in a `people` table.

<?php
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘chapter6’, $link) or die (mysql_error());
$peoplesql = “SELECT

*
FROM

`people`
“;

$result = mysql_query($peoplesql)
or die(“Invalid query: “ . mysql_error());

while($row = mysql_fetch_array($result , MYSQL_ASSOC)){
$people[$row[‘people_id’]] = $row[‘people_fullname’];

}
?>

175

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 175

At the beginning of the form script, we query the `people` table and put its content in an array. The data
regarding people known to the system is stored in the `people` table.

To generate the list of people, we simply query the database, retrieve all the known people in the system,
and display the names in the combo and reference their primary key as the item value. Each known per-
son will have an item in the combo box:

<SELECT name=”movie_director”>
<option value=”” SELECTED>Select a director...</option>

<?php
foreach($people as $people_id => $people_fullname){
?>

<option value=”<?php echo $people_id?>” ><?php echo $people_fullname?></option>
<?php
}
?>
</SELECT>

Here we’ve used the foreach syntax to walk the array to generate all the options.

Now we’ll generate the movie type combo box. This is a more conventional use of SQL to generate con-
tents. We’ll reuse this code soon to create a generic form to edit and add, so you need to understand the
details of how this works.

<SELECT id=”game” name=”movie_type” style=”width:150px”>
<?php

$sql = “SELECT
`movietype_id`,
`movietype_label`

FROM
`movietype`

ORDER BY
`movietype_label`

“;
$result = mysql_query($sql)

or die(“Query Error”.mysql_error());
while ($row = mysql_fetch_array($result , MYSQL_ASSOC)){

echo ‘<OPTION
value=”’.$row[‘movietype_id’].’”>’.$row[‘movietype_label’].’</OPTION>’.”\r\n”;

}
?>

</SELECT>

This code generates the options in combo box by querying the `movietype` table to extract all available
movie types. Each option will have the movie type id as a value and the movie type itself as a label.

Now that our form is ready, we need to have a script that uses this data to create records. As you can see,
the switch case on $_GET[‘action’] is totally useless for now. In the next exercises, we add a lot of
code to the movie.php script so we can use it to edit the movies.

176

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 176

Deleting a Record
Deleting records is easy (a bit too easy at times—you will know what I mean soon). As we said before,
always be sure to test your queries on a test database. Deleting records in a test database never threatens
your system, and testing your query helps you find any SQL error before deleting all the records in your
production database because you forgot a little thing such as a WHERE clause. MySQL deletes everything
that matches the SQL statement. If you omit a WHERE clause in your query, all the records will match the
SQL statement and thus will be deleted.

Deleting always means losing data. To delete a record you need to point the record to the database
engine through a set of conditions in a WHERE statement. Once this statement is executed, there is no
turning back. The record(s) will be deleted without hope of return; that’s why we advise caution when
using the DELETE statement.

Try It Out Deleting a Single Record
Before asking PHP to delete anything, you will try deleting a record from phpMyAdmin to familiarize
yourself with the DELETE statement. Follow this step to delete a record:

❑ Open phpMyAdmin and enter the following code:

DELETE FROM
`movie`

WHERE
`movie_id` = ‘12’

LIMIT 1

phpMyAdmin returns a nice message saying you deleted a record from the `movie` table.

How It Works
The DELETE SQL statement is very simple to use. As you see, we used the LIMIT 1 statement to limit the
deletion to only one record (just in case).

Cascade Delete
As you know, a database often holds related records in different tables. Deleting some records without
consideration of relations introduces you to chaos and heavy database manual tweaking. MySQL unfor-
tunately doesn’t manage relations for you, and thus will not automatically preserve referential integrity.

To avoid that problem, we use a more elaborate form of the DELETE statement, the Cascade Delete, as dis-
cussed in the following section.

Try It Out Cascade Delete
Now that you know how to use DELETE, you will add it to your system to delete a known person from
the system. As you store references to known people in the `movie` table, you will need to update the
`movie` table content so you don’t reference deleted people. (The update-specific exercises come next in
this chapter.)

177

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 177

Follow these steps to implement the Cascade Delete:

1. Create a new text file named delete.php and enter the following code:

<?php
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘chapter6’, $link) or die (mysql_error());

// DELETE SCRIPT
if (!isset($_GET[‘do’]) || $_GET[‘do’] != 1){

?>
<p align=”center” style=”color:#FF0000”>

Are you sure you want to delete this <?php echo $_GET[‘type’]?>?

<a href=”<?php echo $_SERVER[‘REQUEST_URI’]?>&do=1”>yes or Index
</p>

<?php
} else {

if ($_GET[‘type’] == “people”){
// delete references to people from the movie table
// delete reference to lead actor
$actor = “UPDATE

`movie`
SET

`movie_leadactor` = ‘0’
WHERE

`movie_leadactor` = ‘“.$_GET[‘id’].”’
“;

$result = mysql_query($actor)
or die(“Invalid query: “ . mysql_error());

// delete reference to director
$director = “UPDATE

`movie`
SET

`movie_director` = ‘0’
WHERE

`movie_director` = ‘“.$_GET[‘id’].”’
“;

$result = mysql_query($director)
or die(“Invalid query: “ . mysql_error());

}
// generate SQL
$sql = “DELETE FROM

`”.$_GET[‘type’].”`
WHERE

`”.$_GET[‘type’].”_id` = ‘“.$_GET[‘id’].”’
LIMIT 1”;

// echo SQL for debug purpose
echo “<!—”.$sql.”—>”;
$result = mysql_query($sql)

or die(“Invalid query: “ . mysql_error());
?>

<p align=”center” style=”color:#FF0000”>

178

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 178

Your <?php echo $_GET[‘type’]?> has been deleted. Index

</p>
<?php

}
?>

2. Save delete.php and upload it to your chap6 directory.

3. Open index.php in your browser. You will see the [DELETE] links next to each movie or per-
son as in Figure 6-8.

Figure 6-8

4. Try deleting the test movie you added in the previous exercise by clicking the DELETE link next
to the “Test” movie name. You will be asked for confirmation as in Figure 6-9.

5. Click the “yes” link to confirm the deletion and wait for the confirmation message as in
Figure 6-10.

179

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 179

Figure 6-9

How It Works
Here we are, planning the annihilation of an innocent set of data. Putting any moral issues aside, let’s
see how this script works.

First, you need to understand that in a relational database you cannot delete records and just forget
about them. Deleting has to be considered carefully. For example, if you delete a person from the `peo-
ple` table, this prevents you from finding a potential reference to that person in the `movie` table. If you
delete Jim Carrey from the `people` table, who will “Bruce Almighty’s” lead actor be? If you don’t do
anything, Jim Carrey’s id will remain in the record and you will have a corrupted database. You don’t
want that, do you? (The answer is no.)

The solution to this problem is to make sure that you always have the round peg (the round peg being a
foreign key) in the round hole (the round hole being a record). In the code that follows, we update the
`movie` table with a 0 value (the default value telling the script we have not set the people part) before
deleting the `people` record. This also allows us to check the behavior of the UPDATE SQL statement.
(Isn’t life great?)

180

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 180

Figure 6-10

// delete reference to lead actor
$actor = “UPDATE

`movie`
SET

`movie_leadactor` = ‘0’
WHERE

`movie_leadactor` = ‘“.$_GET[‘id’].”’
“;

$result = mysql_query($actor)
or die(“Invalid query: “ . mysql_error());

// delete reference to director
$director = “UPDATE

`movie`
SET

`movie_director` = ‘0’
WHERE

`movie_director` = ‘“.$_GET[‘id’].”’
“;

$result = mysql_query($director)
or die(“Invalid query: “ . mysql_error());

181

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 181

In the preceding code, we set any field in the `movie` table that might hold a reference to our unfortu-
nate, soon-to-be-deleted person. The UPDATE statement works in a very simple way. It sets the fields
specified to the new value specified in all records, meeting the requirements of the WHERE statement.

You might wonder what would happen if someone were to forget the WHERE part. Well, curiosity is a
fine quality: This would update all records in the table, which is probably not something you want to do
in real life.

Once our tidying up is done, we do the deleting:

// generate SQL
$sql = “DELETE FROM

`”.$_GET[‘type’].”`
WHERE

`”.$_GET[‘type’].”_id` = ‘“.$_GET[‘id’].”’
LIMIT 1”;

// echo SQL for debug purpose
echo “<!—”.$sql.”—>”;
$result = mysql_query($sql)

or die(“Invalid query: “ . mysql_error());

This DELETE query is a bit dynamic, but it’s fairly understandable. We don’t want to code a SQL state-
ment for each type. (Well, we did for the movies update, but it doesn’t count, does it?) So we use the
information passed through the URL to generate our SQL statement. The table and primary key field are
generated dynamically from the item type to delete.

Editing Data in a Record
Having data in the database is all well and good, but data has a mind of its own and tends to want to be
updated. To update data, we need to identify the data to update and present the system user with a nice
interface to do so. Using the same interface as was used to create the data is often a good practice.

Try It Out Editing a Movie
In this exercise, you create a script that enables you to edit a movie. You will build on the existing
movie.php script you created earlier.

1. Open movie.php in your favorite text editor and enter this code:

<?php
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘chapter6’, $link) or die (mysql_error());
$peoplesql = “SELECT

*
FROM

`people`
“;

$result = mysql_query($peoplesql)
or die(“Invalid query: “ . mysql_error());

while($row = mysql_fetch_array($result , MYSQL_ASSOC)){

182

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 182

$people[$row[‘people_id’]] = $row[‘people_fullname’];
}

switch($_GET[‘action’]){
case “edit”:

$moviesql = “SELECT
*

FROM
`movie`

WHERE
`movie`.`movie_id` = ‘“.$_GET[‘id’].”’

“;
$result = mysql_query($moviesql)

or die(“Invalid query: “ . mysql_error());
$row = mysql_fetch_array($result , MYSQL_ASSOC);
$movie_name = $row[‘movie_name’];
$movie_type = $row[‘movie_type’];
$movie_year = $row[‘movie_year’];
$movie_leadactor = $row[‘movie_leadactor’];
$movie_director = $row[‘movie_director’];
break;

default:
$movie_name = “”;
$movie_type = “”;
$movie_year = “”;
$movie_leadactor = “”;
$movie_director = “”;
break;

}
?>
<html>
<head>

<TITLE><?php echo $_GET[‘action’]?> movie</TITLE>
</head>
<body>
<FORM action=”commit.php?action=<?php echo $_GET[‘action’]?>&type=movie&id=<?php
echo $_GET[‘id’]?>” method=”post”>

<table border=0 width=”750” cellspacing=1 cellpadding=3 bgcolor=”#353535”
align=”center”>

<tr>
<td bgcolor=”#ffffff” width=”30%”>

Movie Name
</td>
<td bgcolor=”#ffffff” width=”70%”>

<input type=”text” name=”movie_name” value=”<?php echo $movie_name?>”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Type

</td>
<td bgcolor=”#ffffff”>
<SELECT id=”game” name=”movie_type” style=”width:150px”>

<?php

183

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 183

$sql = “SELECT
`movietype_id`,
`movietype_label`

FROM
`movietype`

ORDER BY
`movietype_label`

“;
$result = mysql_query($sql)

or die(“Query Error”.mysql_error());
while ($row = mysql_fetch_array($result)){

if ($row[‘movietype_id’] == $movie_type){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
echo ‘<OPTION

value=”’.$row[‘movietype_id’].’”’.$selected.’>’.$row[‘movietype_label’].’</OPTION>’
.”\r\n”;

}
?>

</SELECT>

</td>
</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Year

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_year”>
<option value=”” SELECTED>Select a year...</option>

<?php
for ($year=date(“Y”); $year >= 1970 ;$year—){

if ($year == $movie_year){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $year?>”<?php echo $selected?>><?php echo
$year?></option>
<?
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Lead Actor

</td>

184

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 184

<td bgcolor=”#ffffff”>
<SELECT name=”movie_leadactor”>

<option value=”” SELECTED>Select an actor...</option>
<?php
foreach($people as $people_id => $people_fullname){

if ($people_id == $movie_leadactor){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $people_id?>”<?php echo $selected?>><?php
echo $people_fullname?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Director

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_director”>
<option value=”” SELECTED>Select a director...</option>

<?php
foreach($people as $people_id => $people_fullname){

if ($people_id == $movie_director){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $people_id?>”<?php echo $selected?>><?php
echo $people_fullname?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”SUBMIT” value=”<?php echo

$_GET[‘action’]?>”>
</td>

</tr>
</table>

</FORM>
</body>
</html>

185

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 185

2. Open the commit.php script and edit its content to match this new code:

<?php
// COMMIT ADD AND EDITS

$link = mysql_connect(“localhost”, “root”, “”)
or die(“Could not connect: “ . mysql_error());

mysql_select_db(‘chapter6’, $link) or die (mysql_error());
switch($_GET[‘action’]){

case “edit”:
switch($_GET[‘type’]){

case “movie”:
$sql = “UPDATE

`movie`
SET

`movie_name` = ‘“.$_POST[‘movie_name’].”’,
`movie_year` = ‘“.$_POST[‘movie_year’].”’,
`movie_type` = ‘“.$_POST[‘movie_type’].”’,
`movie_leadactor` = ‘“.$_POST[‘movie_leadactor’].”’,
`movie_director` = ‘“.$_POST[‘movie_director’].”’

WHERE
`movie_id` = ‘“.$_GET[‘id’].”’

“;
break;

}
break;

case “add”:
switch($_GET[‘type’]){

case “movie”:
$sql = “INSERT INTO

`movie`
(`movie_name` , `movie_year` , `movie_type` ,

`movie_leadactor` , `movie_director`)
VALUES

(‘“.$_POST[‘movie_name’].”’ , ‘“.$_POST[‘movie_year’].”’ ,
‘“.$_POST[‘movie_type’].”’ , ‘“.$_POST[‘movie_leadactor’].”’ ,
‘“.$_POST[‘movie_director’].”’)

“;
break;

}
break;

}
if (isset($sql) && !empty($sql)){

echo “<!—”.$sql.”—>”;
$result = mysql_query($sql)

or die(“Invalid query: “ . mysql_error());
?>

<p align=”center” style=”color:#FF0000”>
Done. Index

</p>
<?php

}
?>

186

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 186

3. Now open your browser and go to http://localhost/chapter6/index.php as shown in
Figure 6-11.

Figure 6-11

4. Try clicking the EDIT link next to the “Bruce Almighty” movie, change a few boxes and the
movie name, and press the “edit” button in the form shown in Figure 6-12.

5. Edit the “Bruce Almighty” entry again with the procedure in Step 4, and fix it so it’s back to its
own old self.

Now the EDIT links for movies will actually do something!

You see that the script loads the stored values and allows you to edit the data easily. Play around a bit,
and get a feel for the way it all works.

187

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 187

Figure 6-12

How It Works
The commit.php code is very much the same as what you saw already, but there is an interesting twist
in movie.php. Let’s look at it in some detail.

First, look at the switch at the start of the script. We defined a switch on a query string parameter named
action. If the action is edit, we query the database for a record corresponding to the id specified in the
id query string parameter and set some variables. These variables are set to void if action is not edit.

switch($_GET[‘action’]){
case “edit”:

$moviesql = “SELECT
*

FROM
`movie`

WHERE
`movie`.`movie_id` = ‘“.$_GET[‘id’].”’

“;
$result = mysql_query($moviesql)

or die(“Invalid query: “ . mysql_error());
$row = mysql_fetch_array($result , MYSQL_ASSOC);

188

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 188

$movie_name = $row[‘movie_name’];
$movie_type = $row[‘movie_type’];
$movie_year = $row[‘movie_year’];
$movie_leadactor = $row[‘movie_leadactor’];
$movie_director = $row[‘movie_director’];
break;

default:
$movie_name = “”;
$movie_type = “”;
$movie_year = “”;
$movie_leadactor = “”;
$movie_director = “”;
break;

}
?>

The variables set in the preceding code are used to set the default value of the form fields. Each field has
a known value if you are editing a record and has a void value if you are creating a record.

<tr>
<td bgcolor=”#ffffff” width=”30%”>

Movie Name
</td>
<td bgcolor=”#ffffff” width=”70%”>

<input type=”text” name=”movie_name” value=”<?=$movie_name?>”>
</td>

</tr>

In this example, the movie_name field takes the $movie_name variable content as a default value. This
allows us to reload the form with data from the record to edit it.

Editing a text field is pretty straightforward. Editing a value in a list is another story. You can’t just dis-
play the list and hope the user will reset the value to the original when he or she edits the record. You
need to reload the whole list and make the previously set value as a default in the list so the user can just
forget about it if he or she doesn’t want to edit it.

How do you do this? The script holds the solution:

<tr>
<td bgcolor=”#ffffff”>

Movie Type
</td>
<td bgcolor=”#ffffff”>

<SELECT id=”game” name=”movie_type” style=”width:150px”>
<?php
$sql = “SELECT

`movietype_id`,
`movietype_label`

FROM
`movietype`

ORDER BY
`movietype_label`

“;
$result = mysql_query($sql)

189

Letting the User Edit the Database

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 189

or die(“Query Error”.mysql_error());
while ($row = mysql_fetch_array($result)){

if ($row[‘movietype_id’] == $movie_type){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
echo ‘<OPTION

value=”’.$row[‘movietype_id’].’”’.$selected.’>’.$row[‘movietype_label’].’</OPTION>’
.”\r\n”;
}
?>

</SELECT>
</td>

</tr>

We load the list as we would have done if adding a record, but we compare the current value to the
default value. If they are identical, add a simple SELECTED flag to the option value. This sets the default
list value to the current value in the table.

if ($row[‘movietype_id’] == $movie_type){
$selected = “ SELECTED”;

} else {
$selected = “”;

}

What Next?
The next thing you might do is to create the edit/delete code for the `people` table. This code is available
in Chapter 17, “Troubleshooting.”

Summary
As you’ve learned in this chapter, there are three basic actions in modifying the content of a database:

❑ Insert

❑ Delete

❑ Update

These actions are performed by the database itself through SQL queries PHP executes on MySQL. Read
up on the SQL statements used in this chapter to get a good feel for how far they can take you and at
what level you feel confident using these commands.

Often, using MySQL revolves around the same few PHP functions. The SQL executed through those
commands on the database changes the way the system reacts. Don’t hesitate to learn more about SQL
to enhance your PHP systems.

And finally, always remember that testing your query alone in phpMyAdmin saves you a lot of time
debugging it when working in a PHP script.

190

Chapter 6

10 557440 Ch06.qxd 2/6/04 9:13 AM Page 190

7
Validating User Input

Accepting user inputs means being prepared to react to human error and human habit. The fact is
that users acquire habits pretty fast. If a person uses an application often enough, the brain starts
creating automation for well-known application paths. As the system evolves, user habits will
have a bearing on the changes you make. Try switching two fields on a form and see what hap-
pens in any widely used system. Users will just go insane until their brains reinitiate the auto-
mated path. This problem also exists in new systems because of the users’ habits regarding certain
commonly used data formats (dates, for example). If you use a format that is not familiar to your
users, you will confuse them and force them to change their usual habits to match your new for-
mat. It’s vital to consider user input when creating a system.

In this chapter, we cover user input validation, including:

❑ Validating simple string values

❑ Validating integer values

❑ Validating formatted text input

Users Are Users Are Users . . .
Let’s consider an example here: You work in a bank. You are developing a new system to allow
the employees to manage a customer account updating process on the company intranet. You use
your well-known MM-DD-YYYY format for the date. It all works quite well when testing, but
when put in production, your users say it doesn’t work. Why? Because all your company systems
use the ISO 8601 YYYY-MM-DD date format (a standard used in many systems because the date
can be sorted alphabetically). Your users are confused between the two different formats and input
wrong information in the system. If you fail to implement the correct input validation methods,
you can end up with a corrupted database or trigger errors in your application.

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 191

You can avoid this by using well-known formats and validating the user input. When you expect an
integer value, for example, you can check that it is an integer before you try to use it. Simple enough
rule.

What Now?
To really understand the role of user input and validation, you need to see it in action. So, first we need
to add a few fields to our beloved movie database. The modifications are all in the `movie` table.

The movie application provides us with a lot of opportunities to check for user input. We will need to
add a few features to the application, however, to provide more case studies. It will also help you to
review what you learned in the previous chapters.

Add a movie_release field INT(11) with default value 0 after the existing movie_year field, as shown in
Figure 7-1. This allows you to store a timestamp for the movie release date. Then add a field named
movie_rating at the end of the table type TINYINT (2). That information holds the movie rating we gave
the movie when viewing it (see Figure 7-2). This rating goes from 0 to 10.

Figure 7-1

192

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 192

Figure 7-2

Forgot Something?
Sometimes, when a user enters data in a form, he or she forgets to fill in a field. When this happens, the
system has to react so that the insertion of the invalid or incomplete data will not corrupt the database.
In some cases, these errors are made on purpose. In fact, these attempts to find cracks in the walls
around your system are quite frequent. You need to design your system so it can react to such errors or
malicious attempts to corrupt the database.

Try It Out Setting Up the Environment
Start by making sure your users enter a movie name when creating a new movie entry.

1. Open the movie.php script and modify it as follows (modifications are shown in bold):

<?
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘wiley’, $link) or die (mysql_error());

193

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 193

$peoplesql = “SELECT
*

FROM
`people`

“;
$result = mysql_query($peoplesql)

or die(“Invalid query: “ . mysql_error());
while($row = mysql_fetch_array($result , MYSQL_ASSOC)){

$people[$row[‘people_id’]] = $row[‘people_fullname’];
}

switch($_GET[‘action’]){
case “edit”:
$moviesql = “SELECT

*
FROM
`movie`

WHERE
`movie`.`movie_id` = ‘“.$_GET[‘id’].”’

“;
$result = mysql_query($moviesql)

or die(“Invalid query: “ . mysql_error());
$row = mysql_fetch_array($result , MYSQL_ASSOC);
$movie_name = $row[‘movie_name’];
$movie_type = $row[‘movie_type’];
$movie_year = $row[‘movie_year’];
$movie_leadactor = $row[‘movie_leadactor’];
$movie_director = $row[‘movie_director’];
break;

default:
$movie_name = “”;
$movie_type = “”;
$movie_year = “”;
$movie_leadactor = “”;
$movie_director = “”;
break;

}
?>
<html>
<head>

<TITLE><?php echo $_GET[‘action’]?> movie</TITLE>
</head>
<body>
<FORM action=”commit.php?action=<?php echo $_GET[‘action’]?>&type=movie&id=<?php
echo $_GET[‘id’]?>” method=”post”>
<?php
if (!empty($_GET[‘error’])){

echo “<div align=\”center\” style=\”color:#FFFFFF;background-color:#ff0000;font-
weight:bold\”>”.nl2br(urldecode($_GET[‘error’])).”</div>
”;
}
?>

<table border=0 width=”750” cellspacing=1 cellpadding=3 bgcolor=”#353535”
align=”center”>

<tr>

194

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 194

<td bgcolor=”#ffffff” width=”30%”>
Movie Name

</td>
<td bgcolor=”#ffffff” width=”70%”>

<input type=”text” name=”movie_name” value=”<?php echo $movie_name?>”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Type

</td>
<td bgcolor=”#ffffff”>
<SELECT id=”game” name=”movie_type” style=”width:150px”>

<option value=”” SELECTED>Select a type...</option>
<?php

$sql = “SELECT
`movietype_id`,
`movietype_label`

FROM
`movietype`

ORDER BY
`movietype_label`

“;
$result = mysql_query($sql)

or die(“Query Error”.mysql_error());
while ($row = mysql_fetch_array($result)){

if ($row[‘movietype_id’] == $movie_type){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
echo ‘<OPTION

value=”’.$row[‘movietype_id’].’”’.$selected.’>’.$row[‘movietype_label’].’</OPTION>’
.”\r\n”;

}
?>

</SELECT>

</td>
</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Year

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_year”>
<option value=”” SELECTED>Select a year...</option>

<?php
for ($year=date(“Y”); $year >= 1970 ;$year—){

if ($year == $movie_year){
$selected = “ SELECTED”;

} else {
$selected = “”;

}

195

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 195

?>
<option value=”<?=$year?>”<?=$selected?>><?=$year?></option>

<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Lead Actor

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_leadactor”>
<option value=”” SELECTED>Select an actor...</option>

<?php
foreach($people as $people_id => $people_fullname){

if ($people_id == $movie_leadactor){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $people_id?>”<?php echo $selected?>><?php
echo $people_fullname?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Director

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_director”>
<option value=”” SELECTED>Select a director...</option>

<?php
foreach($people as $people_id => $people_fullname){

if ($people_id == $movie_director){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $people_id?>”<?php echo $selected?>><?php
echo $people_fullname?></option>
<?php
}
?>

</SELECT>
</td>

</tr>

196

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 196

<tr>
<td bgcolor=”#ffffff” colspan=2 align=”center”>

<INPUT type=”SUBMIT” name=”SUBMIT” value=”<?=$_GET[‘action’]?>”>
</td>

</tr>
</table>

</FORM>
</body>
</html>

2. Save the file as movie.php and upload the new code to your work directory.

3. Open the commit.php script and modify it as follows (modifications are shown in bold):

<?php
// COMMIT ADD AND EDITS

$error = ‘’;
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘wiley’, $link) or die (mysql_error());
switch($_GET[‘action’]){

case “edit”:
switch($_GET[‘type’]){

case “people”:
$sql = “UPDATE

`people`
SET

`people_fullname` = ‘“.$_POST[‘people_fullname’].”’
WHERE

`people_id` = ‘“.$_GET[‘id’].”’
“;

break;
case “movie”:

$movie_name = trim($row[‘movie_name’]);
if(empty($movie_name)){

$error .= “Please+enter+a+movie+name%21%0D%0A”;
}
if (empty($_POST[‘movie_type’])){

$error .= “Please+select+a+movie+type%21%0D%0A”;
}
if (empty($_POST[‘movie_year’])){

$error .= “Please+select+a+movie+year%21%0D%0A”;
}
if (empty($error)){

$sql = “UPDATE
`movie`

SET
`movie_name` = ‘“.$_POST[‘movie_name’].”’,
`movie_year` = ‘“.$_POST[‘movie_year’].”’,
`movie_type` = ‘“.$_POST[‘movie_type’].”’,
`movie_leadactor` = ‘“.$_POST[‘movie_leadactor’].”’,
`movie_director` = ‘“.$_POST[‘movie_director’].”’

WHERE
`movie_id` = ‘“.$_GET[‘id’].”’

“;

197

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 197

} else {
header(

“location:movie.php?action=edit&error=”.$error.”&id=”.$_GET[‘id’]);
}
break;

}
break;

case “add”:
switch($_GET[‘type’]){

case “people”:
$sql = “INSERT INTO

`people`
(`people_fullname`)

VALUES
(‘“.$_POST[‘people_fullname’].”’)

“;
break;

case “movie”:
$movie_name = trim($row[‘movie_name’]);
if(empty($movie_name)){

$error .= “Please+enter+a+movie+name%21%0D%0A”;
}
if (empty($_POST[‘movie_type’])){

$error .= “Please+select+a+movie+type%21%0D%0A”;
}
if (empty($_POST[‘movie_year’])){
$error .= “Please+select+a+movie+year%21%0D%0A”;
}
if (empty($error)){

$sql = “INSERT INTO
`movie`
(`movie_name` ,
`movie_year` ,
`movie_type` ,
`movie_leadactor` ,
`movie_director`)

VALUES
(‘“.$_POST[‘movie_name’].”’ ,
‘“.$_POST[‘movie_year’].”’ ,
‘“.$_POST[‘movie_type’].”’ ,
‘“.$_POST[‘movie_leadactor’].”’ ,
‘“.$_POST[‘movie_director’].”’)

“;
} else {

header(“location:movie.php?action=add&error=”.$error);
}
break;

}
break;

}
if (isset($sql) && !empty($sql)){

echo “<!—”.$sql.”—>”;
$result = mysql_query($sql)

198

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 198

or die(“Invalid query: “ . mysql_error());
?>

<p align=”center” style=”color:#FF0000”>
Done. Index

</p>
<?php

}
?>

4. Save the file as commit.php and upload it to your server.

5. Now open your browser and go to http://localhost/chapter7/index.php (adapt this
URL to fit your setup) and try adding a movie with no name, as shown in Figure 7-3.

Figure 7-3

6. Now try to enter a new movie without setting the year and the movie type (see Figure 7-4).

7. Edit a movie from the index and try deleting the name and submitting the form (see Figure 7-5).

8. Notice the error message stating the mistake made in filling in the form (Figure 7-6).

199

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 199

Figure 7-4

How It Works
When the form passes information to the commit script, the data has to be verified. In this case, we use a
simple verification method: The empty() function returns true if the string is empty and false if not.
To ensure that the user did not submit the form with a simple space in the movie name field, we trim()
the field’s content to eliminate any space leading or trailing the string. (Some people like to trigger errors
in Web sites by entering erroneous input; let’s not make their job easy.)

At the same time, if an error is detected, we add a message to the $error variable that collects all the
error messages. The error messages are URL encoded before being added to the code. (See urlencode
and urldecode functions in the manual; for more information, check the PHP Web site at
www.php.net/url.)

if(empty($movie_name)){
$error .= “Please+enter+a+movie+name%21%0D%0A”;

}

200

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 200

Figure 7-5

Once we are sure that an error has occurred, we redirect the user to the form with an error message stat-
ing the problem. The error message is URL encoded to ensure that it will be passed to the movie.php
script without being corrupted.

if (empty($error)){
} else {

header(“location:movie.php?action=add&error=”.$error);
}

Once redirected to the form, the system needs to display the decoded error message.

<?
if (!empty($_GET[‘error’])){

echo “<div align=\”center\” style=\”color:#FFFFFF;background-color:#ff0000;font-
weight:bold\”>”.nl2br(urldecode($_GET[‘error’])).”</div>
”;
}
?>

201

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 201

Figure 7-6

This causes a rather colorful message that your user will not miss to be displayed by the browser.

The update itself is performed at the end of the code, along with all the controls and debug messages
we need.

if (isset($sql) && !empty($sql)){
echo “<!—”.$sql.”—>”;
$result = mysql_query($sql)

or die(“Invalid query: “ . mysql_error());
?>

<p align=”center” style=”color:#FF0000”>
Done. Index

</p>
<?php
}

If the $sql variable is not previously set (which could happen if the page is called out of context), the
code will not try to execute and will do nothing. (Note that it would be a good exercise for you to code a
response to this occurrence, such as a message or a logging of the error in the database.)

202

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 202

Checking for Format Errors
Checking for errors in dates or other formatted data is a requirement in most systems because users
can’t always be guided in their input. You should always check for what is entered if you require a spe-
cific format or set of values.

At this point, we need the feared and powerful regular expressions. The regular expressions allow us to
define a pattern and check to see if it can be applied to our data. It’s very useful to check for dates, social
security numbers, and any data that has to respect a predefined set of format requirements. (It helps to
be sure to always indicate the format in the source field.)

Try It Out Checking Dates and Numbers
First, you need to modify the database and a few pages slightly:

1. Open the well-known movie.php and modify it as follows (modifications are shown in bold):

<?php
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘wiley2’, $link) or die (mysql_error());
$peoplesql = “SELECT

*
FROM

`people`
“;

$result = mysql_query($peoplesql)
or die(“Invalid query: “ . mysql_error());

while($row = mysql_fetch_array($result , MYSQL_ASSOC)){
$people[$row[‘people_id’]] = $row[‘people_fullname’];

}
switch($_GET[‘action’]){

case “edit”:
$moviesql = “SELECT

*
FROM
`movie`

WHERE
`movie`.`movie_id` = ‘“.$_GET[‘id’].”’

“;
$result = mysql_query($moviesql)

or die(“Invalid query: “ . mysql_error());
$row = mysql_fetch_array($result , MYSQL_ASSOC);
$movie_name = $row[‘movie_name’];
$movie_type = $row[‘movie_type’];
$movie_year = $row[‘movie_year’];
$movie_release = $row[‘movie_release’];
$movie_leadactor = $row[‘movie_leadactor’];
$movie_director = $row[‘movie_director’];
$movie_rating = $row[‘movie_rating’];
break;

default:
$movie_name = “”;

203

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 203

$movie_type = “”;
$movie_year = “”;
$movie_release = time();
$movie_leadactor = “”;
$movie_director = “”;
$movie_rating = “5”;
break;

}
?>
<html>
<head>

<TITLE><?php echo $_GET[‘action’]?> movie</TITLE>
</head>
<body>
<FORM action=”commit.php?action=<?php echo $_GET[‘action’]?>&type=movie&id=<?php
echo $_GET[‘id’]?>” method=”post”>
<?php
if (!empty($_GET[‘error’])){

echo “<div align=\”center\” style=\”color:#FFFFFF;background-color:#ff0000;font-
weight:bold\”>”.nl2br(urldecode($_GET[‘error’])).”</div>
”;
}
?>

<table border=0 width=”750” cellspacing=1 cellpadding=3 bgcolor=”#353535”
align=”center”>

<tr>
<td bgcolor=”#ffffff” width=”30%”>

Movie Name
</td>
<td bgcolor=”#ffffff” width=”70%”>

<input type=”text” name=”movie_name” value=”<?php echo $movie_name?>”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Type

</td>
<td bgcolor=”#ffffff”>
<SELECT id=”game” name=”movie_type” style=”width:150px”>

<option value=”” SELECTED>Select a type...</option>
<?php

$sql = “SELECT
`movietype_id`,
`movietype_label`

FROM
`movietype`

ORDER BY
`movietype_label`

“;
$result = mysql_query($sql)

or die(“Query Error”.mysql_error());
while ($row = mysql_fetch_array($result)){

if ($row[‘movietype_id’] == $movie_type){
$selected = “ SELECTED”;

} else {

204

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 204

$selected = “”;
}
echo ‘<OPTION

value=”’.$row[‘movietype_id’].’”’.$selected.’>’.$row[‘movietype_label’].’</OPTION>’
.”\r\n”;

}
?>

</SELECT>

</td>
</tr>
<tr>

<td bgcolor=”#ffffff”>
Movie Year

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_year”>
<option value=”” SELECTED>Select a year...</option>

<?php
for ($year=date(“Y”); $year >= 1970 ;$year—){

if ($year == $movie_year){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $year?>”<?php echo $selected?>><?php echo
$year?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Lead Actor

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_leadactor”>
<option value=”” SELECTED>Select an actor...</option>

<?php
foreach($people as $people_id => $people_fullname){

if ($people_id == $movie_leadactor){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $people_id?>”<?php echo $selected?>><?php
echo $people_fullname?></option>
<?php
}
?>

205

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 205

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff”>
Director

</td>
<td bgcolor=”#ffffff”>

<SELECT name=”movie_director”>
<option value=”” SELECTED>Select a director...</option>

<?php
foreach($people as $people_id => $people_fullname){

if ($people_id == $movie_director){
$selected = “ SELECTED”;

} else {
$selected = “”;

}
?>

<option value=”<?php echo $people_id?>”<?php echo $selected?>><?php
echo $people_fullname?></option>
<?php
}
?>

</SELECT>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” width=”30%”>
Movie release date (dd-mm-yyyy)

</td>
<td bgcolor=”#ffffff” width=”70%”>

<input type=”text” name=”movie_release” value=”<?=date(“d-m-Y” ,
$movie_release)?>”>

</td>
</tr>
<tr>

<td bgcolor=”#ffffff” width=”30%”>
Movie rating (0 to 10)

</td>
<td bgcolor=”#ffffff” width=”70%”>

<input type=”text” name=”movie_rating” value=”<?=$movie_rating?>”>
</td>

</tr>
<tr>

<td bgcolor=”#ffffff” colspan=2 align=”center”>
<INPUT type=”SUBMIT” name=”SUBMIT” value=”<?=$_GET[‘action’]?>”>

</td>
</tr>

</table>
</FORM>
</body>
</html>

206

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 206

2. Now open commit.php and modify it as follows (modifications are shown in bold):

<?php
// COMMIT ADD AND EDITS

$error = ‘’;
$link = mysql_connect(“localhost”, “root”, “”)

or die(“Could not connect: “ . mysql_error());
mysql_select_db(‘wiley2’, $link) or die (mysql_error());
switch($_GET[‘action’]){

case “edit”:
switch($_GET[‘type’]){

case “people”:
$sql = “UPDATE

`people`
SET

`people_fullname` = ‘“.$_POST[‘people_fullname’].”’
WHERE

`people_id` = ‘“.$_GET[‘id’].”’
“;

break;
case “movie”:

$movie_rating = trim($_POST[‘movie_rating’]);
if (!is_numeric ($movie_rating)){

$error .= “Please+enter+a+numeric+rating+%21%0D%0A”;
} else {

if ($movie_rating < 0 || $movie_rating > 10){
$error .= “Please+enter+a+rating+between+0+and+10%21%0D%0A”;

}
}
if (!ereg (“([0-9]{2})-([0-9]{2})-([0-9]{4})”,

$_POST[‘movie_release’] , $reldatepart)){
$error .= “Please+enter+a+date+with+the+dd-mm-

yyyy+format%21%0D%0A”;
} else {

$movie_release = @mktime (0, 0, 0, $reldatepart[‘2’],
$reldatepart[‘1’], $reldatepart[‘3’]);

if ($movie_release == ‘-1’){
$error .= “Please+enter+a+real+date+with+the+dd-mm-

yyyy+format%21%0D%0A”;
}

}
$movie_name = trim($_POST[‘movie_name’]);
if(empty($movie_name)){

$error .= “Please+enter+a+movie+name%21%0D%0A”;
}
if (empty($_POST[‘movie_type’])){

$error .= “Please+select+a+movie+type%21%0D%0A”;
}
if (empty($_POST[‘movie_year’])){

$error .= “Please+select+a+movie+year%21%0D%0A”;
}
if (empty($error)){

$sql = “UPDATE
`movie`

207

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 207

SET
`movie_name` = ‘“.$_POST[‘movie_name’].”’,
`movie_year` = ‘“.$_POST[‘movie_year’].”’,
`movie_release` = ‘$movie_release’,
`movie_type` = ‘“.$_POST[‘movie_type’].”’,
`movie_leadactor` = ‘“.$_POST[‘movie_leadactor’].”’,
`movie_director` = ‘“.$_POST[‘movie_director’].”’,
`movie_rating` = ‘$movie_rating’

WHERE
`movie_id` = ‘“.$_GET[‘id’].”’

“;
} else {

header(
“location:movie.php?action=edit&error=”.$error.”&id=”.$_GET[‘id’]);

}
break;

}
break;

case “add”:
switch($_GET[‘type’]){

case “people”:
$sql = “INSERT INTO

`people`
(`people_fullname`)

VALUES
(‘“.$_POST[‘people_fullname’].”’)

“;
break;

case “movie”:
$movie_rating = trim($_POST[‘movie_rating’]);
if (!is_numeric ($movie_rating)){

$error .= “Please+enter+a+numeric+rating+%21%0D%0A”;
} else {

if ($movie_rating < 0 || $movie_rating > 10){
$error .= “Please+enter+a+rating+between+0+and+10%21%0D%0A”;

}
}
$movie_release = trim($_POST[‘movie_release’]);
if (!ereg (“([0-9]{2})-([0-9]{2})-([0-9]{4})”, $movie_release ,

$reldatepart) || empty($movie_release)){
$error .= “Please+enter+a+date+with+the+dd-mm-

yyyy+format%21%0D%0A”;
} else {

$movie_release = @mktime (0, 0, 0, $reldatepart[‘2’],
$reldatepart[‘1’], $reldatepart[‘3’]);

if ($movie_release == ‘-1’){
$error .= “Please+enter+a+real+date+with+the+dd-mm-

yyyy+format%21%0D%0A”;
}

}
$movie_name = trim($row[‘movie_name’]);
if(empty($movie_name)){

$error .= “Please+enter+a+movie+name%21%0D%0A”;
}

208

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 208

if (empty($_POST[‘movie_type’])){
$error .= “Please+select+a+movie+type%21%0D%0A”;

}
if (empty($_POST[‘movie_year’])){

$error .= “Please+select+a+movie+year%21%0D%0A”;
}
if (empty($error)){

$sql = “INSERT INTO
`movie`
(`movie_name` ,

`movie_year` ,
`movie_release` ,
`movie_type` ,
`movie_leadactor` ,
`movie_director` ,
`movie_rating`)

VALUES
(‘“.$_POST[‘movie_name’].”’ ,

‘“.$_POST[‘movie_year’].”’ ,
‘$movie_release’
‘“.$_POST[‘movie_type’].”’ ,
‘“.$_POST[‘movie_leadactor’].”’ ,
‘“.$_POST[‘movie_director’].”’,
‘$movie_rating’)

“;
} else {

header(“location:movie.php?action=add&error=”.$error);
}

break;

}
break;

}
if (isset($sql) && !empty($sql)){

echo “<!—”.$sql.”—>”;
$result = mysql_query($sql)

or die(“Invalid query: “ . mysql_error());
?>

<p align=”center” style=”color:#FF0000”>
Done. Index

</p>
<?php

}
?>

3. Now save the files, upload them, and open your browser to the site index.

4. Click any movie and try entering 2003-10-10 in the release date field. You will be brought back
to the form with a nice, yet very explicit, message telling you what format to respect, as shown
in Figure 7-7.

5. Try entering alphanumeric values in the rating field, as in Figure 7-8 (which could easily have
been a drop-down but is a text field for the purpose of the exercise).

209

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 209

Figure 7-7

If the entered value is not in the 0 to 10 range, it will be refused. (Note that the decimals are not
managed in this code and will be lost.)

How It Works
This requires some explaining. First, let’s look into the type validating functions.

In the commit.php code, we use the is_numeric() function. This function returns a Boolean TRUE if
the value is indeed numeric and FALSE if not. There are more of these validating functions available,
including:

❑ is_string, which checks to see if the value is of the string format

❑ is_bool, which checks for Boolean type (TRUE, FALSE, 0 or 1)

❑ is_array, which tells you if the variable holds an array

❑ is_object, which determines if the variable stores an object (remember this one when you try
object oriented coding using PHP; it is very useful)

210

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 210

Figure 7-8

These functions are all documented in the PHP manual at www.php.net/variables.

In this instance, the use of is_numeric allows us to make sure our user has entered a numeric value
(remember that we are expecting a numeric value between 0 and 10).

$movie_rating = trim($_POST[‘movie_rating’]);
if (!is_numeric ($movie_rating)){

$error .= “Please+enter+a+numeric+rating+%21%0D%0A”;
} else {

if ($movie_rating < 0 || $movie_rating > 10){
$error .= “Please+enter+a+rating+between+0+and+10%21%0D%0A”;

}
}

The code first cleans up the value of leading and trailing spaces (always try to be prepared for typos and
mishaps) and then tests to see if the value is numeric. If it’s not, the error message queue is fed; if it is,
we test the value to see if it is between 0 and 10. If the value is not between 0 and 10, we add an error
message to the error message queue.

211

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 211

The date validation is almost as simple to understand, if you know about regular expressions. Here’s a
closer look at it:

$movie_release = trim($_POST[‘movie_release’]);
if (!ereg (“([0-9]{2})-([0-9]{2})-([0-9]{4})”, $movie_release , $reldatepart) ||
empty($movie_release)){

$error .= “Please+enter+a+date+with+the+dd-mm-yyyy+format%21%0D%0A”;
} else {

$movie_release = @mktime (0, 0, 0, $reldatepart[‘2’], $reldatepart[‘1’],
$reldatepart[‘3’]);

if ($movie_release == ‘-1’){
$error .= “Please+enter+a+real+date+with+the+dd-mm-yyyy+format%21%0D%0A”;

}
}

As you saw in this chapter’s first exercise, we use the trim() function to clear all leading and trailing
spaces in the received string to make sure our user entered something other than just a space.

The string manipulation functions are found at the PHP Web site at www.php.net/strings. You
can find trim and some other very useful functions there.

The next statement contains two conditions. The first condition tests for a regular expression match. The
regular expression is “([0-9]{2})-([0-9]{2})-([0-9]{4})”. What does this do? [0-9]{2} speci-
fies that we want to check for numbers between 0 and 9 with two occurrences. For example 02 will
match but not 2. The same logic applies to the [0-9]{4} statement: The only difference is that we are
expecting four digits in our number. These four digits are the year part of the date.

So, in English, it means: I want my string to start with a number with two digits, followed by a hyphen (-),
and then another group of two digits, and then a hyphen (-), and finish with a four-digit number.

if (!ereg (“([0-9]{2})-([0-9]{2})-([0-9]{4})”, $movie_release , $reldatepart) ||
empty($movie_release)){...
}

Now, this is not exactly what our regular expression says. It says that if it matches our condition, we will
split it in three different chunks, each chunk delimited with the parentheses.

This cutting is performed by the ereg() function. If the $movie_release string matches the pattern,
ereg will cut the string into parts and then store each part as an element of the $reldatepart array in
our example.

Be sure to read the PHP manual about regular expressions at www.php.net/regex and consult a few
tutorials to understand the real power of using regular expressions. (A good starting tutorial can be
found at www.phpbuilder.com/columns/dario19990616.php3.)

If our date were 02-03-2003, the array would be as follows:

Array
(

[0] => 02-03-2003
[1] => 02

212

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 212

[2] => 03
[3] => 2003

)

As you can see here, the first index holds the whole string, and each chunk holds a cut-off part of the
string, delimited by the parentheses.

Now that we have our date in an understandable format, we can change it into a timestamp using the
mktime() function, which allows you to create a timestamp from chunks of dates. It is also a very useful
function to manipulate dates.

$movie_release = mktime (0, 0, 0, $reldatepart[‘2’], $reldatepart[‘1’],
$reldatepart[‘3’]);

This code stores a timestamp from the day, month, and year information fed to the system in the
$movie_release variable. The format is int mktime (int hour, int minute, int second, int month,
int day, int year). The returned value is the number of seconds between January 1, 1970, and the
specified date.

See documentation at www.php.net/mktime for additional information regarding optional parameters
such as daylight saving flag.

If mktime fails to create a timestamp from the date you passed to it, it will return -1. This happens when
the input is invalid, although it matches the regular expression (for example 99-99-9999 will pass the reg-
ular expression test, but is obviously not a valid date). To be sure that the date is indeed a date, we will
test for the return value from mktime and respond accordingly.

if ($movie_release == ‘-1’){
$error .= “Please+enter+a+real+date+with+the+dd-mm-yyyy+format%21%0D%0A”;

}

In this case, a false date entry triggers an error message asking for a valid date.

Here’s an alternate technique: The same timestamp generation could have been performed using SQL.
Many things that PHP does on the string manipulation side can be done straight from SQL, as shown here:

if (!ereg (“([0-9]{2})-([0-9]{2})-([0-9]{4})”, $movie_release , $reldatepart) ||
empty($movie_release)){...
}
$reldate = $reldatepart[‘3’].”-”.$reldatepart[‘2’].”-”.$reldatepart[‘1’].”
00:00:00”;
$sql = “INSERT INTO

`movie`
(`movie_release`)

VALUES
(UNIX_TIMESTAMP(‘$reldate’))

“;

In this code, the SQL does the timestamp generation. The UNIX_TIMESTAMP() SQL function expects a
YYYY-MM-DD HH:MM:SS (2003-12-05 02:05:00) format and creates a timestamp from it. In the code, we

213

Validating User Input

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 213

force the creation of the timestamp at 00:00 on the date of the movie release. You can save yourself some
lengthy coding by using SQL features wherever possible.

See documentation on MySQL date and time functions at www.mysql.com/doc/en/
Date_and_time_functions.html.

Summary
Validating user data is all about being prepared for the worst. Users make mistakes—that’s the nature of
users. Most errors are unintentional. Some errors are made intentionally to deny the service. It happens
every day. The developer has to help the system deal with user input errors.

Regular expressions help you meet many user input validation challenges. Learning how to use them is
often the key to success in an interactive system.

214

Chapter 7

11 557440 Ch07.qxd 2/6/04 9:17 AM Page 214

8
Handling and Avoiding

Errors

You will probably be spending a fair amount of time contemplating errors in your code, as do
most Web developers when they start programming. No matter how good you are, how good
your code, how long you have been coding, or how hard you try, you will encounter times when
you have errors in your code.

It is of the utmost importance that you know how to handle your errors and debug your own
code. Being able to efficiently and properly debug your code is an invaluable time-saver; and in
Web development, $time == $money!

Luckily, PHP comes with a full-featured API (Applications Programming Interface) that provides
you with many ways to trap and resolve those unwanted errors. PHP also allows you to use the
API to capture the errors and create your own custom error functions or pages. These features are
useful when debugging your code and when notifying your Webmaster about errors that seem to
be happening to your applications as users are running them. Not only can you use PHP code to
trap errors and customize them; you can use the Apache Web Server to help do this.

How the Apache Web Server
Deals with Errors

Apache has a directive, the ErrorDocument, that you can configure in the httpd.conf file to cre-
ate custom error pages with PHP so visitors to your site don’t see the old boring server-created
error pages. There are limitless possibilities when creating these custom messages. As with the
PHP error-catching pages, you can have the ErrorDocument call PHP pages to do whatever you
would like them to do—from simply displaying a friendly error message to the user to e-mailing
a system administrator to notify him or her of the failure.

Now, unlike PHP error pages, the Apache ErrorDocument pages are used more for instances of
missing pages (that is, a “Page Not Found” error or Forbidden access error pages and other

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 215

requests of that sort). So, if someone visits your site, and he or she runs into the “Page Not Found” error
page, the script will e-mail the administrator and he or she can in turn check to see if this was a valid
request and there is something wrong with the page or server, or if someone was just looking for pages
or trying to sniff around where they weren’t supposed to be.

Apache’s ErrorDocument Directive
Error handling is an invaluable resource and a “must have” for Web developers to keep their sites up
and running with the fewest end-user problems or complaints. If you rely on people contacting you to
tell you about errors on your site, you will never get any decent input. Allowing the server to do this for
you will greatly increase your success at running a smooth server. We will first look at Apache’s
ErrorDocument method of error handling.

Try It Out Using Apache’s ErrorDocument Method
First of all, you need to make some changes to the httpd.conf file to allow you to create a custom error
page. Apache is usually set up by default to go to its own internal error pages, but you don’t want that.
You want Apache to go to your custom error page, no matter what error has occurred.

To do this, you change the default settings to your own specific settings by following these steps:

1. Open up your httpd.conf file, and you will find some lines around line 750 or so that look
like this:

Customizable error responses come in three flavors:
1) plain text 2) local redirects 3) external redirects
#
Some examples:
#ErrorDocument 500 “The server made a boo boo.”
#ErrorDocument 404 /missing.html
#ErrorDocument 404 “/cgi-bin/missing_handler.pl”
#ErrorDocument 402 http://www.example.com/subscription_info.html

2. Change that information to the following:

Customizable error responses come in three flavors:
1) plain text 2) local redirects 3) external redirects
#
Some examples:
ErrorDocument 400 /error.php?400
ErrorDocument 401 /error.php?401
ErrorDocument 403 /error.php?403
ErrorDocument 404 /error.php?404
ErrorDocument 500 /error.php?500

There are many ErrorDocument codes, but we will focus on the error messages you see typically in
everyday Web browsing. The following is a list of all server codes and what they stand for, including the
five we will be addressing in these examples.

216

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 216

❑ Successful Client Requests:

❑ 200: OK

❑ 202: Accepted

❑ 203: Non-Authorative Information

❑ 204: No Content

❑ 205: Reset Content

❑ 206: Partial Content

❑ Client Request Redirected:

❑ 300: Multiple Choices

❑ 301: Moved Permanently

❑ 302: Moved Temporarily

❑ 304: Not Modified

❑ 305: Use Proxy

❑ Client Request Errors:

❑ 400: Bad Request

❑ 401: Authorization Required

❑ 402: Payment Required

❑ 403: Forbidden

❑ 404: Not Found

❑ 405: Method Not Allowed

❑ 406: Not Acceptable

❑ 407: Proxy Authentication Required

❑ 408: Request Timed Out

❑ 409: Conflicting Request

❑ 410: Gone

❑ 411: Content Length Required

❑ 412: Precondition Failed

❑ 413: Request Entity Too Long

❑ 414: Request URI Too Long

❑ 415: Unsupported Media Type

217

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 217

❑ Server Errors:

❑ 500: Internal Server Error

❑ 501: Not Implemented

❑ 502: Bad Gateway

❑ 503: Service Unavailable

❑ 504: Gateway Timeout

❑ 505: HTTP Version Not Supported

Although we are showing you just a few of these, you can catch others as well by simply adding another
ErrorDocument to the httpd.conf file. For example, say you want to implement the 501 error code,
you would simply add ErrorDocument 501 /error.php?501 to your code and add the error handling in
the error.php page, which you’ll see shortly.

Now we will look at a simple way to show the user error messages, and then get into some more com-
plex ways to notify the Webmaster of errors occurring on the Web site by using the mail() command
that you learned previously.

To show the user error messages, follow these steps:

1. Open your text editor and save a page called error.php.

2. Enter the following code:

<?php
$error_no = $_SERVER[‘QUERY_STRING’];

switch ($error_no)
{

case 400:
$error_output = “<h1>"Bad Request" Error Page - (Error Code

400)</h1>”;
$error_output .= “The browser has made a Bad Request
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

break;
case 401:

$error_output = “<h1>"Authorization Required" Error Page -
(Error Code

401)</h1>”;
$error_output .= “You have supplied the wrong information to access a

secure area
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

break;
case 403:

$error_output = “<h1>"Forbidden Access" Error Page - (Error Code

218

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 218

403)</h1>”;
$error_output .= “You are denied access to this area
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

break;
case 404:

$error_output = “<h1>"Page Not Found" Error Page - (Error Code
404)</h1>”;

$error_output .= “The page you are looking for cannot be found
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

break;
case 500:

$error_output = “<h1>"Internal Server Error" Error Page -
(Error Code

500)</h1>”;
$error_output .= “The server has encountered an internal error
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

break;
default:

$error_output = “<h1>Error Page</h1>”;
$error_output .= “This is the custom error Page
”;
$error_output .= “You should be here”;

}
?>
<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<?php
echo $error_output;
?>
</body>
</html>

How It Works
Now, to test one of these, simply open your browser and type http://localhost/asdf/qwerty/page.html,
or any other page you know for certain doesn’t reside on your server, into the address bar. You should
see the “Page Not Found” message on the screen similar to the message shown in Figure 8-1.

Another way to test or simulate the error messages so that you can ensure you coded the page correctly
is to supply the page with the query string information via the browser. For example, if you want to sim-
ulate an “Internal Server Error” error message, type http://localhost/error.php?500 into your address
bar. The page will use the query string information and run the code just as if there was an Internal
Server Error on one of your pages. The result will look pretty similar to the previous example, but will

219

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 219

contain a different message. The “Internal Server Error” page will look like the one shown in Figure 8-2,
displaying the “Internal Server Error” message on the screen.

Apache’s ErrorDocument: Advanced Custom Error Page
Up until this point, we’ve been showing the user a custom error message only. You can do countless
other things, such as e-mailing the administrator or Webmaster of the site so he or she can look into the
issue further should there be a problem with certain pages. This is a great way for you to keep track of
your pages without having to check up on the server periodically. More than likely, if you haven’t
received any error e-mails, there haven’t been problems with your server.

Now we generate an automatic e-mail that tells the administrator what time the error occurred, on what
day, what the error was, what page generated the error, and what error message was displayed to the
user who navigated to the page. We will be adding this functionality to the same error.php file, so if
you wish to keep them separate, name the original page error_old.php or whatever you prefer.

Figure 8-1

220

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 220

Figure 8-2

The full code will look like this:

<?
function e-mail_admin($error_no, $error_output, $full_date, $full_time,
$request_page)
{

$to = “Administrator <admin@yourdomain.com>”;

$subject = “Apache Error Generation”;

$body = “<html>”;
$body .= “<head>”;
$body .= “<title></title>”;
$body .= “</head>”;
$body .= “<body>”;
$body .= “Error occurred on ” . $full_date . “ at ” . $full_time .

“
”;

221

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 221

$body .= “Error received was a ” . $error_no . “ error.
”;
$body .= “The page that generated the error was: ” . $request_page .

“
”;
$body .= “The generated error message was:” . $error_output;
$body .= “</body>”;
$body .= “</html>”;

$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: text/html; charset=iso-8859-1\r\n”;

$headers .= “From: Apache Error <host@yourdomain.com>\r\n”;
$headers .= “Cc: webmaster@yourdomain.com\r\n”;

mail($to, $subject, $body, $headers);
}

$date = getdate();
$full_date = $date[‘weekday’] . “, “ . $date[‘month’] . “ “ . $date[‘mday’] . “, “
. $date[‘year’];

$full_time = $date[‘hours’] . “:” . $date[‘minutes’] . “:” . $date[‘seconds’] . “:”
. $date[‘year’];

$error_no = $_SERVER[‘QUERY_STRING’];
$request_page = $_SERVER[‘REQUEST_URI’];

switch ($error_no)
{

case 400:
$error_output = “<h1>\”Bad Request\” Error Page - (Error Code

400)</h1>”;
$error_output .= “The browser has made a Bad Request
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

e-mail_admin($error_no, $error_output, $full_date, $full_time,
$request_page);

break;
case 401:

$error_output = “<h1>\”Authorization Required\” Error Page - (Error
Code 401)</h1>”;

$error_output .= “You have supplied the wrong information to access a
secure area
”;

$error_output .= “Contact
the system administrator”;

$error_output .= “ if you feel this to be in error”;

e-mail_admin($error_no, $error_output, $full_date, $full_time,
$request_page);

break;
case 403:

$error_output = “<h1>\”Forbidden Access\” Error Page - (Error Code
403)</h1>”;

$error_output .= “You are denied access to this area
”;

222

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 222

$error_output .= “Contact
the system administrator”;

$error_output .= “ if you feel this to be in error”;

e-mail_admin($error_no, $error_output, $full_date, $full_time,
$request_page);

break;
case 404:

$error_output = “<h1>\”Page Not Found\” Error Page - (Error Code
404)</h1>”;

$error_output .= “The page you are looking for cannot be found
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

e-mail_admin($error_no, $error_output, $full_date, $full_time,
$request_page);

break;
case 500:

$error_output = “<h1>\”Internal Server Error\” Error Page - (Error Code
500)</h1>”;

$error_output .= “The server has encountered an internal error
”;
$error_output .= “Contact

the system administrator”;
$error_output .= “ if you feel this to be in error”;

e-mail_admin($error_no, $error_output, $full_date, $full_time,
$request_page);

break;
default:

$error_output = “<h1>Error Page</h1>”;
$error_output .= “This is the custom error Page
”;
$error_output .= “You should be here”;

}
?>
<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<?
echo $error_output;
?>
</body>
</html>

Now we will explain what we just did. The output that you see in the browser will be the same as you
saw before, but behind the scenes, we used the mail() function to send an e-mail to the administrator.
We also used some other PHP functions, such as getdate(), to note the time and day the error
occurred. We threw in some function practice for you to get the hang of sending variables as parameters
to and from functions. Now the administrator or Webmaster will be getting an HTML-formatted e-mail
concerning the error message that the user received when he or she happened to go to that page.

That’s it: You just used Apache’s ErrorDocument Directive to help you maintain your server.

223

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 223

Error Handling and Creating Error Handling
Pages with PHP

Now let’s look at how you can troubleshoot your PHP scripts using simple logical steps. First, however,
you need to understand what PHP does when it encounters an error and what it does with certain errors.

When a PHP script gets executed and encounters an error, it displays a message in the browser showing
you what the error was. Depending on what type of error occurred, the script may no longer finish exe-
cuting. You are likely to run into these sorts of errors when writing your own scripts. Don’t feel ashamed
if you receive errors; everybody makes errors when writing code, no matter what the level of expertise.
Even though it is normal to receive errors during the development of your script, you don’t want errors
(which are normally complicated to understand for the lay person) to be popping up to end users when
your site has gone live. For this reason, it’s important to know how to catch those unwanted errors and
generate more user-friendly errors that let the user know that there will be a solution forthcoming.

Error Types in PHP
There are 11 types of errors in PHP listed in the following table, along with the Report All Errors option.
Each of these can be called by either an integer value or a named constant.

Error Integer Value NAMED CONSTANT

E_ERROR 1 Fatal runtime error

E_WARNING 2 Non-fatal runtime error

E_PARSE 4 Compile-time parse error

E_NOTICE 8 Non-fatal runtime notice

E_CORE_ERROR 16 Fatal errors occurring at startup

E_CORE_WARNINGS 32 Non-fatal runtime error caused by initial startup

E_COMPILE_WARNING 128 Non-fatal compile-time error

E_USER_ERROR 256 User-generated error by PHP function trigger_
error()

E_USER_WARNING 512 User-generated warning by PHP function
trigger_error()

E_USER_NOTICE 1024 User-generated notice by PHP function trigger_
error()

E_ALL 2047 All errors and warnings reported

Typically, you don’t have to worry about all of the error types; your main concern is with runtime errors
such as notices, warnings, and errors, along with the user-generated equivalents. Your error-handling
code helps resolve these cryptic errors to offer helpful, user-friendly messages.

There are three main types of errors that we will discuss in full here:

224

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 224

❑ Fatal errors: Fatal run-time errors. These indicate errors that the program can’t recover from.
Script execution is halted.

❑ Warnings: Runtime warnings (non-fatal errors). Script execution is not halted.

❑ Notices: Runtime notices. These indicate that the script has encountered something that could
indicate an error, but could also happen in the normal course of running the script.

Generating PHP Errors
Now let’s generate some errors so that you can check out what you need to do to resolve them. Consider
this code snippet, for example:

<?php
//set string with “Wrox” spelled wrong
$string_variable = “Worx books are great!”;

//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(“Worx”, “Wrox”);
?>

Now if you run this snippet, you should see the following error:

Warning: Wrong parameter count for str_replace() in
c:\FoxServ\www\errorhandling\error1.php on line 8

Because this is a nonfatal error that does not halt script execution, you can still run code after the point
where the error occurred. If you change the snippet to this:

<?php
//set string with “Wrox” spelled wrong
$string_variable = “Worx books are great!”;

//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(“Worx”, “Wrox”);

//this is a non-fatal error, so the original
//variable should still show up after the warning
echo $string_variable;
?>

it will produce the following output:

Warning: Wrong parameter count for str_replace() in
c:\FoxServ\www\errorhandling\error1.php on line 8
Worx books are great!

225

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 225

Next, we throw out a fatal error to show you how it produces different results when the error occurs.
Let’s create a fatal error by using the following code:

<?php
//beginning of page
echo “Beginning”;

//we are going to make a call to
//a function that doesn’t exist
//this will generate an E_ERROR
//and will halt script execution
//after the call of the function
fatalerror();

//end of page
echo “End”;
//won’t be output due to the fatal error
?>

This produces the following output:

Beginning
Fatal error: Call to undefined function: fatalerror() in
c:\FoxServ\www\errorhandling\error2.php on line 10.

Notice that Beginning was output because it was before the function call, but End was not because the
fatal error halted the script execution. You can suppress the fatal error calls by putting an ampersand in
front of the function call, like so: @fatalerror(). This suppresses the error, but the script still halts its
execution.

Note that as of PHP 4 the default error reporting does not show E_NOTICE errors. However, you may
want to show them during development. Enabling E_NOTICE errors for debugging can warn you
about possible bugs and/or bad programming practices. For example, you might use something such as
$row[variable], but actually it is better to write this as $row[‘variable’] because PHP will
try and treat “variable” as a constant. If, however, it isn’t a constant, PHP assumes it to be a string
for the array.

If you don’t know what your error reporting level is set at, you can simply run the error_reporting()
function without any arguments, like this:

<?php
echo error_reporting();
?>

By default, all error handling is handled by PHP’s built-in error handler, which tells you the error and
displays the message associated with that error. The message displays the error type, the error message,
the filename, and the line number where the error occurred.

You may have noticed an error similar to this one in a previous code snippet:

Warning: Wrong parameter count for str_replace() in
c:\FoxServ\www\errorhandling\error1.php on line 8

226

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 226

Usually, letting PHP generate its own errors is fine, but with complicated applications, you may want to
catch the errors so you can do whatever you want to do with the error, such as notifying an administra-
tor so he or she can look into the problem further. We will now create a custom error handler to catch the
errors and display a more friendly error message.

We will be expanding on the code snippet we created for this example:

<?php
//create your error handler function
function handler($error_type, $error_message, $error_file, $error_line)
{

echo “<h1>Page Error</h1>”;
echo “Errors have occurred while executing this page. Contact the “;
echo “administrator to report

errors

”;
echo “Information Generated

”;
echo “Error Type: $error_type
”;
echo “Error Message: $error_message
”;
echo “Error Filename: $error_file
”;
echo “Error Line: $error_line”;

}

//set the error handler to be used
set_error_handler(“handler”);

//set string with “Wrox” spelled wrong
$string_variable = “Worx books are great!”;

//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(“Worx”, “Wrox”);
?>

Now the output should look similar to that in Figure 8-3.

Because your error handler is user-defined, you can catch the errors, and you can re-create the error mes-
sages based on the error type. Let’s create a snippet for this sort of error handler:

<?php
//create your error handler function
function handler($error_type, $error_message, $error_file, $error_line)
{

switch($error_type)
{

//fatal error
case E_ERROR:

echo “<h1>Fatal Error</h1>”;
die(“A fatal error has occured at line $error_line of file

$error_file.

Error message created was "$error_message"”);
break;

//warnings
case E_WARNING:

echo “<h1>Warning</h1>”;

227

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 227

echo “A warning has occured at line $error_line of file
$error_file.
”;

echo “ Error message created was "$error_message"”;
//notices
case E_NOTICE:

//don’t show notice errors
break;

}
}

//set the error handler to be used
set_error_handler(“handler”);

//set string with “Wrox” spelled wrong
$string_variable = “Worx books are great!”;

//try to use str_replace to replace Worx with Wrox
//this will generate an E_WARNING
//because of wrong parameter count
str_replace(“Worx”, “Wrox”);
?>

Figure 8-3

228

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 228

The previous code snippet we created produced a fatal error, which is why the E_ERROR case was called
in the switch statement. This sort of handler is nice to use to trap any sort of error and perform different
actions based on the error. The output should look similar to Figure 8-4.

Figure 8-4

Even though you can trap the errors and display whatever you want to display, you may not want the
user to see the error message we have created previously. You can create an error message that simply
says there was an error on the page. Then you can apologize for the inconvenience and allow the user to
go to another page. Finally, you can write the error message to a log file, write it to a database, or send it
to the Webmaster or administrator via e-mail so that person can further review the error.

We personally prefer the e-mail method because it requires that the person be notified of the problem
right away, and it doesn’t require him or her to check the database or log files periodically. The only
problem with this method is if there are a lot of requests to the page where the error is occurring; in that
case the admin will be bombarded with e-mails.

For this last exercise, let’s set up your full-featured error handler to do just what you want it to. You can
then include this page in all your pages so you can trap all the errors without using PHP’s built-in handler.

229

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 229

Follow these steps:

1. Create the code as follows:

<?php
//create your error handler function
function handler($error_type, $error_message, $error_file, $error_line)
{

global $_SERVER[‘HTTP_HOST’], $_SERVER[‘HTTP_USER_AGENT’],
$_SERVER[‘REMOTE_ADDR’], $_SERVER[‘REQUEST_URI’];

switch($error_type)
{

//fatal error
case E_ERROR:

$to = “Administrator <admin@yourdomain.com>”;

$subject = “Custom Error Handling”;

$body = “<html>”;
$body .= “<head>”;
$body .= “<title></title>”;
$body .= “</head>”;
$body .= “<body>”;
$body .= “<h1>Fatal Error</h1>”;
$body .= “Error received was a ” . $error_type . “

error.
”;
$body .= “The page that generated the error was: ” . $error_file

. “”;
$body .= “ and was generated on line: ” . $error_line .

“
”;
$body .= “The generated error message was:” . $error_message;
$body .= “</body>”;
$body .= “</html>”;

$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: text/html; charset=iso-8859-1\r\n”;

$headers .= “From: Apache Error <host@yourdomain.com>\r\n”;
$headers .= “Cc: webmaster@yourdomain.com\r\n”;

mail($to, $subject, $message, $headers);
die(); //kill the script
break;

//warnings
case E_WARNING:

$to = “Administrator <admin@yourdomain.com>”;

$subject = “Custom Error Handling”;

$body = “<html>”;
$body .= “<head>”;
$body .= “<title></title>”;

230

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 230

$body .= “</head>”;
$body .= “<body>”;
$body .= “<h1>Warning</h1>”;
$body .= “Error received was a ” . $error_type . “

error.
”;
$body .= “The page that generated the error was: ” .

$error_file . “”;
$body .= “ and was generated on line: ” . $error_line .

“
”;
$body .= “The generated error message was:” . $error_message;
$body .= “</body>”;
$body .= “</html>”;

$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: text/html; charset=iso-8859-1\r\n”;

$headers .= “From: Apache Error <host@yourdomain.com>\r\n”;
$headers .= “Cc: webmaster@yourdomain.com\r\n”;

mail($to, $subject, $message, $headers);
break;
//script will continue

//notices
case E_NOTICE:

//don’t show notice errors
break;

}
}
/*
set error handling to 0
we will handle all error reporting
only notifying admin on warnings and fatal errors
don’t bother with notices as they are trivial errors
really only meant for debugging
*/
error_reporting(0);

//set the error handler to be used
set_error_handler(“handler”);

/*
Create the rest of your page here.
We will not be displaying any errors
We will be e-mailing the admin an error message
Keep in mind that fatal errors will still halt the
execution, but they will still notify the admin
*/
?>

Once you run this page and you receive an error, the script e-mails the admin with the error and some
useful information about the user who visited the page that generated the error.

231

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 231

Other Methods of Error Handling
You’ve just seen some of what you can do with custom error messages, but there are other ways to deal
with errors.

Not Meeting Conditions
Error trapping cannot catch all problems in your code. It will catch only problems related to PHP itself.
Any problems you are having with conditions in your code will not be caught by simple error trapping.
This will have to be manually done by using several different methods of troubleshooting in your code.

For example, let’s say you are submitting a form and you are wondering why the condition isn’t true
when you are checking for submission. Let’s say you have an input such as this:

<input type=”submit” name=”submit” value=”Submit”>

You are checking to see whether the submit button has been pressed to then see whether or not you
should process the form information. You are probably doing a check similar to this:

if($_POST[‘submit’] == “submit”)
{
//form has been submitted
}
else
{
//form has not been submitted
}

Now, see if you can figure out what is wrong with the code causing you not to get the if statement.
Here’s a hint: The value of the submit button is “Submit”, not “submit”. To troubleshoot to see if your
condition is working or not, you can simply put a line in your if statement such as this:

echo “In the if statement”;

Should you get into the if statement, the echo’d line is output to the browser. If you don’t change the
lowercase “submit” to an uppercase “Submit,” you don’t see that echo in the browser, so you can then
further investigate why you aren’t getting into the if statement. Let’s hope that you realize the error
and change the case and test it again, and voilà, the line has been echoed.

You will find that you need to do this to establish where in your code actions are happening. Not only
do you want to do this with if statements, but you will probably be using it to test for loops, while
loops, foreach loops, do while loops, and many others at other times when you are running condi-
tions, or are expecting results and you can’t figure out why something isn’t working.

When Variables Aren’t Being Output
Another common problem is when variables aren’t being output. Most of the time, the variables are just
fine, but the programmer can’t figure out why they aren’t being output. Again, the conditions aren’t being
met, and if a condition isn’t met and the expected variables are in the condition, they obviously aren’t
going to be output. Many programmers run into this problem and have a hard time figuring it out. They
tend to lay blame on the variables before checking to see whether or not their conditions have been met.

232

Chapter 8

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 232

There are also times when the variables are the reason for the condition not being met, as shown in the
previous paragraph. The programmer uses the wrong value to check the if statement and the condition
fails. The best thing for a programmer to do in this situation is to troubleshoot. Throw an echo here and
an echo there to see where your problems are. Don’t give up at the first sign of defeat: You should
exhaust all of your own programming resources before you go looking for help elsewhere.

Parse Errors
A parse error is another main error type. Parse errors occur when you forget a semicolon, when curly
braces are mismatched, when square brackets aren’t used properly, and so on. These parse errors usually
don’t have to do with a condition statement; they are mainly syntax errors that will cause the script to
halt execution. Parse errors are worse than fatal errors because they won’t even let the script run at all;
they merely give you the error information.

Summary
You have read through a lot of useful information in this chapter. Learning from your own mistakes and
errors will help you to be quicker at noticing small, trivial mistakes that are causing problems in your
code. I believe the single best action a programmer can learn is how to troubleshoot. Once you have that
figured out, nothing can hold you back from creating seamless applications that will impress you and
your clients.

Exercises
Here are three short snippets of code to sift through. You should spot the errors and figure out how to fix
them. The answers are provided in Appendix A. Once you are finished, based on what you have
learned, create a little error-catching script to catch the errors.

1.
<?
$query = “select * from table_name where name = ‘“ . $_POST[‘name’] . “‘;”
$result = mysql_query($result) or die(mysql_error());
?>

2.
<?
if ($_POST[‘first_name’] = “Jethro”)
{
echo “Your name is “ . $_POST[‘first_name’];
}
?>

3.
<?
$full_name = $_POST[‘mrmiss’] “. “ $_POST[‘first_name’] “ “ $_POST[‘last_name’];
?>

233

Handling and Avoiding Errors

12 557440 Ch08.qxd 2/6/04 9:17 AM Page 233

Part III: Comic Book
Fan Site

Chapter 9: Building Databases

Chapter 10: E-mailing with PHP

Chapter 11: User Logins, Profiles, and Personalization

Chapter 12: Building a Content Management System

Chapter 13: Mailing Lists

Chapter 14: Online Selling: A Quick Way to E-Commerce

Chapter 15: Creating a Bulletin Board System

13 557440 PP03.qxd 2/6/04 9:17 AM Page 235

9
Building Databases

In previous chapters, you created a very nice movie review Web site, but now the hand-holding
is over, my friend. It’s time for us to push you out of the nest. In this chapter, you will have the
opportunity to create your own databases, and your own Web site.

We show you how to put together a comic book appreciation Web site, but you can certainly take
the concepts we teach you and branch off to create that online auction or antique car site you have
always dreamed about. We think the comic book appreciation Web site is cooler, but whatever. You
do your thing.

In this chapter, we are going to cover the basics of creating your own database. Topics we discuss
include:

❑ Planning the design of your database

❑ Database normalization

❑ Creating your database

❑ Creating and modifying tables in your database

❑ Building Web pages to access your data with PHP

Getting Star ted
You have a great idea for a site, right? Excellent. Open up your PHP editor and start coding!
Believe it or not, many people approach the creation of a Web site in just this way. You may be
tempted to yourself. It is not impossible to create a good site in this manner, but you are seriously
handicapping your chances for greatness. Before you begin, you need a plan.

We’re not going to tell you how to plan out an entire Web site, complete with charts and maps and
business models. That’s not what this book is all about. We are going to assume that you or some-
body in your company has already done that by reading other great books on business models,
attending seminars, reading great articles on the Web, and perhaps even hiring a business

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 237

consultant who will help you with everything but building the site (because that’s what we’re going to
teach you how to do).

So you have a great idea for a Web site and a plan. What do you suppose is the first step in creating a
successful Web application using PHP, Apache, and MySQL? We’ll give you a clue: Look at the title of
this chapter.

We need to build the database this site will be based on. Don’t worry—one of the great things about rela-
tional database design is that you don’t have to create every table your site will use. You can start with a
few, and build on it. As long as you follow the basic principles of good database design, your database
should be quite scalable (that is, expandable to any size).

Nam et Ipsa Scientia Potestas Est!
That is, knowledge is power. Very profound words, coming from a man who wore a big, ruffled collar.
Francis Bacon coined the phrase 400 years ago, and it still holds true today.

Of course, information is the foundation of knowledge. Knowledge consists of having information avail-
able to you and knowing what to do with it. Data is the building blocks—the facts and figures—that we
piece together to create useful sets of information.

We must be sure to store this data in an easily accessible place and in a way that allows us to relate that
data to any other data fairly easily. We also want to be able to modify or remove each piece of data quickly
and efficiently, without disturbing other data. With proper database design, all of this is possible.

Sound like a daunting task? Don’t worry. You see, we know a secret that has been kept hidden like the
magician’s code: Efficient database design is easy. No, really, we promise! You see, most of us computer
geeks like to seem invaluable and very intelligent, and it sounds quite impressive to most interviewers
to see on a resume “Designed a comprehensive Web site utilizing an RDBMS backend.” When you are
done with this chapter, you will be able to put that on your resume as well!

What Is a Relational Database?
Let’s first cover a few basics of database design. The relational database is a concept first conceived by
E. F. Codd of IBM, in 1970. It is a collection of data organized in tables that can be used to create, retrieve,
delete, and update that data in many different ways. This can be done without having to reorganize the
tables themselves, especially if the data is organized efficiently.

Take a look at the first table that follows. You can see that we have a very simple collection of data con-
sisting of superheroes’ aliases and real names, and their superhero ID. Nothing too amazing, of course,
but notice how we relate it to the league table that follows it. Each superhero user has a League_ID that
corresponds to an ID in the league table. Through this link, or relationship, you can see that Average Man
is a member of the Dynamic Dudes League because the ID in the league table matches his League_ID in
the superhero table.

238

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 238

ID League_ID Alias Real Name

1 2 Average Man Bill Smith

2 2 The Flea Tom Jacobs

3 1 Albino Dude George White

4 3 Amazing Woman Mary Jones

ID League

1 Extraordinary People

2 Dynamic Dudes

3 Stupendous Seven

4 Justice Network

At first glance, it may seem silly to create a table with one data column and an ID. Why not just put the
league name in the superhero table? Imagine that you had a database of 10,000 superheroes, and 250 of
them were in the Dynamic Dudes league. Now imagine that the Superhero Consortium decided to do a
reorganization and “Dynamic Dudes” was changed to the “Incredible Team.” If the league name were in
the superhero table, you would have to edit 250 records to change the value. With the leagues in a sepa-
rate, related table, you have to change the name in only one place.

That is the key to a relational database. And speaking of keys . . .

Keys
A key is a column that identifies a row of data. In the superhero table, the first column is a key called
“ID,” as it is in the league table. In both cases, because they are unique, and in the table of the data they
represent, they are called primary keys.

Most of the time, the primary key is a single column, but it is not uncommon to use more than one col-
umn to make up a primary key. The important distinction is that for each row, the primary key must be
unique. Because of that characteristic, we can use the key to identify a specific row of data.

The primary key must contain the following characteristics:

❑ They cannot be empty (null).

❑ They will never change in value. Therefore, a primary key cannot contain information that
might change, such as part of a last name (for example, smith807).

❑ They must be unique. In other words, no two rows can contain the same primary key.

239

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 239

The League_ID column in the superhero table is also a key. It matches the primary key of the league
table, but it is in a different, or foreign, table. For this reason, it is called a foreign key. Although not a
requirement, many programmers will give the foreign key a name that identifies what table it refers to
(“League”), and some identifier that marks it as a key (“_ID”). This, along with the fact that keys are
usually numeric, makes it fairly clear which column is the foreign key, if one exists in the table at all.

Keys do not have to be purely numeric. Other common values used as primary keys include Social
Security numbers (which contain dashes), e-mail addresses, and ZIP Codes. Any value is valid as a pri-
mary key as long as it is guaranteed to be unique for each individual record in the table, and will not
change over time.

Keys can enable your tables to be recursive. You might, for example, have a sidekick_ID column in the
superhero table that we could link to the ID column in the same table. Sidekicks are heroes, too, you
know . . .

Relationships
In order to be related, the two tables need a column they can use to tie them together. The superhero and
league tables are related to each other by the League_ID column in the superhero table, and the ID field
in the league table. There is no explicit link created in the database; rather, you create the relationship by
linking them with a SQL statement:

SELECT * FROM superhero s, league l WHERE s.League_ID = l.ID

In plain English, this statement tells the MySQL server to “select all records from the superhero table
(call it ‘s’) and the league table (call it ‘l’), and link the two tables by the superhero League_ID column
and the league ID column.”

There are three types of relationships: one-to-one (1:1), one-to-many (1:M), and many-to-many (M:N).
Our previous example is a one-to-many relationship. To figure out what type of relationship the tables
have, ask yourself how many superheroes you can have in a league. The answer is more than one, or
“many.” How many leagues can a superhero belong to? The answer is “one.” That is a one-to-many rela-
tionship. (Of course, in some universes, a superhero might belong to more than one league. But for our
example, our superheroes exhibit league loyalty.)

One-to-many is the most common database relationship. Such 1:1 relationships don’t happen often, and
a many-to-many relationship is actually two one-to-many relationships joined together with a linking
table. We explore that further later in the chapter.

Although they are more rare, here’s an example of a one-to-one (1:1) relationship just so you know. Say
you have a link between a company and its main office address. Only one company can have that exact
address. In many applications, however, the main office address is included in the company table, so no
relationship is needed. That’s one of the great things about relational database design. If it works for
your needs, then there is no “wrong” way to do it.

240

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 240

Referential Integrity
The concept of referential integrity may be a little lofty for a beginner book like this, but we think it is
important to touch on this briefly. If your application has referential integrity, then when a record in a
table refers to a record in another table (as the previous example did), the latter table will contain the
corresponding record. If the record is missing, you have lost referential integrity.

In many cases, this is not disastrous. You might have an article written by an author whose name no
longer exists in the author table. You still want to keep the article, so losing the referential integrity
between authors and articles is okay. However, if you have an order in your database that can’t be
related to a customer because the customer was deleted, then you might be hard pressed to figure out
where to send the product, and who to charge for it!

There are ways to enforce referential integrity in a MySQL database. However, these concepts and proce-
dures are beyond the scope of this book. If you are interested in obtaining more information about referential
integrity and foreign keys, visit www.mysql.com/doc/en/InnoDB_foreign_key_constraints.html.

Normalization
“Database normalization” is one of those big fancy terms that database administrators like to throw
around, along with “Boyce-Codd Normal Form,” “trivial functional dependency,” and “Heisenberg
compensator.” They aren’t really important terms to know to be able to design a good database, but
we’ll touch on normalization here.

For our purposes, we will simply define normalization as the process of modifying your database table
structure so that dependencies make sense, and there is no redundant data. In a moment, we are going
to go through this process. The best way to learn is to do!

Designing Your Database
It’s time to design your application. This will be a relatively simple application, but it will help you learn
important concepts such as normalization and expose you to various SQL commands.

Typically, this is where we would take you through a “Try It Out” section and tell you How It Works.
When first designing a database, however, you do not need your computer. All you need is a pad of
paper and a pencil. So, go get a pad of paper and a pencil. We’ll wait.

Let’s draw some tables.

The application you are going to design is a comic book character database. You will store a little bit of
information about various characters, such as their alter ego’s alias, their real names, the powers they
possess, and the location of their lair. (Yes, that’s right. I said “lair.”)

241

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 241

Creating the First Table
Before we open MySQL and start mucking around with tables, we need to figure out how we are going
to store all of the data. For simplicity, let’s create one big table with all of the relevant data. You can draw
it out on your piece of paper, or if you just can’t stay away from your computer, use your favorite
spreadsheet program. Copy the information you see in the table that follows.

name real name power 1 power 2 power 3 lair address city st zip

Clean John Strength X-ray Flight 123 Poplar Townsburg OH 45293
Freak Smith vision Avenue

Soap Efram Speed 123 Poplar Townsburg OH 45293
Stud Jones Avenue

The Dustin Strength Dirtiness Laser 452 Elm Burgtown OH 45201
Dustmite Huff vision Street #3D

We’ll call that table “zero,” because we’re not even at the first step yet, and that data is just ugly (from a
relational database standpoint).

The first thing you should notice is that there are multiple power columns. What would you do if you
had to add a character with more than three powers? You would have to create a new column, and that’s
not good. Instead, let’s combine all the powers into one column, and then separate each power into its
own separate row. The other columns are duplicated in these additional rows (so, Clean Freak would
have three rows instead of one, each row including a different power in the power column, but the
name, address, and so on would remain identical among the three listings). This concept is called atomic-
ity. Each value (cell) is atomic, or has only one item of data.

Let’s also create a unique primary key for each character. Yes, you could use the character’s name, but
remember that a primary key should never be something that could change, and it must be unique. To
handle this requirement we’ll create an ID column.

Because in this pass we have multiple rows with the same character and the multiple rows are a result of
the existence of multiple powers, we’ll combine the ID column with the power column to create the pri-
mary key. When more than one column makes up the primary key, it is called a composite primary key.
We’ll mark the primary key columns with an asterisk (*) to highlight them for you.

Your table should look like the one that follows. We’ll call this table “one” because it’s our first pass at
normalizing. (Yes, you are in the middle of a normalization process. We told you it wasn’t difficult.)

id* name real name power* lair address city st zip

1 Clean Freak John Smith Strength 123 Poplar Avenue Townsburg OH 45293

1 Clean Freak John Smith X-ray vision 123 Poplar Avenue Townsburg OH 45293

1 Clean Freak John Smith Flight 123 Poplar Avenue Townsburg OH 45293

2 Soap Stud Efram Jones Speed 123 Poplar Avenue Townsburg OH 45293

242

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 242

id* name real name power* lair address city st zip

3 The Dustmite Dustin Hare Strength 452 Elm Street #3D Burgtown OH 45201

3 The Dustmite Dustin Hare Dirtiness 452 Elm Street #3D Burgtown OH 45201

3 The Dustmite Dustin Hare Laser vision 452 Elm Street #3D Burgtown OH 45201

Looking better, but there is still repeated data in there. In fact, the power column is what is causing the
duplicate data. Let’s separate out the power column and use a foreign key to relate it to the original
table. We will also further normalize the power table so that we get rid of duplicate data. This is pass
number “two.” See the three tables that follow.

id* name real name lair address city st zip

1 Clean Freak John Smith 123 Poplar Avenue Townsburg OH 45293

2 Soap Stud Efram Jones 123 Poplar Avenue Townsburg OH 45293

3 The Dustmite Dustin Hare 452 Elm Street #3D Burgtown OH 45201

id* power

1 Strength

2 X-ray vision

3 Flight

4 Speed

5 Dirtiness

6 Laser vision

char_id* power_id*

1 1

1 2

1 3

2 4

3 1

3 5

3 6

As you can see, we have much less repeated data than we did before. The powers have been separated
out, and a link table has been created to link each power to each appropriate character.

243

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 243

It may seem a bit nitpicky, but you still have some duplicate data that you can take care of in the charac-
ter table. It is quite possible for more than one character to be in the same lair, as is the case with Clean
Freak and Soap Stud. Let’s create a lair table, and link it to the character table with keys. Let’s also add a
new column to the character table for alignment. See the two tables that follow.

id* lair_id name real name align

1 1 Clean Freak John Smith Good

2 1 Soap Stud Efram Jones Good

3 2 The Dustmite Dustin Hare Evil

id* lair address city st zip

1 123 Poplar Avenue Townsburg OH 45293

2 452 Elm Street #3D Burgtown OH 45201

We waited to add the alignment column to illustrate a point. If you are in the middle of the normalization
process, and discover that there is some other data you need to add, it isn’t difficult to do so. You could
even add a completely new table if you needed to. That is the great thing about relational database design.

The City and State fields are not only duplicates, but they are redundant data with the ZIP Code (which
is in itself a representation of the City/State). City and State are also not directly related to the lairs
(because other lairs could exist in the same city). For these reasons, we will put City and State in a sepa-
rate table. Because the ZIP Code is numeric, and a direct representation of City/State, we will make the
Zip column a primary key. This is pass “three,” shown in the three tables that follow.

id* lair_id name real name align

1 1 Clean Freak John Smith Good

2 1 Soap Stud Efram Jones Good

3 2 The Dustmite Dustin Hare Evil

id* zip_id lair address

1 45293 123 Poplar Avenue

2 45201 452 Elm Street #3D

id* city st

45293 Townsburg OH

45201 Burgtown OH

244

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 244

You may have noticed that we have created a many-to-many (M:N) relationship between the characters
and their powers (a character can have multiple powers, and many characters may have the same
power). There are two tables with primary keys, and a linking table between them has two foreign keys,
one for each of the tables. The combination of the foreign keys is a primary key for the char_power
table. This enables the M:N relationship.

Just for fun, let’s add a small table that links the superheroes to villains, and vice versa. This is another
M:N relationship because any superhero can have multiple villain enemies, and any villain can have
multiple superhero enemies. Of course, we have the character table as one of the “many” sides of the
equation—can you figure out what table we will use for the other “many” side? If you said the character
table, you are correct! This is just like the character-power relationship, but this time we reference the
table to itself via a good_bad linking table. The goodguy_id and badguy_id columns each link to the id
column in the character table. Each column in the good_bad table is a foreign key, and both columns
make up a composite primary key.

goodguy_id* badguy_id*

1 3

2 3

And just like that, you have created your database design. Congratulations! You now have a “map” that
will help you create your database tables on the server. Not only that, but you just normalized your
database design as well by modifying your database table structure so that dependencies make sense,
and there is no redundant data. In fact, you have actually gone through the proper normalization steps
of First, Second, and Third Normal Form.

What’s So Normal About These Forms?
Remember we told you that we were calling the first table “zero”? That’s called Zero Form. It is basically
the raw data, and is usually a very flat structure, with lots of repeated data. You see data like this some-
times when a small company keeps records of its customers in a spreadsheet.

The first pass through the table, which we called pass “one,” was the first step of normalization, called
“First Normal Form,” or 1NF. This step requires that you eliminate all repeating data in columns (which
we did with the power column), create separate rows for each group of related data, and identify each
record with a primary key. Our first step satisfies the requirements of 1NF.

You can see where we’re going with this, can’t you? The Second Normal Form (2NF) requirements state
that you must place subsets of data in multiple rows in separate tables. We did that by separating the
power data into its own table. Second Normal Form also requires that we create a relationship with the
original table by creating a foreign key. We did that in pass “two,” when we satisfied the requirements
for 2NF.

On our third pass, we removed all the columns not directly related to the primary key (City and State),
and used the ZIP Code as the foreign key to the new city_state table. Third Normal Form (3NF) is
then satisfied. Congratulations! You normalized a database just like the pros do.

245

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 245

There are further requirements for database normalization, but Third Normal Form is generally accepted
as being good enough for most business applications. The next step is Boyce-Codd Normal Form, fol-
lowed by Fourth Normal Form and Fifth Normal Form. In our case, the other Forms don’t apply—the
database is as normalized as it needs to get. All tables are easily modifiable and updateable, without
affecting data in the other tables.

We know there are some database gurus out there who would tell you that in order to completely satisfy
the Forms of normalization, that the align column should be put into its own table and linked with a
foreign key. While that may be true in the strictest sense of the rules, we usually think of normalization
as a guideline. In this case, we have only two values, good and evil. Those values will never change, and
they will be the only values available to the user. Because of this, we can actually create a column with
the ENUM datatype. Because the values good and evil will be hardcoded into the table definition, and we
don’t ever see a need to change the values in the future, there is no problem with keeping those values in
the char_main table.

Standardization
When you are designing a new application, it is a very good idea to come up with standards, or design
rules, that you adhere to in all cases. These can be extensive, such as the standards published by the
W3C for HTML, XML, and other languages. They can be very short, but very strict, such as the list of ten
standards brought down from a mountain by an old bearded man. For now we’ll just standardize our
table structure. For this application, we came up with the following table standards:

❑ Table names: Table names should be descriptive, but relatively short. Table names will be in
lowercase. They should describe what main function they serve, and what application they
belong to. All six of our tables should start with “char_” to show that they belong to the charac-
ter application.

❑ Column names: Table columns are similar to table names. All column names will be in lower-
case. They will be kept short, but multiple words (such as lair and address) will be separated by
an underscore “_” (lair_addr).

❑ Primary keys: Single primary keys will always be called “id”. Except in special cases, primary
keys will be an integer datatype that is automatically incremented. If they consist of a single col-
umn, they will always be the first column of the table.

❑ Foreign keys: Foreign keys will end with “_id”. They will start with the table descriptor. For
example, in the char_lair table, the foreign key for the char_zipcode table will be called
zip_id.

Finalizing the Database Design
One other thing we like to do during the database design process is put the datatypes into the empty
cells of each table. We can print these tables and easily refer to them when we are writing the SQL code.
You may want to do this yourself (or just use the tables provided).

If you don’t understand datatypes, you can learn about them in Chapter 3, and we discuss datatypes in
more detail a little later in this chapter as well. For now, just understand that datatypes are the type of
data stored in each table column, such as INT (integer), VARCHAR (variable-length character string), or
ENUM (enumerated list). When appropriate, they are followed by the length in parentheses; for example,
varchar(100) is a character column that can contain up to 100 characters.

246

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 246

If you have been working in a spreadsheet, simply erase all of the actual data in those tables. If you used
a pad and pencil, just follow along. Reduce the tables to two rows, one with column names, the other
row blank. If you want, you can make a copy before erasing the data.

In keeping with the previously listed table standards, we arrive at the following tables. Yours should
look very similar.

id* lair_id name real_name align

int(11) int(11) varchar(40) varchar(80) enum(‘good’,’evil’)

id* power

int(11) varchar(40)

char_id* power_id*

int(11) int(11)

id* zip_id lair_addr

int(11) varchar(10) varchar(40)

id* city state

varchar(10) varchar(40) char(2)

good_id* bad_id*

int(11) int(11)

We think it is about time we actually created these tables on the server. Ready? Not so fast: We have to
create the database first.

Creating a Database in MySQL
There are a number of ways to create a database. All require the execution of a SQL statement in one way
or another, so let’s look at that first:

CREATE DATABASE yourdatabase;

247

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 247

What, were you expecting something more complicated? Well, an optional parameter is missing: IF NOT
EXISTS. We’re pretty sure you know whether or not it exists, but if it makes you feel better, you can cer-
tainly add that:

CREATE DATABASE IF NOT EXISTS yourdatabase;

That’s all there is to it. Think of the database as an empty shell. There is nothing special about it, really.
The interesting stuff comes later, when you create the tables and manipulate the data.

That said, we still have to figure out how we are going to execute that SQL statement. Here are a few
suggestions:

❑ From the MySQL command prompt. Do it this way only if you have access to the server on
which MySQL is installed. If you are running your own server, or you have telnet access to the
server, this may be an option for you.

❑ If you are being hosted by an ISP, you may need to request that the ISP create a database for
you. For example, on one author’s site the ISP has CPanel installed, and he simply clicks the
module called MySQL Databases. From the next page, he simply types in the database he wants
to create and clicks a button, and it’s created for him.

ISPs will usually give you this option because you have a limit in your contract on how many
databases you are allowed to create. On one of our sites, for example, the limit is ten databases.

❑ If you have PHPMyAdmin installed (either on your own server or through your ISP), you can
then run the SQL command from there. PHPMyAdmin is a valuable tool, and we recommend
you use it if that is an option for you. It allows you to see your table structures and even browse
data. It is a dangerous tool, however, because you can easily drop tables or entire databases with
the click of a button, so use it carefully.

❑ Another option is to run your SQL statement from a PHP file. Most likely, if you are hosted by
an ISP, they won’t allow the creation of databases in this manner. However, almost any other
SQL statement will work using this method. This is the way we will be running SQL commands
through the rest of this chapter.

Once you have determined how you are going to run that SQL command, go ahead and do it. Make sure
you substitute your own database name for yourdatabase. Because we are going to develop a comic
book appreciation Web site, you could call it comic_book_app:

CREATE DATABASE IF NOT EXISTS comic_book_app;

Now that we have a design mapped out and a database created in MySQL, it is time to create some
tables.

Try It Out Create the Table
First, we’re going to create the file that will hold the hostname, username, password, and database values.

248

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 248

1. Open your favorite text editor, and enter the following code (making sure you use the proper
values for your server):

<?php

define(‘SQL_HOST’,’yourhost’);
define(‘SQL_USER’,’joeuser’);
define(‘SQL_PASS’,’yourpass’);
define(‘SQL_DB’,’yourdatabase’);

?>

2. Save the file as config.php.

This file will be included on each subsequent PHP file that needs to access the database.

3. Type the following code in your favorite PHP editor, and save it as make_table.php:

<?php
require(‘config.php’);

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql1 =
“CREATE TABLE IF NOT EXISTS char_main (
id int(11) NOT NULL auto_increment,
alias varchar(40) NOT NULL default ‘’,
real_name varchar(80) NOT NULL default ‘’,
lair_id int(11) NOT NULL default 0,
align enum(‘good’,’evil’) NOT NULL default ‘good’,
PRIMARY KEY (id)

)”;

$sql2 =
“CREATE TABLE IF NOT EXISTS char_power (
id int(11) NOT NULL auto_increment,
power varchar(40) NOT NULL default ‘’,
PRIMARY KEY (id)

)”;

$sql3 =
“CREATE TABLE IF NOT EXISTS char_power_link (
char_id int(11) NOT NULL default 0,
power_id int(11) NOT NULL default 0,
PRIMARY KEY (char_id, power_id)

)”;

$sql4 =
“CREATE TABLE IF NOT EXISTS char_lair (
id int(11) NOT NULL auto_increment,

249

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 249

zip_id varchar(10) NOT NULL default ‘00000’,
lair_addr varchar(40) NOT NULL default ‘’,
PRIMARY KEY (id)

)”;

$sql5 =
“CREATE TABLE IF NOT EXISTS char_zipcode (
id varchar(10) NOT NULL default ‘’,
city varchar(40) NOT NULL default ‘’,
state char(2) NOT NULL default ‘’,
PRIMARY KEY (id)

)”;

$sql6 =
“CREATE TABLE IF NOT EXISTS char_good_bad_link (
good_id int(11) NOT NULL default 0,
bad_id int(11) NOT NULL default 0,
PRIMARY KEY (good_id,bad_id)

)”;

mysql_query($sql1) or die(mysql_error());
mysql_query($sql2) or die(mysql_error());
mysql_query($sql3) or die(mysql_error());
mysql_query($sql4) or die(mysql_error());
mysql_query($sql5) or die(mysql_error());
mysql_query($sql6) or die(mysql_error());
echo “Done.”;
?>

4. Run this file by loading it in your browser.

Assuming all goes well, you should see the message “Done” in your browser. The database now
should contain all six tables.

How It Works
Every PHP script that needs to access your database on the MySQL server will include config.php.

These constants will be used in your scripts to gain access to your database. By putting them here, in one
file, you can change the values any time you move servers, change the name of the database, or change
your username/password. Any time you have information or code that will be used in more than one
PHP script, you should include it in a separate file. That way, you’ll need to make your changes in only
one location.

define(‘SQL_HOST’,’yourhost’);
define(‘SQL_USER’,’joeuser’);
define(‘SQL_PASS’,’yourpass’);
define(‘SQL_DB’,’yourdatabase’);

The make_tables.php file is a one-time script: You should never have to run it again, unless you
needed to drop all of your tables and recreate them. So, rather than explain all of the code in the page,
let’s just look at one of the SQL statements:

250

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 250

CREATE TABLE IF NOT EXISTS char_main (
id int(11) NOT NULL auto_increment,
alias varchar(40) NOT NULL default ‘’,
real_name varchar(80) NOT NULL default ‘’,
lair_id int(11) NOT NULL default 0,
align enum(‘good’,’evil’) NOT NULL default ‘good’,
PRIMARY KEY (id)

)

The syntax for creating a table in SQL is the following:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(create_definition,...)] [table_options] [select_statement]

Obviously, we are not using the TEMPORARY keyword. We want this table to be permanent and exist after
our connection with the database. We are using the IF NOT EXISTS keyword, but only if this page is
loaded twice. If you attempt to load the page again, MySQL will not attempt to re-create the tables, and
will not generate an error.

Our table name in this case is char_main. The columns we create are id, alias, real_name, lair_id,
and alias, which are the names we came up with earlier.

Let’s look at each column:

❑ id int(11) NOT NULL auto_increment: The id column is set as an integer, with 11 maximum
places. An integer datatype can contain the values -2147483648 to 2147483648. A sharp observer
would note that the max value is only ten digits. The eleventh digit is for negative values.

NOT NULL will force a value into the column. With some exceptions, numeric columns will
default to 0, and string columns will default to an empty string (‘’). Very rarely will we allow a
column to carry a NULL value.

The code auto_increment causes the column to increase the highest value in the table by 1,
and store it in this column. A column set to auto_increment does not have a default value.

❑ alias varchar(40) NOT NULL default ‘’: the alias column is set as a varchar datatype, a
string of 0 to 255 characters. We are allotting 40 characters, which should be enough for any
character name. A varchar differs from a char datatype by the way space is allotted for the
column.

A varchar datatype occupies only the space it needs, whereas char datatypes will always take
up the space allotted to them by adding spaces at the end. The only time you really need to use
the char datatype is for strings of less than three characters (such as the State column in the
char_zipcode table).

❑ real_name varchar(80) NOT NULL default ‘’: Similar to alias. We are allotting 80 characters,
which should be enough for our needs.

❑ Note that we did not separate the real_name column into first_name and last_name
columns. If you wanted to do that, you certainly could, but in this small application it really
isn’t necessary. On the other hand, in a human resources application for your company, having
separate columns for first and last name is almost a requirement, so that you can do things such
as greet employees by their first names in a company memo.

251

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 251

❑ lair_id int(11) NOT NULL default 0: Our foreign key to the char_lair table is also an inte-
ger of length 11, with a default value of 0.

❑ align enum(‘good’,’evil’) NOT NULL default ‘good’: the align column can be one of
two values: “good” or “evil.” Because of this, we use an enum datatype, and default it to
“good.” (Everyone has some good in them, right?)

You now have a database. You have tables. If you just had a way to enter some data into your tables in
your database, you’d have an application you could give to your users, where they could store informa-
tion about their favorite superheroes and villains.

You could enter the data with some query statements in PHPMyAdmin, but that probably wouldn’t be
too efficient, not to mention that your users wouldn’t have any access to it. You need some sort of inter-
face for them that they can use to create and edit data.

Let’s design some Web pages for them.

Creating the Comic Character Application
It’s back to the drawing board. Literally. Get away from your computer. We’re going to put together
some ideas for a Web application.

First of all, you need a page to display a list of comic book characters along with some information about
them. It doesn’t need to include every detail about them (such as the location of their secret lair), but it
should have enough data so that users can distinguish who they are and read a little bit of information
about them.

We will list the following information:

❑ Character name (alias)

❑ Real name

❑ Alignment (good or evil)

❑ Powers

❑ Enemies

We also need a character input form. This form will serve two purposes. It will allow us to create a new
character, in which case the form will load with blank fields and a create button, or it will allow us to
edit an existing character, in which case it will load with the fields filled in, and an update button. We’ll
also have a reset button that either clears the new form, or restores the edited form fields. A delete
button should also be available when editing an existing character.

The fields on our form will be as follows:

❑ Character name (alias)

❑ Real name

252

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 252

❑ Powers (multiple select field)

❑ Lair address, city, state, and ZIP

❑ Alignment (radio button: good/evil, default good)

❑ Enemies (multiple select field)

We also need a form for adding/deleting powers. This form will be relatively simple and will contain
the following elements:

❑ Checkbox list of every power currently available

❑ Delete Selected button

❑ A text field to enter a new power

❑ An Add Power button

We also need a PHP script that can handle all database inserts, deletes, and so on. We call this a transac-
tion page, and it simply does a required job and redirects the user on to another page. This page handles
all transactions for the character application (with redirect), including the following:

❑ Inserting a new character (character listing page)

❑ Editing an existing character (character listing page)

❑ Deleting a character (character listing page)

❑ Adding a new power (power editor page)

❑ Deleting a power (power editor page)

That’s basically all there is to the application. Four pages (five if you count the config.php file you cre-
ated earlier—it will be used again) shouldn’t be too difficult. Let’s write them first, and then we’ll talk
about how they work.

Try It Out The Comic Book Character Site
Some of these files are a bit long. Don’t let that scare you. Most of the code consists of SQL statements,
and we explain them clearly for you in the “How It Works” section that follows. Remember that this
code can also be downloaded from the Web site (www.wrox.com).

Let’s start with a short one.

1. Enter the following code in your favorite PHP editor, and save it as poweredit.php:

<?php
require(‘config.php’);

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql = “SELECT id, power FROM char_power ORDER BY power”;

253

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 253

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
while ($row = mysql_fetch_assoc($result)) {
$pwrlist[$row[‘id’]] = $row[‘power’];

}
$numpwr = count($pwrlist);
$thresh = 5;
$maxcols = 3;
$cols = min($maxcols, (ceil(count($pwrlist)/$thresh)));
$percol = ceil(count($pwrlist)/$cols);
$powerchk = ‘’;
$i = 0;
foreach ($pwrlist as $id => $pwr) {
if (($i>0) && ($i%$percol == 0))

$powerchk .= “</td>\n<td valign=’top’>”;
$powerchk .= “<input type=’checkbox’ name=’powers[]’

value=’$id’> $pwr
\n”;
$i++;

}
$delbutton = “ <tr>
<td colspan=\”$cols\” bgcolor=\”#CCCCFF\” align=\”center\”>
<input type=\”submit\” name=\”action\” value=\”Delete Powers\”>

deleting will remove all associated powers

from characters as well — select wisely

</td>
</tr>”;

} else {
$powerchk = “<div style=\”text-align:center;width:300;
font-family:Tahoma,Verdana,Arial\”>No Powers entered...</div>”;

}

?>
<html>
<head>
<title>Add/Delete Powers</title>
</head>
<body>

<h1>Comic Book
Appreciation</h1>

<h3>Editing Character Powers</h3>
<form action=”char_transact.php” method=”post” name=”theform”>
<table border=”0” cellpadding=”5”>
<tr bgcolor=”#FFCCCC”>
<td valign=”top”><?php echo $powerchk;?></td>

</tr>
<?php echo $delbutton; ?>
<tr>
<td colspan=”<?php echo $cols;?>” bgcolor=”#CCCCFF” align=”center”>
<input type=”text” name=”newpower” value=”” size=20>
<input type=”submit” name=”action” value=”Add Power”>

</td>
</tr>

</table>

254

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 254

</form>
Return to Home Page
</body>
</html>

2. Enter the following code, and save it as charlist.php:

<?php
require(‘config.php’);

$ord = $_GET[‘o’];
if (is_numeric($ord)){
$ord = round(min(max($ord, 1), 3));

} else {
$ord = 1;

}
$order = array(

1 => ‘alias ASC’,
2 => ‘name ASC’,
3 => ‘align ASC, alias ASC’

);

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql = “SELECT c.id, p.power FROM char_main c JOIN char_power p JOIN
char_power_link pk ON c.id = pk.char_id AND p.id = pk.power_id”;

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
while ($row = mysql_fetch_assoc($result)) {
$p[$row[‘id’]][] = $row[‘power’];

}
foreach ($p as $key => $value) {
$powers[$key] = implode(“, “, $value);

}
}

$sql = “SELECT c.id, n.alias FROM char_main c JOIN char_good_bad_link
gb JOIN char_main n ON (c.id = gb.good_id AND n.id = gb.bad_id)
OR (n.id = gb.good_id AND c.id = gb.bad_id)”;

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
while ($row = mysql_fetch_assoc($result)) {
$e[$row[‘id’]][] = $row[‘alias’];

}
foreach ($e as $key => $value) {
$enemies[$key] = implode(“, “, $value);

}
}
$table = “<table><tr><td align=\”center\”>No characters currently

exist.</td></tr></table>”

255

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 255

?>

<html>
<head>
<title>Comic Book Appreciation</title>
</head>
<body>

<h1>Comic Book
Appreciation</h1>

<h3>Character Database</h3>

<?php
$sql = “SELECT id, alias, real_name AS name, align

FROM char_main ORDER BY “. $order[$ord];

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
$table = “<table border=’0’ cellpadding=’5’>”;
$table .= “<tr bgcolor=’#FFCCCC’><th>”;
$table .= “Alias”;
$table .= “</th><th>”;
$table .= “Name</th><th><a href=’” . $_SERVER[‘PHP_SELF’];
$table .= “?o=3’>Alignment</th><th>Powers</th>”;
$table .= “<th>Enemies</th></tr>”;

// build each table row
while ($row = mysql_fetch_assoc($result)) {
$bg = ($bg==’F2F2FF’?’E2E2F2’:’F2F2FF’);
$pow = ($powers[$row[‘id’]]==’’?’none’:$powers[$row[‘id’]]);
$ene = ($enemies[$row[‘id’]]==’’?’none’:$enemies[$row[‘id’]]);
$table .= “<tr bgcolor=’#” . $bg . “‘><td><a href=’charedit.php?c=”

. $row[‘id’] . “‘>” . $row[‘alias’]. “</td><td>”

. $row[‘name’] . “</td><td align=’center’>” . $row[‘align’]

. “</td><td>” . $pow . “</td><td align=’center’>” . $ene

. “</td></tr>”;
}

$table .= “</table>”;
$table = str_replace(‘evil’, ‘evil’, $table);
$table = str_replace(‘good’, ‘good’,

$table);

}
echo $table;
?>

New Character •
Edit Powers
</body>
</html>

3. (Two down, two to go.) Enter the next block of code and save it as charedit.php:

<?php
require(‘config.php’);

$char = $_GET[‘c’];

256

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 256

if ($char == ‘’ || !is_numeric($char)) $char=’0’;
$subtype = “Create”;
$subhead = “Please enter character data and click ‘$subtype

Character.’”;
$tablebg = ‘#EEEEFF’;

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql = “SELECT id, power FROM char_power”;
$result = mysql_query($sql);
if (mysql_num_rows($result) > 0) {
While ($row = mysql_fetch_assoc($result)) {
$pwrlist[$row[‘id’]] = $row[‘power’];

}
}

$sql = “SELECT id, alias FROM char_main WHERE id != $char”;
$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
$row = mysql_fetch_assoc($result);
$charlist[$row[‘id’]] = $row[‘alias’];

}

if ($char != ‘0’) {
$sql = “SELECT c.alias, c.real_name AS name, c.align, l.lair_addr

AS address, z.city, z.state, z.id AS zip FROM char_main c,
char_lair l, char_zipcode z WHERE z.id = l.zip_id AND
c.lair_id = l.id AND c.id = $char”;

$result = mysql_query($sql) or die(mysql_error());
$ch = mysql_fetch_assoc($result);

if (is_array($ch)) {
$subtype = “Update”;
$tablebg = ‘#EEFFEE’;
$subhead = “Edit data for <i>” . $ch[‘alias’] . “</i> and click

‘$subtype Character.’”;

$sql = “SELECT p.id FROM char_main c JOIN char_power p
JOIN char_power_link pk ON c.id = pk.char_id
AND p.id = pk.power_id WHERE c.id = $char”;

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
While ($row = mysql_fetch_assoc($result)) {
$powers[$row[‘id’]] = ‘selected’;

}
}

// get list of character’s enemies
$sql = “SELECT n.id FROM char_main c JOIN char_good_bad_link gb

JOIN char_main n ON (c.id = gb.good_id AND n.id = gb.bad_id)
OR (n.id = gb.good_id AND c.id = gb.bad_id) WHERE
c.id = $char”;

$result = mysql_query($sql) or die(mysql_error());

257

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 257

if (mysql_num_rows($result) > 0) {
While ($row = mysql_fetch_assoc($result)) {
$enemies[$row[‘id’]] = ‘selected’;

}
}

}
}
?>

<html>
<head>
<title>Character Editor</title>
</head>
<body>

<h1>Comic Book
Appreciation</h1>

<h3><?php echo $subhead;?></h3>

<form action=’char_transact.php’ name=’theform’ method=’post’>
<table border=’0’ cellpadding=’15’ bgcolor=’<?php echo $tablebg;?>’>
<tr>
<td>Character Name:</td>
<td><input type=’text’ name=’alias’ size=’41’
value=’<?php echo $ch[‘alias’];?>’

>
</td>

</tr>
<tr>
<td>Real Name:</td>
<td><input type=’text’ name=’name’ size=’41’
value=’<?php echo $ch[‘name’];?>’

>
</td>

</tr>
<tr>
<td>Powers:

(Ctrl-click to
select multiple
powers)

</td>
<td>
<select multiple=’multiple’ name=’powers[]’ size=’4’>
<?php
foreach ($pwrlist as $key => $value) {
echo “<option value=’$key’ “ . $powers[$key] .

“>$value</option>\n”;
}

?>
</select>

</td>
</tr>

<tr>
<td>Lair Location:

(address,
city, state, zip)

258

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 258

</td>
<td><input type=’text’ name=’address’ size=’41’
value=’<?php echo $ch[‘address’];?>’

>

<input type=’text’ name=’city’ value=’<?php echo $ch[‘city’];?>’

>
<input type=’text’ name=’state’ size=’2’
value=’<?php echo $ch[‘state’];?>’ >
<input type=’text’ name=’zip’ size=’10’
value=’<?php echo $ch[‘zip’];?>’ >

</td>
</tr>

<tr>
<td>Alignment:</td>

<td><input type=’radio’ name=’align’ value=’good’<?php
echo($ch[‘align’]==’good’ ? ‘ checked=”checked”’ : ‘’);?>>

good

<input type=’radio’ name=’align’ value=’evil’<?php

echo($ch[‘align’]==’evil’ ? ‘ checked=”checked”’ : ‘’);?>>
evil

</td>
</tr>

<?php if (is_array($charlist)) { ?>
<tr>
<td>Enemies:

(Ctrl-click to
select multiple
enemies)

</td>
<td>
<select multiple=’multiple’ name=’enemies[]’ size=’4’>”;

<?php
foreach ($charlist as $key => $value) {
echo “<option value=’$key’ “.$enemies[$key].”>$value</option>\n”;

}
?>

</select>
</td>

</tr>
<?php }?>
<tr>
<td colspan=2>
<input type=’submit’ name=’action’
value=’<?php echo $subtype;?> Character’>
<input type=”reset”>

<?php if ($subtype == “Update”){?>

<input type=’submit’ name=’action’ value=’Delete Character’>

<?php }?>
</td>

</tr>
</table>

259

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 259

<input type=’hidden’ name=’cid’ value=’<?php echo $char;?>’>
</form>
Return to Home Page
</body>
</html>

4. Okay, only one more now. This code is the longest, but that’s because it contains a lot of SQL
statements. It’s not as bad as it looks. But if you want to download this code from the Web site,
go ahead, and be guilt-free. Consider it our gift to you. If you are typing it, you know the drill.
After entering it, save this one as char_transact.php:

<?php
require(‘config.php’);
foreach($_POST as $key => $value) {
$$key = $value;

}

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

switch ($action) {
case “Create Character”:
$sql = “INSERT IGNORE INTO char_zipcode (id, city, state)
VALUES (‘$zip’, ‘$city’, ‘$state’)”;

$result = mysql_query($sql) or die(mysql_error());

$sql = “INSERT INTO char_lair (id, zip_id, lair_addr)
VALUES (NULL, ‘$zip’, ‘$address’)”;

$result = mysql_query($sql) or die(mysql_error());
if ($result) $lairid = mysql_insert_id($conn);

$sql = “INSERT INTO char_main (id, lair_id, alias, real_name, align)
VALUES (NULL, ‘$lairid’, ‘$alias’, ‘$name’, ‘$align’)”;

$result = mysql_query($sql) or die(mysql_error());
if ($result) $charid = mysql_insert_id($conn);

if ($powers != “”) {
$val = “”;
foreach ($powers as $key => $id) {
$val[] = “(‘$charid’, ‘$id’)”;

}
$values = implode(‘,’, $val);
$sql = “INSERT IGNORE INTO char_power_link (char_id, power_id)
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

if ($enemies != ‘’) {
$val = “”;
foreach ($enemies as $key => $id) {
$val[] = “(‘$charid’, ‘$id’)”;

260

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 260

}
$values = implode(‘,’, $val);
if ($align = ‘good’) {
$cols = ‘(good_id, bad_id)’;

} else {
$cols = ‘(bad_id, good_id)’;

}
$sql = “INSERT IGNORE INTO char_good_bad_link $cols
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

$redirect = ‘charlist.php’;
break;

case “Delete Character”:
$sql = “DELETE FROM char_main, char_lair USING char_main m,
char_lair l WHERE m.lair_id = l.id AND m.id = $cid”;

$result = mysql_query($sql) or die(mysql_error());

$sql = “DELETE FROM char_power_link WHERE char_id = $cid”;
$result = mysql_query($sql) or die(mysql_error());

$sql = “DELETE FROM char_good_bad_link WHERE good_id = $cid
OR bad_id = $cid”;

$result = mysql_query($sql) or die(mysql_error());

$redirect = ‘charlist.php’;
break;

case “Update Character”:
$sql = “INSERT IGNORE INTO char_zipcode (id, city, state)
VALUES (‘$zip’, ‘$city’, ‘$state’)”;

$result = mysql_query($sql) or die(mysql_error());

$sql = “UPDATE char_lair l, char_main m SET l.zip_id=’$zip’,
l.lair_addr=’$address’, alias=’$alias’, real_name=’$name’,
align=’$align’ WHERE m.id = $cid AND m.lair_id = l.id”;

$result = mysql_query($sql) or die(mysql_error());

$sql = “DELETE FROM char_power_link WHERE char_id = $cid”;
$result = mysql_query($sql) or die(mysql_error());

if ($powers != “”) {
$val = “”;
foreach ($powers as $key => $id) {
$val[] = “(‘$cid’, ‘$id’)”;

}
$values = implode(‘,’, $val);
$sql = “INSERT IGNORE INTO char_power_link (char_id, power_id)
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

$sql = “DELETE FROM char_good_bad_link WHERE good_id = $cid OR

261

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 261

bad_id = $cid”;
$result = mysql_query($sql) or die(mysql_error());

if ($enemies != ‘’) {
$val = “”;
foreach ($enemies as $key => $id) {
$val[] = “(‘$cid’, ‘$id’)”;

}
$values = implode(‘,’, $val);
if ($align == ‘good’) {
$cols = ‘(good_id, bad_id)’;

} else {
$cols = ‘(bad_id, good_id)’;

}
$sql = “INSERT IGNORE INTO char_good_bad_link $cols
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

$redirect = ‘charlist.php’;
break;

case “Delete Powers”:
if ($powers != “”) {
$powerlist = implode(‘,’, $powers);

$sql = “DELETE FROM char_power WHERE id IN ($powerlist)”;
$result = mysql_query($sql) or die(mysql_error());

$sql = “DELETE FROM char_power_link
WHERE power_id IN ($powerlist)”;

$result = mysql_query($sql) or die(mysql_error());
}

$redirect = ‘poweredit.php’;
break;

case “Add Power”:
if ($newpower != ‘’) {
$sql = “INSERT IGNORE INTO char_power (id, power)
VALUES (NULL, ‘$newpower’)”;

$result = mysql_query($sql) or die(mysql_error());
}

$redirect = ‘poweredit.php’;
break;

default:

$redirect = ‘charlist.php’;
break;

}
header(“Location: $redirect”);
?>

262

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 262

Excellent work! We hope you typed everything correctly. (Remember, if your code is exactly as you see it
in this chapter, and it doesn’t work correctly, it’s because we’re testing your debugging and problem
solving skills.)

Before we run through the code and figure out how it works, let’s play with it a bit.

1. Open your browser, and point it to the location of charlist.php.

This is your Character Database home page. It should look something like Figure 9-1. If the logo
is missing, you can download it from the Web site, edit the four pages to eliminate the image, or
change it to anything you want. Because you don’t currently have any characters to look at, let’s
move on.

Figure 9-1

2. Click “Edit Powers.”

When the page appears (see Figure 9-2), it initially will be empty.

3. Enter an ultra-cool superpower such as invisibility or x-ray vision in the text box, and click Add
Power.

If you need help with power ideas, here are a few: super strength, invisibility, x-ray vision, speed,
soccer mom, stretchable, flight, breathes underwater. Add a total of six powers. Moving on . . .

You should now see a new button and a list of powers with checkboxes next to them.

4. Check one or two powers and click Delete Powers. They should go away.

5. When you finish editing the powers, click the link at the bottom, “Return to Home Page,” which
takes you back to the Character List page (which of course still has no characters).

263

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 263

Figure 9-2

6. Click the link New Character.

A shiny new page appears (with a blue background), ready for your data input (see Figure 9-3).
You will notice that the powers you entered are now choices in the Powers field. (Relational
databases rule!)

7. Enter the appropriate data, and click Create Character.

You should be taken to the home page, where you’ll now see the character you entered (as in
Figure 9-4).

8. If you click New Character again, you should now see an extra field for Enemies. You can select
any previously created character in the database as the current character’s enemy.

9. From the home page, click one of your characters’ names.

The Character Editor page loads again, but now the background is green, and the character’s
data will be automatically entered into the fields (see Figure 9-5). If you look at the URL for this
page, you see ?c=x at the end, where x is the character’s number.

10. Change some of the data, and click Update Character.

You are taken back to the home page, and you should immediately see the results of your
changes. In fact, if you selected an enemy for this character, you should see the results change in
the enemy’s row as well.

264

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 264

Figure 9-3

Are you starting to see the benefits of relational databases? Are you ready to get under the hood and fig-
ure out what you just typed in those 499 (yes, 499!) lines of code? Let’s go.

How It Works
Let’s start off with poweredit.php. It’s not too long, and it will allow us to get our feet wet with SQL,
PHP, and HTML.

265

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 265

Figure 9-4

poweredit.php
You will see this on every page, but we will mention it this one time only. We include the config.php
file that contains the constants used in the next couple of lines. By putting these constants in an included
file, we can make any required changes in one place. We use the require command instead of include
because of the way PHP works: An included file will not stop the processing of the rest of the page,
whereas a required file, if not found, would immediately stop processing.

require(‘config.php’);

Next, a connection to the server is made, and the appropriate database is selected. Notice the use of the
constants we defined in config.php:

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

What follows is a somewhat simple SQL select statement. It is grabbing the id and power columns from
the char_power table, and sorting them by power. This way when we iterate through them later and
put the data on the Web page, they will be in alphabetical order.

$sql = “SELECT id, power FROM char_power ORDER BY power”;

This executes the SQL statement and throws an error if there are any problems:

$result = mysql_query($sql) or die(mysql_error());

266

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 266

Figure 9-5

Now we check to make sure at least one row was returned. If so, we iterate through each row, building
up an array of powers, using the power id as the array key. Note the use of mysql_fetch_assoc. Other
options are mysql_fetch_row and mysql_fetch_array. Because we only need an associative array
(which uses field names as keys instead of a numerical index), mysql_fetch_assoc works nicely.

if (mysql_num_rows($result) > 0) {
While ($row = mysql_fetch_assoc($result)) {
$pwrlist[$row[‘id’]] = $row[‘power’];

}

267

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 267

When retrieving data from the database, we will usually need to retrieve appropriate ids so that we can
later insert or update the correct record. In this case, the id serves as the key to the array, making it easy
to retrieve the values. We could have certainly used a multi-value array, but that gets a little more con-
fusing, and it’s just not necessary here. Just be sure you understand that many times in this application
(and many apps using relational databases) you will use the table id as an array key.

Now we’re going to get a little tricky. Because our list of powers could get quite large, we want to try to
distribute them across multiple columns. However, we’d like to distribute them fairly evenly. The fol-
lowing 13 lines of code do this for us (if math is not interesting to you at all, or you simply don’t want to
know how this part of the code works, skip this section).

First, we get a count of the number of powers in our array. Next, we set the threshold to 5 lines (after
which a second column will be created), and a maximum number of columns (in this case, 3).

$numpwr = count($pwrlist);
$thresh = 5;
$maxcols = 3;

Next, we determine how many columns to create. Let’s assume there are 7 powers to display. First,
we divide the count by the threshold (7/5), which gives us 1.4. Next, we use ceil() to round up to the
nearest integer (ceil (1.4) = 2). Then we take the smaller of the two values (3 and 2), and store it in the
$cols variable. In this example, $cols would equal 2.

To figure out how many powers go into each column, we divide the count by the number of columns,
and round up to the nearest integer. In this case, ceil(7/2) = 4. So, we’ll have two columns, with four
values in each column (the last column will contain the remainder of powers if there are less than four).

$powerchk is a string that will contain each power, with a checkbox attached to it.
For now, we initialize it to an empty string ‘’. $cols = min($maxcols,
(ceil(count($pwrlist)/$thresh)));
$percol = ceil(count($pwrlist)/$cols);
$powerchk = ‘’;

Now we loop through each element of the $pwrlist array, which contains the id as the key ($id), and
power as the value ($pwr). Our counter $i will start at 0 and increment each time through the loop. In
each loop, we add the <input> tag to create the checkbox, using the id as the value, and the name of the
power as the label. When our counter reaches a value that is divisible by $percol, we add a close table
definition and start a new one.

$i = 0;
foreach ($pwrlist as $id => $pwr) {
if (($i>0) && ($i%$percol == 0))

$powerchk .= “</td>\n<td valign=’top’>”;
$powerchk .= “<input type=’checkbox’ name=’powers[]’

value=’$id’> $pwr
\n”;
$i++;

}

In our example, increments 0, 1, 2, and 3 end up in the first column. When $i reaches 4 (the value of
$percol), we start a new column. If this is confusing, don’t worry. You can play around with it by

268

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 268

changing your $thresh and $maxcols values, and adding a bunch of random power values to see how
the table is built. For now, let’s check out the rest of the code.

This is the rest of our if loop. If there is even one power, a row is created that contains a delete button. If
not, we create a row that simply states that no powers have yet been entered.

$delbutton = “ <tr>
<td colspan=’$cols’ bgcolor=’#CCCCFF’ align=’center’>
<input type=’submit’ name=’action’ value=’Delete Powers’>

deleting will remove all associated powers

from characters as well — select wisely

</td>
</tr>”;

} else {
$powerchk = “<div style=’text-align:center;width:300;
font-family:Tahoma,Verdana,Arial’>No Powers entered...</div>”;

}
?>

We have left off some of the HTML. We assume you know HTML well enough that we don’t need to
explain it. As you can see in the <form> tag, when the user clicks the Add Power or Delete Powers but-
ton, we’ll be sending values to char_transact.php:

<form action=’char_transact.php’ method=’post’ name=’theform’>

At this point, $powerchk either contains the No Powers display, or the built up table columns. Either
way, we insert $powerchk into the table. Note the open and close table definitions (<td valign=”top”>
and </td>). We didn’t add them to $powerchk earlier, but we did add the internal close/open defini-
tions to create the columns as necessary.

<table border=’0’ cellpadding=’5’>
<tr bgcolor=’#FFCCCC’>
<td valign=’top’><?php echo $powerchk;?></td>

In the following, $delbutton either contains the row with the delete button (if powers were found), or
it’s blank. That is how we control when it shows up, and this is where it’s inserted into the table.

<?php echo $delbutton; ?>

The following deals with the add button. Notice that it is called ‘action’ and that it has a value of Add
Power. When submitting a form, PHP passes these values on to the next page. Because we are using the
post method on our form, we will have a $_POST variable called ‘action’ that contains the value of the
button. Because of this, and because all of our forms load char_transact.php, all of our buttons are
named ‘action’, and have different values so that we can determine what to do with the data that is
sent. We go into more detail about this when we look at char_transact.php.

<input type=’submit’ name=’action’ value=’Add Power’>

269

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 269

charlist.php
The charlist.php page has an optional parameter that can be passed: ?o=x, where x is 1, 2, or 3. This
code retrieves that variable if it exists, and converts it to the appropriate value if necessary. If some
smart-alec types o=4 in the browser, the code return 3. If no value or a bad value is passed, it will default
to 1. The value is stored in $ord.

$ord = $_GET[‘o’];
if (is_numeric($ord)){
$ord = round(min(max($ord, 1), 3));

} else {
$ord = 1;

}
$order = array(

1 => ‘alias ASC’,
2 => ‘name ASC’,
3 => ‘align ASC, alias ASC’

);

This value determines which column our character display will be sorted on: 1 is by alias, 2 is by real
name, and 3 is by alignment and then alias. We will use the value $ord as the key to our order array,
which will be appended to the appropriate SQL statement later.

Make a connection, and choose a database. You know the drill by now.

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

Ah . . . our first JOIN. This select statement might look confusing to the uninitiated, but it is not that com-
plicated. First, let’s look at the JOIN statements. We are joining three tables, using the char_power_link
table to link the char_power table and the char_main table. This is a many-to-many (M:N) relationship.
We define how they are joined with the ON statement. As you can see, we are linking up the character table
to the link table using the character id, and we’re linking the power table to the link table using the power
id. With that link established, you can see that we are grabbing the character’s id and the powers assigned
to each character.

$sql = “SELECT c.id, p.power FROM char_main c JOIN char_power p JOIN
char_power_link pk ON c.id = pk.char_id AND p.id = pk.power_id”;

$result = mysql_query($sql) or die(mysql_error());

Notice our use of aliases for the tables. The character table is c, the power link table is pk, and the power
table is p. This allows us to refer to the appropriate columns with a shorter syntax (for example pk.char_id
instead of char_power_link.char_id). It is not necessary to use table.column syntax if the column
name is unique across all tables. However, it is a good practice to keep so that you are always aware of
which data you are accessing. It is required, of course, for column names that are duplicated across multiple
tables (such as id). Some might recommend that you always use unique names for all of your fields, but we
prefer the practice of naming all primary keys “id” and using proper table.column syntax in our SQL
queries.

270

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 270

Next, we are creating a multidimensional array. That’s fancy talk for an array with more than one index.
This one is two-dimensional. Think of a two-dimensional array as being like a spreadsheet, and it isn’t
difficult to understand.

if (mysql_num_rows($result) > 0) {
while ($row = mysql_fetch_assoc($result)) {
$p[$row[‘id’]][] = $row[‘power’];

}

The trick here is that we have multiple powers for the same id. By adding [] to the $p array, a new array
item is created for each row that has the same id. The end result is that you have a $p array of x charac-
ters, each element of which contains a $p[x] array of y powers. That is a multidimensional array.

Now we go back through our temporary array $p, and pull out each array that it holds. The $key vari-
able contains the character id, and $value contains the array of that character’s powers. We then
implode the powers into a comma-separated list of powers, and store that in the $powers array, using
the character id ($key) as the array index. We end up with an array that contains a list of powers for
each character.

foreach ($p as $key => $value) {
$powers[$key] = implode(“, “, $value);

}

Oh boy, another JOIN. This one is similar to the previous M:N query, with a couple of exceptions. First of
all, we are linking the character table twice. You can see that we are creating two instances of that table,
one called c for “character” and one called n for “nemesis.” This distinction is very important.

$sql = “SELECT c.id, n.alias FROM char_main c JOIN char_good_bad_link
gb JOIN char_main n ON (c.id = gb.good_id AND n.id = gb.bad_id)
OR (n.id = gb.good_id AND c.id = gb.bad_id)”;

The other exception is the ON statement. We have characters that we are attempting to link to other char-
acters as “enemies.” Call them opponents, or nemesis, or whatever. Typically, you expect good versus
evil and vice-versa. However, we are allowing any character to be the enemy of any other character. That
makes linking more interesting because we are using a table with a bad_id and a good_id. If you have
two evil characters that are enemies, which one gets stored in the good_id column?

The answer is that it doesn’t matter. What we want to do is to make sure that we not only don’t have any
duplicates in the char_good_bad_link table, but also that we don’t have what we call reverse duplica-
tion. In other words, if you have a row with good_id=3 and bad_id=7, then good_id=7 and bad_id=3
must be considered a duplicate. There is no way to prevent that in MySQL using primary keys, so we
must take care of that contingency in our code. We do that in a couple of places.

In this instance, we are combining two queries in one. The first one grabs all instances of each character
where the character’s id is in the good_id field and his enemies’ IDs are in the bad_id field. The second
part of the ON statement reverses that, and pulls all instances of each character where the character’s ID
is in the bad_id field and his enemies’ ids are in the good_id field. This does not prevent reverse duplica-
tion (that is handled elsewhere), but it does make sure we have grabbed every possible link to a charac-
ter’s enemy.

271

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 271

This code is virtually identical to the multidimensional powers array. This time, we are creating a multi-
dimensional array of each character and that character’s enemies. We then implode the enemies list and
store it in the $enemies array, using the character’s id as the array index.

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
while ($row = mysql_fetch_assoc($result)) {
$e[$row[‘id’]][] = $row[‘alias’];

}
foreach ($e as $key => $value) {
$enemies[$key] = implode(“, “, $value);

}
}

We are going to build a table of characters in a moment. In case there are no characters to display (as
when you first tested your charlist.php page), we want to display a “No characters” message. This
code builds the $table variable (even though it doesn’t contain an actual table) using a <div> tag. If
any characters do exist, this variable will be overwritten with an actual table of data.

$table = “<table><tr><td align=\”center\”>No characters currently
exist.</td></tr></table>”

?>

Next is another simple SQL SELECT, pulling the appropriate data: character’s id, alias, real name, align-
ment, and address info. Note the $order array. We set that value at the beginning of this page, using the
?_GET value “o” in the URL. This is where it’s used to sort the characters.

$sql = “SELECT id, alias, real_name AS name, align
FROM char_main ORDER BY “. $order[$ord];

$result = mysql_query($sql) or die(mysql_error());

We are building up the table of characters, as long as we returned at least one record from the database.
Note the first three columns’ links. They refer back to this same page, adding the ?o=x parameter. This
will re-sort the data and display it sorted on the column the user clicked.

if (mysql_num_rows($result) > 0) {
$table = “<table border=’0’ cellpadding=’5’>”;
$table .= “<tr bgcolor=’#FFCCCC’><th>”;
$table .= “Alias”;
$table .= “</th><th>”;
$table .= “Name</th><th><a href=’” . $_SERVER[‘PHP_SELF’];
$table .= “?o=3’>Alignment</th><th>Powers</th>”;
$table .= “<th>Enemies</th></tr>”;

Next, we alternate the background colors of the table, to make it a little easier to read.

// build each table row
while ($row = mysql_fetch_assoc($result)) {
$bg = ($bg==’F2F2FF’?’E2E2F2’:’F2F2FF’);

272

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 272

Remember the power and enemy arrays we built earlier? We use the character’s id to grab the list of val-
ues and put them into a variable to be inserted shortly into the appropriate table cell.

$pow = ($powers[$row[‘id’]]==’’?’none’:$powers[$row[‘id’]]);
$ene = ($enemies[$row[‘id’]]==’’?’none’:$enemies[$row[‘id’]]);

The table is built, row by row, inserting the appropriate data in each cell; then it’s closed:

$table .= “<tr bgcolor=’#” . $bg . “‘><td><a href=’charedit.php?c=”
. $row[‘id’] . “‘>” . $row[‘alias’]. “</td><td>”
. $row[‘name’] . “</td><td align=’center’>” . $row[‘align’]
. “</td><td>” . $pow . “</td><td align=’center’>” . $ene
. “</td></tr>”;

$table .= “</table>”;

Just for kicks, and to make them more visible, we change the color of the “good” and “evil” values in the
table. This isn’t necessary, but it makes the values pop out more.

$table = str_replace(‘evil’, ‘evil’, $table);
$table = str_replace(‘good’, ‘good’,

$table);

This variable contains either the <div> tag we created earlier or the table of character data. It’s inserted
in the page here.

echo $table;

charedit.php
This file does double-duty, so it’s a little longer. But a lot of it is HTML, and much of what it does we
have already done before, so this shouldn’t be too difficult.

The default functionality of this page is New Character mode. If there is a value in $char other than 0,
we will pull the data and change the default values.

$char = $_GET[‘c’];
if ($char == ‘’ || !is_numeric($char)) $char=’0’;
$subtype = “Create”;
$subhead = “Please enter character data and click ‘$subtype

Character.’”;
$tablebg = ‘#EEEEFF’;

Get all powers, and put them into an array to be accessed later (when building the power select field on
the form).

$sql = “SELECT id, power FROM char_power”;
$result = mysql_query($sql);
if (mysql_num_rows($result) > 0) {
While ($row = mysql_fetch_assoc($result)) {
$pwrlist[$row[‘id’]] = $row[‘power’];

}
}

273

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 273

All characters except the chosen character will be pulled from the database to be used for the Enemies
field. If the character id is not valid, then all characters will be pulled for the Enemies field.

$sql = “SELECT id, alias FROM char_main WHERE id != $char”;
$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
$row = mysql_fetch_assoc($result);
$charlist[$row[‘id’]] = $row[‘alias’];

}

If there is a character id, attempt to pull the data from the database. This SQL statement is also a JOIN,
although the JOIN keyword is not used. You can identify such a JOIN because there are two or more
tables, and the WHERE keyword is matching columns from each of the tables. The JOIN in this case is
implied. Once all the tables are joined, all the appropriate fields are pulled as long as the character id in
the character table matches $char. If there is no match, no records will be returned. If there is a match,
one record is returned and the row is stored in $ch.

if ($char != ‘0’) {
$sql = “SELECT c.alias, c.real_name AS name, c.align, l.lair_addr

AS address, z.city, z.state, z.id AS zip FROM char_main c,
char_lair l, char_zipcode z WHERE z.id = l.zip_id AND
c.lair_id = l.id AND c.id = $char”;

$result = mysql_query($sql) or die(mysql_error());
$ch = mysql_fetch_assoc($result);

Once we determine there was a record retrieved, we alter the default variables to reflect the edited
document. The background is green, and we are “Updating” rather than “Creating.”

if (is_array($ch)) {
$subtype = “Update”;
$tablebg = ‘#EEFFEE’;
$subhead = “Edit data for <i>” . $ch[‘alias’] . “</i> and click

‘$subtype Character.’”;

The next SQL statement retrieves all powers associated with this character. All we really need is the id so
that we can create a $powers array with each element containing the word “selected.” This will be used in
the Powers field on the form, so that each power assigned to the character will be automatically selected.

$sql = “SELECT p.id FROM char_main c JOIN char_power p
JOIN char_power_link pk ON c.id = pk.char_id
AND p.id = pk.power_id WHERE c.id = $char”;

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
While ($row = mysql_fetch_assoc($result)) {
$powers[$row[‘id’]] = ‘selected’;

}
}

Now we do exactly the same thing with the character’s enemies. Note the similarity in this SQL state-
ment to the one in charlist.php. The only difference is that we want only the enemies that match our
character.

274

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 274

// get list of character’s enemies
$sql = “SELECT n.id FROM char_main c JOIN char_good_bad_link gb

JOIN char_main n ON (c.id = gb.good_id AND n.id = gb.bad_id)
OR (n.id = gb.good_id AND c.id = gb.bad_id) WHERE
c.id = $char”;

$result = mysql_query($sql) or die(mysql_error());
if (mysql_num_rows($result) > 0) {
While ($row = mysql_fetch_assoc($result)) {
$enemies[$row[‘id’]] = ‘selected’;

}
}

We next build the table in HTML, and insert values into the appropriate places as defaults. This is how
we fill in the fields with character data. Note the use of the PHP tag. We don’t recommend using the
shortcut <?=$variable?> because some servers don’t have short PHP tags enabled. Using the full syn-
tax guarantees that your code will work, regardless of what server it is on.

<td>Character Name:</td>
<td><input type=’text’ name=’alias’ size=’41’
value=’<?php echo $ch[‘alias’];?>’
onfocus=’this.select();’>

</td>

Now we build the Powers select field. As we loop through each power in the $pwrlist array (which
contains all powers), we concatenate the $powers array value for that power (“selected”). If that
power’s key (from $pwrlist) doesn’t exist in the $powers array, $powers[$key] will simply be blank
instead of “selected.” In this way, we build a field of all powers where the character’s chosen powers are
selected in the list. Neato, huh?

<td>Powers:

(Ctrl-click to
select multiple
powers)

</td>
<td>
<select multiple=’multiple’ name=’powers[]’ size=’4’>
<?php
foreach ($pwrlist as $key => $value) {
echo “ <option value=’$key’ “ . $powers[$key] .

“>$value</option>\n”;
}

?>
</select>

</td>

Note the [] in the select name attribute. That is necessary for PHP to recognize the variable as an array
when it gets POSTed to the next page. This is a requirement for any field that might post with multiple
values.

The following portion creates a set of radio buttons for “good” and “evil.” The character’s alignment is
selected with the checked attribute.

275

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 275

<td><input type=’radio’ name=’align’ value=’good’<?php
echo($ch[‘align’]==’good’ ? ‘ checked=”checked”’ : ‘’);?>>

good

<input type=’radio’ name=’align’ value=’evil’<?php

echo($ch[‘align’]==’evil’ ? ‘ checked=”checked”’ : ‘’);?>>
evil

</td>

Remember what we did with the Powers field? Ditto all of that for the Enemies field. The only difference
here is that if there are no values in the $charlist variable (list of all characters except the chosen char-
acter), the Enemies field will not show up on the form.

<?php if (is_array($charlist)) { ?>
<tr>
<td>Enemies:

(Ctrl-click to
select multiple
enemies)

</td>
<td>
<select multiple=’multiple’ name=’enemies[]’ size=’4’>”;

<?php
foreach ($charlist as $key => $value) {
echo “ <option value=’$key’ “ . $enemies[$key] .

“>$value</option>\n”;
}

If the character entry form is not in Update mode, then we will hide the Delete Character button (you
can’t delete a character you haven’t created yet):

<?php if ($subtype == “Update”){?>

<input type=’submit’ name=’action’ value=’Delete Character’>

<?php }?>

Finally, the character id is not passed through any form fields, so we create a hidden field to hold that
information. We need that id if we are going to do an update to an existing character. Of course, if we are
creating a new character, then the id will be created for us when we insert all the appropriate data.

<input type=’hidden’ name=’cid’ value=’<?php echo $char;?>’>

char_transact.php
And so, finally, we come to the workhorse of the character database application: char_transact.php.
It looks like there is a lot happening on this page, but it’s not that complicated. There are simply many
different tasks that are performed by this page, depending on how the data got here. Let’s open her up
and see what makes her tick.

On many PHP servers, the php.ini option register_globals is set to ON. That registers all
$_REQUEST variables (POST, GET, and COOKIE) as global variables. In other words, if your form posted
a field called username using the post method, then this page could access it as $username in addition
to $_POST[‘username’]. We’re not going to go into the security problems you might have by setting
register_globals = ON. However, we do recommend that you set it to OFF, if you have control over
that. In fact, it is set to OFF by default in PHP versions after 4.2.0. (If you would like more information
about this, visit www.php.net/register_globals.)

276

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 276

You should always assume that register_globals is turned OFF to make your application more
portable, and for this reason, we assume that we have access to the posted variables through the $_POST
array only. What we are doing here is looping through $_POST and setting each variable ourselves. If
username was passed as $_POST[‘username’], then it will now be accessible as $username,
regardless of the register_globals setting.

foreach($_POST as $key => $value) {
$$key = $value;

}

Remember that each button is named action and that each one has a different value. In the code that fol-
lows, we determine which button was clicked, and run the appropriate code. For example, if the Delete
Character button was clicked, we want to run the SQL commands only for removing character data.

switch ($action) {

The switch command is a fancy way of providing a multiple choice. It is easier to read than a complex
if...else statement. The only “gotcha” you need to be aware of is to use break; at the end of each
case to prevent the rest of the code in the other case blocks from executing.

The INSERT query that follows is relatively simple. In plain English: “Insert the values $zip, $city, and
$state into the columns id, city, and state in the char_zipcode table.” The IGNORE keyword is a
very cool option that allows you do an insert without first using a SELECT query to see if the data is
already in the table. In this case, you know there might already be a record for this Zip code. So, IGNORE
tells the query “If you see this Zip code in the database already, don’t do the INSERT.”

case “Create Character”:
$sql = “INSERT IGNORE INTO char_zipcode (id, city, state)
VALUES (‘$zip’, ‘$city’, ‘$state’)”;

$result = mysql_query($sql) or die(mysql_error());

Note that the IGNORE statement compares primary keys only. Therefore, even if another Zip code is in
the database with the same state, the INSERT still takes place. Using IGNORE when inserting into a table
where the primary key is automatically incremented has no effect at all; the INSERT will always happen
in that case. This might seem obvious to you, but just keep this fact in mind; with some complex tables it
won’t be so intuitive.

In the INSERT that follows, you see the use of NULL as the first value. When you insert NULL into a col-
umn, MySQL does the following: If the column allows NULL values, it inserts the NULL; if it does not
allow NULL (the column is set to NOT NULL), it will set the column to the default value. If a default value
has not been determined, then the standard default for the datatype is inserted (empty string for var-
char/char, 0 for integer, and so on). If, as is the case here, the column is set to auto_increment, then the
next highest available integer for that column is inserted. In our case, id is the primary key, so this is
what we want to happen.

$sql = “INSERT INTO char_lair (id, zip_id, lair_addr)
VALUES (NULL, ‘$zip’, ‘$address’)”;

$result = mysql_query($sql) or die(mysql_error());

277

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 277

We also could have left out the id field from the insert, and inserted values into the zip_id and
lair_addr columns only. MySQL treats ignored columns as if you had attempted to insert NULL into
them. We like to specify every column when doing an insert. If you needed to modify your SQL state-
ment later, having all the columns in the INSERT query gives you a nice placeholder so all you have to
do is modify the inserted value.

The following is a neat little function. Assuming the insert worked properly ($result returned TRUE),
the mysql_insert_id() function will return the value of the last auto_increment from the last run
query. This works only after running a query on a table with an auto_incremented column. In this case
it returns the primary key value of the row we just inserted into the char_lair table. We will need that
value to insert into the char_main table.

if ($result) $lairid = mysql_insert_id($conn);

The connection variable is optional, but we think it’s a good habit to always include it. If you omit it, it
will use the most recently opened connection. In a simple application like ours, that’s not a problem; in a
more complex application where you might have more than one connection, it could get confusing.

Again, note the use of NULL for the primary key id, and the use of mysql_insert_id() to return the
primary key in the following:

$sql = “INSERT INTO char_main (id, lair_id, alias, real_name, align)
VALUES (NULL, ‘$lairid’, ‘$alias’, ‘$name’, ‘$align’)”;

$result = mysql_query($sql) or die(mysql_error());
if ($result) $charid = mysql_insert_id($conn);

We are always interested in minimizing the number of times we run a query on the database. Each hit
takes precious time, which can be noticeable in a more complex application. At this point, we need to
figure out how to insert all powers with only one SQL command:

if ($powers != “”) {
$val = “”;
foreach ($powers as $key => $id) {
$val[] = “(‘$charid’, ‘$id’)”;

}
$values = implode(‘,’, $val);
$sql = “INSERT IGNORE INTO char_power_link (char_id, power_id)
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

There are a couple of concerns here. First, if there is already a power for this user (there shouldn’t be; it’s
a new character, but always be prepared), we need to not insert the row. We already know how to take
care of this by using the IGNORE keyword.

Second, we must insert multiple rows of data with only one query. Easy enough; all we have to do is
supply a comma-separated list of value groupings that matches up to the column grouping in the query.
For example:

INSERT INTO table (col1, col2) VALUES (val1, val2), (val3, val4)

278

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 278

We accomplish this by looping through the $powers array and putting the values for character id and
power id into a new array. We then concatenate that array with a comma separator, and voilà! There are
your multiple rows of data to insert.

We then do the same thing with the $enemies array that we did with $powers. This time, however, we
insert into the columns based on whether the character is good or evil. It doesn’t really matter too much
which column gets which id, but for the most part we want evil character ids in the bad_id column.

if ($enemies != ‘’) {
$val = “”;
foreach ($enemies as $key => $id) {
$val[] = “(‘$charid’, ‘$id’)”;

}
$values = implode(‘,’, $val);
if ($align = ‘good’) {
$cols = ‘(good_id, bad_id)’;

} else {
$cols = ‘(bad_id, good_id)’;

}
$sql = “INSERT IGNORE INTO char_good_bad_link $cols
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

When it comes to the char_good_bad_link table, we have a little bit of referential integrity that we
have to handle (beyond what MySQL does for us). Namely, we don’t want to have a good_id/bad_id
combination to match up to a bad_id/good_id combination. For the purposes of a relational database,
that isn’t bad, but for our purposes that is considered a duplication. We will handle this contingency
when updating a character, but because this is a new character (with a brand new id), we don’t have to
worry about that just yet.

We’re done inserting new character data, so we now set the page we are going to load next, and break
out of the switch statement.

$redirect = ‘charlist.php’;
break;

When deleting a character, we simply remove all instances of it from all relevant tables. In order to
remove the relevant data from the char_lair table, we have to JOIN it to the char_main table by
matching up the lair id’s first. Then we delete all matching rows where the character id matches.

case “Delete Character”:
$sql = “DELETE FROM char_main, char_lair USING char_main m,
char_lair l WHERE m.lair_id = l.id AND m.id = $cid”;

$result = mysql_query($sql) or die(mysql_error());

$sql = “DELETE FROM char_power_link WHERE char_id = $cid”;
$result = mysql_query($sql) or die(mysql_error());

We don’t really need to put the results of the mysql_query command in a variable. We like to do this as
a matter of habit because if we ever need the return value later, it will be available for us to use. In the
case of a DELETE, you don’t get a result set, you get a return value of either TRUE or FALSE.

279

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 279

Remembering that our char_good_bad_link needs to maintain what we call “reverse” referential
integrity (1, 3 matches 3, 1), we remove all rows that contain the character’s id in either column:

$sql = “DELETE FROM char_good_bad_link WHERE good_id = $cid
OR bad_id = $cid”;

$result = mysql_query($sql) or die(mysql_error());

Updating a character is where things get interesting. First of all, we can simply do an INSERT IGNORE on
the Zip code table. If the address and Zip code change, we don’t really need to delete the old data
because it might be used for other characters—it’s perfectly fine to leave the old data alone. So, we just
do an INSERT IGNORE as we did for a new character, and leave it at that.

case “Update Character”:
$sql = “INSERT IGNORE INTO char_zipcode (id, city, state)
VALUES (‘$zip’, ‘$city’, ‘$state’)”;

$result = mysql_query($sql) or die(mysql_error());

Here is our first UPDATE query, and incidentally, the only one we use in the entire application. It is very
similar to INSERT and SELECT queries, with the exception of the SET keyword. The SET keyword tells
MySQL what columns to set, and what values to set them to. The old values in the row are overwritten.
This is a JOIN query because there is more than one table. The WHERE keyword specifies both the linking
column (lair_id) and the condition that only rows for this character will be updated.

$sql = “UPDATE char_lair l, char_main m SET l.zip_id=’$zip’,
l.lair_addr=’$address’, alias=’$alias’, real_name=’$name’,
align=’$align’ WHERE m.id = $cid AND m.lair_id = l.id”;

$result = mysql_query($sql) or die(mysql_error());

Because the char_power_link table does not have an automatically incremented column as the pri-
mary key, we don’t have to do an update to the table. An update is possible, but it is much easier to sim-
ply delete all the old links of character to power, and insert new link rows. In some cases, we may be
deleting and inserting the same data (for instance, we might be adding flight as a power, but invisi-
bility did not change; invisibility will still be deleted and reinserted). When updating data in an
M:N relationship, you will usually simply delete the old data, and insert the updated/new data.

$sql = “DELETE FROM char_power_link WHERE char_id = $cid”;
$result = mysql_query($sql) or die(mysql_error());

if ($powers != “”) {
$val = “”;
foreach ($powers as $key => $id) {
$val[] = “(‘$cid’, ‘$id’)”;

}
$values = implode(‘,’, $val);
$sql = “INSERT IGNORE INTO char_power_link (char_id, power_id)
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

280

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 280

This brings us to the Enemies data, where not only do we have to maintain referential integrity, but we
have to worry about updating rows where our id can be present in either of the two linking columns. We
must maintain our own “reverse” referential integrity.

$sql = “DELETE FROM char_good_bad_link WHERE good_id = $cid OR
bad_id = $cid”;

$result = mysql_query($sql) or die(mysql_error());

if ($enemies != ‘’) {
$val = “”;
foreach ($enemies as $key => $id) {
$val[] = “(‘$cid’, ‘$id’)”;

}
$values = implode(‘,’, $val);
if ($align == ‘good’) {
$cols = ‘(good_id, bad_id)’;

} else {
$cols = ‘(bad_id, good_id)’;

}
$sql = “INSERT IGNORE INTO char_good_bad_link $cols
VALUES $values”;

$result = mysql_query($sql) or die(mysql_error());
}

How did we deal with referential integrity? It turns out that it takes care of itself when we follow the
same method we employed when updating the char_power_link table. By simply running the same
DELETE query we ran when deleting a character, and then immediately running the same INSERT query
we ran when creating a new character, we ensure that only one set of rows exists to match up each char-
acter to his/her enemy. It’s simple, elegant, and it works!

By this time, queries should seem quite familiar to you. The DELETE query is one of the simplest of
the SQL statements. In these DELETE queries, we need to delete each power that was selected on the
Add/Delete Power page. We must do this not only in the char_power table but in the char_power_
link table as well. (In our application, if a power is removed, we remove that power from the characters
as well.) In order to perform a DELETE on multiple rows, we use the IN keyword, with which each id in
the supplied comma-separated list of power IDs is matched against the id, and each matching row is
deleted.

case “Delete Powers”:
if ($powers != “”) {
$powerlist = implode(‘,’, $powers);

$sql = “DELETE FROM char_power WHERE id IN ($powerlist)”;
$result = mysql_query($sql) or die(mysql_error());

$sql = “DELETE FROM char_power_link
WHERE power_id IN ($powerlist)”;

$result = mysql_query($sql) or die(mysql_error());
}

281

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 281

When adding a power, we first check to make sure a value was passed (no need to run a query if there is
nothing to add), and then attempt to insert the value into the power table. Once again, we use the
IGNORE keyword in what follows to avoid duplication of power. We have mentioned that you really use
IGNORE only on tables that have a primary key that is not autogenerated. There is an exception. IGNORE
will not allow any duplicate data in any column that is designated as UNIQUE. In our char_power table,
the power column is a UNIQUE column, so attempting to insert a duplicate value would result in an error.
The IGNORE keyword prevents the insertion, so we don’t get an error returned. If the power already
exists, we simply return to the poweredit.php page and await further instructions.

case “Add Power”:
if ($newpower != ‘’) {
$sql = “INSERT IGNORE INTO char_power (id, power)
VALUES (NULL, ‘$newpower’)”;

$result = mysql_query($sql) or die(mysql_error());
}

You should always have a default: option in your case statements. You don’t need to do anything
there, but it is good programming practice to include it. In this case, we are simply going to redirect the
user back to the charlist.php page.

default:
$redirect = ‘charlist.php’;
break;

Finally, we reach the last command of char_transact.php. In order to use the header() function, no data
can have been previously sent to the client. If it has, you will get an error. In our case, char_transact.php
has no data sent to the client, so our header() function will work as advertised.

header(“Location: $redirect”);

Each case sets a destination page after running its queries. This command will now send the user to that
destination.

One tremendous advantage to using a transaction page in this manner is that, because no data was sent
to the client browser, once the browser gets to the destination page the history will have no memory of
this page. Further, if the user refreshes his or her browser, it won’t re-execute the transaction.. This
makes for a very clean application.

For example, let’s say a user starts on the Character List page. He or she clicks the Edit Powers link.
From the Edit Powers page, the user enters a new power and clicks Add Power. The user might do this
five times, adding five new powers. Each time, the PHP server submits the form to the transaction page
and redirects the user back to the power page. However, if the user then clicks Back on his or her
browser, the user is taken back to the Character List page, as if he or she just came from there. This is
almost intuitive to the average user, and is the way applications should work.

282

Chapter 9

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 282

Summary
Whew! We covered a lot of ground in this chapter. You learned about how to plan the design of your
application, including database design. You learned how to normalize your data, so that it can easily be
linked and manipulated. You created a brand new database for your Web site, and started building your
Web site by creating tables, and creating the Web application needed to access and update those tables.

Congratulations! You just created your first, fully functioning Web application with a relational database
backend. (That’s going to look so good on your resume.)

This chapter is only the beginning, however. With the knowledge you gained here, you can create almost
any application you desire. Here are some examples of what you could do:

❑ Content Management (CMS): Create a data entry systems that will allow users and administra-
tors to alter the content of the Web site and your database without knowing any HTML.

❑ Maintain a database of users visiting your site: You can enable user authentication, e-mail your
users to give them exciting news, sign them up for newsletters, and so on.

❑ Create an online e-commerce site: Create shopping carts where users can store the merchandise
they will purchase. (This can be daunting—many choose to use a third-party shopping cart
application.)

❑ Create an online discussion forum where your users can go to discuss how wonderful your
site looks!

These are just a few ideas. In fact, we are going to show you how to do each of these things over the
course of upcoming chapters. With a little imagination, you can come up with solutions to almost any
problem you might face in building your site.

If any of the ideas presented in this chapter are difficult for you to grasp, that’s okay. It is a lot of mate-
rial, especially if you are a beginning programmer. The great thing about a book is that you can keep
coming back! We will also be revisiting many of these concepts in later chapters. For example, in
Chapter 15 where we teach you to build your own forum, we will go through database normalization
again on a new set of databases. You will also have many more opportunities to create SQL queries,
some familiar and some new.

For now, take some time to play with your new toy, the Character Database. You have the basic knowl-
edge for creating even the most complex sites. You have the first incarnation installed on your server.

Now all you need to do is let all of your friends and family know about your cool new site. If only you
knew how to send e-mails using PHP. Well, we’ll handle that in Chapter 10.

283

Building Databases

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 283

14 557440 Ch09.qxd 2/6/04 9:17 AM Page 284

10
E-mailing with PHP

So far, the chapters in this book have walked you through the creation of a comprehensive Web
site. You have designed your site so that users can add and modify data, which is being stored in
databases. You have built pages dynamically for your users, ensuring they have a rich and unique
experience when they visit your Web site. You are even displaying helpful error messages in case
something goes wrong. Now it’s time to get a little more interactive with your users with e-mail.
But we are not talking about standard e-mail, in which you write to your mother to tell her about
the cool site you’ve been building. (You did tell her, didn’t you? She would be so proud.) We’re
talking about sending out e-mails using PHP.

Why would you want a server-side scripting language to send e-mails? Perhaps you want to cre-
ate a simple feedback form to be submitted to an administrator. Or maybe you want certain errors
to be automatically e-mailed to the Webmaster. Or perhaps you would like to create an application
that allows users to send their friends and family electronic postcards. (Nod your head in vigorous
agreement here because that is exactly what we are going to do!)

Specifically, this chapter covers:

❑ Sending a basic e-mail

❑ Sending an e-mail formatted with HTML

❑ Multipart messages

❑ Sending images

❑ Getting confirmation

Setting Up PHP to Use E-mail
We aren’t going to delve too deeply into the setup of a mail server for PHP, but here are the basics.

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 285

If you are in a *NIX (UNIX, Linux, and so on) environment, you will most likely have sendmail installed
on your server. If you are using a hosting service, check with your service provider to make sure send-
mail or some equivalent is being used.

If you are not using sendmail, or you have Apache installed on a Windows server, you have a couple of
choices. You can use your existing SMTP (Simple Mail Transport Protocol) service, or you can install a mail
server such as Mailtraq on your computer. If you have questions or concerns about setting up or using a
mail server, there are many online resources available to help you. We suggest using a search engine.

Once you have your mail server squared away, you’ll need to modify your php.ini. There are a couple
of parameters you need to set. Of course, if you are using a hosting service, they should already have
these parameters set up.

❑ SMTP: Set this to the IP address or DNS name of your SMTP server. For example, if you have a
mail server installed on the same server as your PHP server, you should be able to set SMTP to
localhost. This applies to Windows installations only.

❑ smtp_port: Set this to the port PHP uses to connect to the SMTP server. This applies to Windows
installations only, and is valid for PHP version 4.3 and above.

❑ sendmail_from: The From address used by default by the PHP mail() command.

❑ sendmail_path: The path to the sendmail program (*NIX servers only). For most servers, this is
usr/sbin/sendmail.

That’s just about all there is to setting up PHP for e-mail. We will test to make sure it works correctly in
the next section, “Sending an E-mail.”

More information about setting up PHP for mail can be found at http://us3.php.net/manual/en/
ref.mail.php.

Sending an E-mail
The actual method of sending an e-mail is quite simple. Of course, it can be made much more complex
with the addition of headers, and sending HTML and images. However, we are going to start off with
something simple.

Try It Out Sending a Simple E-mail
This example is just about the simplest code you can write to send an e-mail. Of course, it’s not very flex-
ible, but it does demonstrate the mail() function quite well.

1. Start your favorite text/PHP/HTML editor. Notepad works just fine.

2. Enter the following code. Make sure you put your own e-mail address in as the first parameter:

<?php
mail(“your@e-mailaddress.com”, “Hello World”, “Hi, world. Prepare for our arrival.
We’re starving!”);
?>

286

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 286

3. Save the text file as firstmail.php and load it in your browser. You should see a blank page
and should receive an e-mail shortly at the address entered as the first parameter.

Pretty cool, huh? That’s all there is to it!

How It Works
The mail() function automatically sends an e-mail, using the following format:

Mail(to, subject, message, headers, other_parameters)

The parameters headers and other_parameters are optional. If you want to send a message to multi-
ple recipients, their addresses must be separated with a comma in the to parameter:

Mail(“first@e-mail.com, second@e-mail.com”, “Hi”, “Whazzup??”)

We will cover the headers parameter soon. The other_parameters are beyond the scope of this book,
but if you want more information about the mail() function, point your browser to www.php.net/
manual/en/function.mail.php.

You may have noticed when receiving this e-mail that there was no From address (or, your service
provider may have automatically put in a bogus address. Ours says “Nobody.” In the next example,
you’ll see how to add a “From:” parameter to your e-mail, and you’ll collect information from the user
before sending the e-mail. Let’s dig in!

Try It Out Collecting Data and Sending an E-mail
You are going to create two Web pages, postcard.php and pc_sendmail.php. The file postcard.php
will collect the data you are going to send. The file pc_sendmail.php will actually send the message,
using the data you enter.

1. Start up your favorite text/PHP/HTML editor, and enter the following code:

<html>
E-mail
<head>
<title>Enter E-mail Data</title>
</head>
<body>
<form name=”theform” method=”post” action=”sendmail.php”>
<table>
<tr>
<td>To:</td>
<td><input type=”text” name=”to” size=”50”></td>

</tr>
<tr>
<td>From:</td>
<td><input type=”text” name=”from” size=”50”></td>

</tr>
<tr>
<td>Subject:</td>
<td><input type=”text” name=”subject” size=”50”></td>

287

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 287

</tr>
<tr>
<td valign=”top”>Message:</td>
<td>
<textarea cols=”60” rows=”10” name=”message”
>Enter your message here</textarea>

</td>
</tr>
<tr>
<td></td>
<td>
<input type=”submit” value=”Send”>
<input type=”reset” value=”Reset the form”>

</td>
</tr>

</table>
</form>
</body>
</html>

2. Save the page as postcard.php. Note that postcard.php doesn’t actually have any PHP code
in it. It simply collects the required data in an HTML form. You give it a .php extension in case
you decide to add PHP code to it later (and you will).

3. Start a new text document and enter the following code:

<html>

<head>
<title>Mail Sent!</title>
</head>
<body>
<?php
$to = $_POST[“to”];
$from = $_POST[“from”];
$subject = $_POST[“subject”];
$message = $_POST[“message”];
$headers = “From: “ . $from . “\r\n”;
$mailsent = mail($to, $subject, $message, $headers);
if ($mailsent) {

echo “Congrats! The following message has been sent:

”;
echo “To: $to
”;
echo “From: $from
”;
echo “Subject: $subject
”;
echo “Message:
”;
echo $message;

} else {
echo “There was an error...”;

}
?>
</body>
</html>

288

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 288

4. Save this page as pc_sendmail.php. This second page will take the values entered into the first
page, and send them in an e-mail.

5. Load up the first page, postcard.php, in your browser, and enter some data. Make sure you
use valid e-mail addresses so that you can verify their receipt. It should look something like
Figure 10-1.

Figure 10-1

6. Click the Send button. A second page appears, similar to the one shown in Figure 10-2.

Figure 10-2

289

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 289

7. Open your e-mail client and check your e-mail (which should look like the one shown in
Figure 10-3).

Figure 10-3

How It Works
We are going to assume that you know HTML well enough that we don’t have to explain
postcard.php in great detail. Just remember that if your pc_sendmail.php page is not in the same
folder as postcard.php, you have to provide the correct path:

<form name=”theform” method=”post” action=”yourdir/sendmail.php”>

Once the user presses the Send button, pc_sendmail.php is loaded. The first step in your PHP code
assigns all the fields from postcard.php to variables. This step is not necessary if register_globals
is set to On in your php.ini file, but I strongly recommend you use this code anyway, in case
register_globals is ever turned Off:

$to = $_POST[“to”];
$from = $_POST[“from”];
$subject = $_POST[“subject”];
$message = $_POST[“message”];

In order to specify from whom the e-mail is coming, use the optional fourth parameter for the mail()
function, headers. We explain headers in more detail in the section “Sending HTML by Using
Headers,” later in this chapter.

290

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 290

$headers = “From: “ . $from . “\r\n”;

The mail() function returns a value of True if it is successful and False if it fails. You will use this func-
tion to make your application a little more user-friendly:

$mailsent = mail($to, $subject, $message, $headers);
if ($mailsent) {

echo “Congrats! The following message has been sent:

”;
echo “To: $to
”;
echo “From: $from
”;
echo “Subject: $subject

”;
echo “Message:
”;
echo $message;

} else {
echo “There was an error...”;

}
?>

Of course, you can modify this to handle errors more elegantly. Use the knowledge you acquired in
Chapter 8 to do so.

You have now created your first PHP e-mail application. Congratulations! (Call your mother! She’ll be so
proud.) But you’ll probably soon get tired of ugly, plain text e-mails. I’m sure you’re champing at the bit
to create colorful, formatted e-mails, right? How else are you going to enable users to send some pretty
postcards? Okay, let’s do something about that!

Dressing Up Your E-mails with HTML
Because you are creating a postcard application, sending plain-text e-mails just won’t do. You want to
dress them up a bit, and make them look professional, yet attractive. So, let’s add a bit of HTML to your
e-mail code to dress it up!

Try It Out Sending HTML Code in an E-mail
First, let’s try a little experiment. This step isn’t vital, but it will help illustrate a later point about headers.

1. Go to Step 5 of the previous “Try It Out” section and send another e-mail. This time, put some
HTML in the message. An example would be:

<h3>Hello World!</h3>
Prepare for our arrival.

We are starving!!!

2. When you have entered all relevant data in the form, click the Send button, and check your
e-mail. It should look something like the e-mail shown in Figure 10-4.

291

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 291

Figure 10-4

How It Works
Perhaps this heading should be “How It Doesn’t Work.” That’s because your e-mail client does not know
that it has received HTML. Why? Because you didn’t tell it! In order for any HTML-capable client to dis-
play HTML, the client needs to be told that the incoming e-mail is going to have some HTML tags on it.
Only then will it know how to properly display your message.

Try It Out Sending HTML by Using Headers
You need a way for your e-mail to tell the client it contains HTML. This is accomplished by using head-
ers. You already saw how we used headers to include a “From:” parameter. Now you are going to use a
similar header to tell the client that the e-mail message contains HTML.

1. Edit your copy of pc_sendmail.php in your favorite text editor. Back up pc_sendmail.php
before making changes if you want to keep the old version.

2. Make the following modifications to this file. Modifications are shown in bold:

<html>

<head>
<title>HTML Mail Sent!</title>
</head>
<body>
<?php
$to = $_POST[“to”];
$from = $_POST[“from”];
$subject = $_POST[“subject”];
$message = $_POST[“message”];
$headers = “MIME-Version: 1.0\r\n”;

292

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 292

$headers .= “Content-type: text/html; charset=iso-8859-1\r\n”;
$headers .= “Content-Transfer-Encoding: 7bit\r\n”;
$headers .= “From: “ . $from . “\r\n”;
$mailsent = mail($to, $subject, $message, $headers);
if ($mailsent) {

echo “Congrats! The following message has been sent:

”;
echo “To: $to
”;
echo “From: $from
”;
echo “Subject: $subject
”;
echo “Message:
”;
echo $message;

} else {
echo “There was an error...”;

}
?>
</body>
</html>

3. Save the file.

4. Load postcard.php into your browser and fill in the fields with appropriate information. Be
sure to include some HTML in the message field, such as:

<h3>Hello World!</h3>
Prepare for our arrival.

We are starving!!!

5. Click the Send button, and open your e-mail client to see the new message, which will look
something like Figure 10-5.

Figure 10-5

293

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 293

How It Works
We added a couple of new lines to the variable $headers. This allows you to do many additional things
with your e-mail, including adding HTML. This line is required in order to use extended MIME capabili-
ties (such as HTML).

$headers = “MIME-Version: 1.0\r\n”;

Note the \r\n. This is a carriage return and new line, which must be entered between each header.
UNIX sometimes allows just \n, but to be on the safe side, we will always use \r\n.

The following indicates that we will be using HTML in our message:

$headers .= “Content-type: text/html; charset=iso-8859-1\r\n”;
$headers .= “Content-Transfer-Encoding: 7bit\r\n”;

It is concatenated to the $headers variable.

That’s all there is to adding HTML to your messages. All you have to do is tell the e-mail client to expect
HTML, and it will work. You can really get fancy now—with tables, stylesheets, images, and so on.

However, there is still a concern—what about e-mail programs that don’t accept or recognize HTML?
What happens to them? You certainly want this application to be as user-friendly as possible, right? Not
to worry—we’ll take care of them with multipart (or mixed) messages.

Multipart Messages
You want to be able to send your postcards to anyone. However, some people don’t have HTML capabil-
ities in their e-mail client. Therefore, you will send your postcards using both plain text and HTML.

Try It Out Multipart Messages
In order to send messages with both plain text and HTML, you will use Mixed Messages. (Don’t worry.
This is one time when it’s okay to send your significant other a mixed message.) Here’s how to do it:

1. Edit your copy of postcard.php in your favorite text editor. Back up postcard.php before
making changes if you want to keep the old version.

2. Make the following modifications (shown here in bold) to postcard.php:

<html>
<head>
<title>Enter Data</title>
</head>
<body>
<form name=”theform” method=”post” action=”sendmail.php”>
<table>

<tr>
<td>To:</td>
<td><input type=”text” name=”to” size=”50”></td>

</tr>
<tr>

294

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 294

<td>From:</td>
<td>

<input type=”text” name=”from” size=”50”>
</td>

</tr>
<tr>
<td>CC:</td>
<td>

<input type=”text” name=”cc” size=”50”>
</td>

</tr>
<tr>
<td>Bcc:</td>
<td><input type=”text” name=”bcc” size=”50”></td>

</tr>
<tr>
<td>Subject:</td>
<td><input type=”text” name=”subject” size=”50”></td>

</tr>
<tr>
<td valign=”top”>Message:</td>
<td>

<textarea cols=”60” rows=”10” name=”message”
>Enter your message here</textarea>

</td>
</tr>
<tr>
<td></td>
<td>

<input type=”submit” value=”Send”>
<input type=”reset” value=”Reset the form”>

</td>
</tr>

</table>
</form>
</body>
</html>

3. Edit your copy of pc_sendmail.php in your favorite text editor. Back up pc_sendmail.php
before making changes if you want to keep the old version.

4. Make the following changes to pc_sendmail.php. Modifications are shown in bold:

<html>
<head>
<title>Multipart Mail Sent!</title>
</head>
<body>
<?php
$to = $_POST[“to”];
$cc = $_POST[“cc”];
$bcc = $_POST[“bcc”];
$from = $_POST[“from”];

295

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 295

$subject = $_POST[“subject”];
$messagebody = $_POST[“message”];
$boundary = “==MP_Bound_xyccr948x==”;
$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: multipart/alternative; boundary=\”$boundary\”\r\n”;
$headers .= “CC: “ . $cc . “\r\n”;
$headers .= “BCC: “ . $bcc . “\r\n”;
$headers .= “From: “ . $from . “\r\n”;
$message = “This is a Multipart Message in MIME format\n”;
$message .= “—$boundary\n”;
$message .= “Content-type: text/html; charset=iso-8859-1\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $messagebody . “\n”;
$message .= “—$boundary\n”;
$message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $messagebody . “\n”;
$message .= “—$boundary—”;
$mailsent = mail($to, $subject, $message, $headers);
if ($mailsent) {

echo “Congrats! The following message has been sent:

”;
echo “To: $to
”;
echo “From: $from
”;
echo “Subject: $subject
”;
echo “Message:
”;
echo $message;

} else {
echo “There was an error...”;

}
?>
</body>
</html>

How It Works
Multipart messages are not really that complicated. You must tell the e-mail client that data is coming in
multiple parts—in this instance, plain text and HTML. This is done in the header:

$headers .= “Content-type: multipart/alternative;
boundary=\”$boundary\”\r\n”;

This tells the e-mail client to look for additional “Content-type” information in the message, which
includes boundary information. The boundary is what separates the multiple parts of the message. It
begins with two dashes (--), and goes at the beginning of the message, between each part, and at the
end. There is no significance to the content of this boundary. The key here is to make it as unique as pos-
sible so that it most likely is not a value that would be repeated anywhere within the message. You can
use symbols, numbers, and letters in any combination. Many people choose to use a random number
generator or an md5() hash. The method you use is entirely up to you.

296

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 296

The following line simply tells older e-mail programs why they may not see the information they
expected in their browser. It’s not necessary, but it’s user-friendly:

$message = “This is a Multipart Message in MIME format\n”;

The HTML portion of our e-mail follows. Note the double dashes (--) in front of the boundary. Also
note the use of two new lines (\n\n) on the Content-Transfer-Encoding line. Do not neglect those—
the code will not work correctly without them.

$message .= “--$boundary\n”;
$message .= “Content-type: text/html; charset=iso-8859-1\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $messagebody . “\n”;

Next is the text portion of our e-mail. Note the similarity to the HTML portion. You do not need to include
the same $messagebody here. In fact, you would usually include an alternate message in text format.

$message .= “--$boundary\n”;
$message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $messagebody . “\n”;

This is the final boundary. Note the double dashes (--) at the end. This signifies that it’s the end of
the e-mail.

$message .= “--$boundary--”;

Our boundary in this case was set by the following line:

$boundary = “==MP_Bound_xyccr948x==”;

Storing Images
In order to create a postcard application, you need to have digital postcards available for the user to
choose from. For the purposes of our site, we’ll have four postcards. If you are ambitious, you can add
more, and we hope that you will!

Try It Out Storing Images
Let’s add some nice postcards to the application, shall we? You can create your own, or you can down-
load the images from the Web site (www.wrox.com).

1. First, store your postcard images in a folder on your Apache server. We have ours in the folder
postcards/. Place them anywhere you like, but remember where they are!

297

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 297

2. Start up your favorite PHP editor, and type the following code. Make sure you enter your own
server, username, password, and database name:

<?php
$conn = mysql_connect(“yourserver”, “joeuser”, “yourpass”);
mysql_select_db(“yourdatabase”, $conn);
?>

3. Save this file as conn_comic.php in the includes/ folder.

You can call it whatever you like, but we are going to be including it in a few files using the
require() function, so you’ll have to remember to use the filename you came up with. Or, you
could go with the name we came up with, because we took the time to come up with such a
clever name, and have used it in subsequent PHP pages.

4. Enter the following code, and save it as db_insertpics.php.

If you used the four pictures we provided for you and put them in the postcards/ folder, you
need not change this file. If you are using a different number of postcards, or have created your
own, make sure you modify this code to reflect those changes. And, if you have named the
conn_comic.inc file something you think is more clever than our name, make sure you reflect
that change here.

<?php
require(“./includes/conn_comic.php”);
$path = “http” . ($_SERVER[“HTTPS”]==”on”?”s”:””) .

“://” . $_SERVER[‘SERVER_NAME’] .
strrev(strstr(strrev($_SERVER[‘PHP_SELF’]),”/”));

$imagepath = $path . “postcards/”;
$imgURL = array(‘punyearth.gif’, ‘grebnok.gif’, ‘sympathy.gif’,

‘congrats.gif’);
$imgDESC = array(‘Wish you were here!’, ‘See you soon!’,

‘Our Sympathies’, ‘Congratulations!’);

for ($i=0; $i<4; $i++) {
$sql = “INSERT INTO images (images.img_url , images.img_desc)

VALUES (‘$imagepath$imgURL[$i]’, ‘$imgDESC[$i]’)”;
$success = mysql_query($sql, $conn) or die(mysql_error());

}
echo “done.”
?>

How It Works
Connect to the server using the correct username and password.

$conn = mysql_connect(“yourserver”, “joeuser”, “yourpass”);

Create the database. Call it “postcard.” If it is successful, print “Database created” to the screen and
move on.

$sql = “CREATE DATABASE postcard”;
$success = mysql_query($sql, $conn) or die(mysql_error());
Echo “Database created. . .”;

298

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 298

Now that you’ve created the database, select that database.

mysql_select_db(“postcard”, $conn);

Create the images table in the database, containing three columns. If it is successful, print “images table
created” to the screen and move on.

$sql = “CREATE TABLE images (id int NOT NULL primary key
auto_increment, img_url VARCHAR (255) NOT NULL,
img_desc text)”;

$success = mysql_query($sql, $conn) or die(mysql_error());
echo “‘images’ table created. . .”

Now create two arrays of values to place in the images table. We need to know the location of the post-
cards entered previously in Step 1, and their descriptions. Each URL corresponds to a description in the
other array.

$imgURL = array(‘/postcards/punyearth.gif’, ‘/postcards/grebnok.gif’,
‘/postcards/sympathy.gif’, ‘/postcards/congrats.gif’);

$imgDESC = array(‘Wish you were here!’, ‘See you soon!’, ‘Our
Sympathies’, ‘Congratulations!’);

Loop through the arrays, pulling the location and description text and inserting them into the images
table. If there are no errors, print “Data entered” to the screen and you’re done.

for ($i=0; $i<4; $i++) {
$sql = “INSERT INTO images
(images.img_url , images.img_desc)
VALUES (‘$imgURL[$i]’, ‘$imgDESC[$i]’)”;

$success = mysql_query($sql, $conn) or die(mysql_error());
}
Echo “Data entered. . .”;

When running this PHP script, if anything goes wrong, make sure you delete the postcard database
before running it again. Otherwise, you will get an error (database exists) and it will stop executing.

If you need further information on MySQL commands, check out Appendix F, or visit
www.mysql.com/documentation/index.html.

We include the code to view and use the images in the next section, “Getting Confirmation.”

Getting Confirmation
So far, you have a pretty cool postcard application. Any user can send a postcard to whomever he or she
wants, and PHP takes care of mailing it. Unfortunately, there is still a small problem with the application.

As the application stands right now, it is quite easy for the user to use any e-mail address in the “From”
field. This is a bad thing because nasty e-mails can be sent on someone else’s behalf, and you don’t want
that, do you? In order to prevent such maliciousness, you must first send a confirmation e-mail to the

299

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 299

“From” address. Once you get the confirmation, you know the user entered a good e-mail address, and
you can go ahead and send the e-mail.

This act of achieving confirmation is the first step toward creating a workflow application. We look at
workflow applications in more detail in Chapter 12, but for now just understand that a workflow appli-
cation is one that requires input from various parties before it reaches its final destination.

Try It Out Getting Confirmation
In order to accommodate this workflow, your application must undergo a metamorphosis from what it
was in the past. The pc_sendmail.php script must be split into two separate processes, such that, in
between the two processes, you wait for confirmation. (You may want to save your old postcard.php
and pc_sendmail.php files and start new files from scratch before making this change.)

Much of the code we have used so far in pc_sendmail.php will be recycled. If you are an experienced
developer, we are sure you know very well how to cannibalize your old code! If you are not familiar
with cannibalization, now is the time to learn. Sometimes you need to write a function that you have
written before in another application. With a couple of modifications, it would work in your new app.
So, you copy and paste it into your new application and make the necessary changes. Voila, your first
cannibalization!

In order to confirm an e-mail address, the postcard information needs to be temporarily stored in a table,
to be retrieved later on, once confirmation has been established:

1. Open your favorite PHP editor and create a new PHP file called db_makeconfirm.php:

Make sure you use the correct server, username, and password.

<?php
$conn = mysql_connect(“yourserver”, “joeuser”, “yourpass”);
mysql_select_db(“postcard”, $conn);
$sql = <<<EOD
CREATE TABLE confirm (

id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
validator VARCHAR (32) NOT NULL,
to_e-mail VARCHAR (100) NOT NULL,
toname VARCHAR (50) NOT NULL,
from_e-mail VARCHAR (100) NOT NULL,
fromname VARCHAR (50) NOT NULL,
bcc_e-mail VARCHAR (100),
cc_e-mail VARCHAR (100),
subject VARCHAR (255),
postcard VARCHAR (255) NOT NULL,
message text

)
EOD;
$query = mysql_query($sql, $conn) or die(mysql_error());
echo “Table <i>confirm</i> created.”
?>

2. Run db_makeconfirm.php, and then check your MySQL server to make sure the confirm table
was indeed created in the database.

300

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 300

3. Enter the new and improved postcard.php in your favorite PHP editor and save it:

<html>
<head>
<title>Enter E-mail Data</title>
</head>
<body>
<form name=”theform” method=”post” action=”sendconf.php”>
<center>
<table width=”640” border=”0” cellpadding=”4” cellspacing=”0”>
<tr>
<td colspan=”4”><H2>Postcard Sender</H2></td>

</tr>
<tr bgcolor=”#CCCCCC”>
<td>To:</td>
<td><input type=”text” name=”toname” size=”30”></td>
<td>e-mail:</td>
<td><input type=”text” name=”to” size=”40”></td>

</tr>
<tr>
<td>From:</td>
<td><input type=”text” name=”fromname” size=”30”></td>
<td>e-mail:</td>
<td><input type=”text” name=”from” size=”40”></td>

</tr>
<tr bgcolor=”#CCCCCC”>
<td>CC:</td>
<td><input type=”text” name=”cc” size=”40”></td>
<td>Bcc:</td>
<td><input type=”text” name=”bcc” size=”40”></td>

</tr>
<tr>
<td colspan=”2”>Choose a Postcard:
<select name=”postcard[]” onchange=”changepostcard(this.value)”>
<?php
include(“./includes/conn_comic.inc”);
$sql = “SELECT * FROM images ORDER BY img_desc”;
$images = mysql_query($sql, $conn) or die(mysql_error());
$iloop = 0;
while ($imagearray = mysql_fetch_array($images)) {

$iloop++;
//$iid = $imagearray[‘id’];
$iurl = $imagearray[‘img_url’];
$idesc = $imagearray[‘img_desc’];
if ($iloop == 1) {

echo “<option selected value=\”$iurl\”>
$idesc</option>\n”;

$image_url = $imagearray[‘img_url’];
} else {

echo “<option value=\”$iurl\”>$idesc</option>\n”;
}

}
?>
</select>

</td>

301

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 301

<td>Subject:</td>
<td><input type=”text” name=”subject” size=”40”></td>

</tr>
<tr>
<td colspan=”2”><img src=”<?php echo($image_url)?>” width=320

height=240 border=0 id=”postcard”></td>
<td valign=”top”> </td>
<td align=”right”>
<textarea cols=”30” rows=”12” name=”message”
>Enter your message here</textarea>

<input type=”submit” value=”Send”>
<input type=”reset” value=”Reset the form”>

</td>
</tr>

</table>
</center>
</form>
<script language=”Javascript”>
function changepostcard(imgurl) {
window.document.theform.postcard.src = imgurl;

}
</script>
</body>
</html>

4. Next write pc_sendconf.php, the page that sends out the confirmation e-mail to the user.
Remember that much of this code can be pulled (cannibalized) from pc_sendmail.php.

<html>
<head>
<title>HTML Mail Sent!</title>
</head>
<body>
<?php
$to = $_POST[“to”];
$toname = $_POST[“toname”];
$cc = $_POST[“cc”];
$bcc = $_POST[“bcc”];
$from = $_POST[“from”];
$fromname = $_POST[“fromname”];
$subject = $_POST[“subject”];
if (!empty($_POST[“postcard”])) {

foreach($_POST[“postcard”] as $value) {
$postcard = $value;

}
}
$messagebody = $_POST[“message”];
$boundary = “==MP_Bound_xyccr948x==”;
$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: multipart/alternative; boundary=\”$boundary\”\r\n”;
$headers .= “From: no-reply@postcardorama.com\r\n”;
$html_msg .= “<center>”;
$html_msg .= “<table width=\”500\” border=0 cellpadding=\”4\”>”;
$html_msg .= “<tr><td>Greetings, $toname!”;

302

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 302

$html_msg .= “</td></tr><tr><td>”;
$html_msg .= “$fromname has sent you a postcard today.
Enjoy!”;
$html_msg .= “</td></tr><tr><td align=\”center\”>”;
$html_msg .= “”;
$html_msg .= “</td></tr><tr><td align=center>”;
$html_msg .= $messagebody . “\n”;
$html_msg .= “</td></tr></table></center>”;
$temp=gettimeofday();
$msec=(int)$temp[“usec”];
$msgid = md5(time() . $msec);
$conn = mysql_connect(“yourserver”, “joeuser”, “yourpass”);
mysql_select_db(“postcard”, $conn);
$sql = “INSERT INTO confirm (validator, to_e-mail, toname, from_e-mail, fromname,
bcc_e-mail, cc_e-mail, subject, postcard, message) VALUES (\”$msgid\”, \”$to\”,
\”$toname\”, \”$from\”, \”$fromname\”, \”$bcc\”, \”$cc\”, \”$subject\”,
\”$postcard\”, \”$messagebody\”)”;
$query = mysql_query($sql, $conn) or die(mysql_error());
$confirmsubject = “Please Confirm your postcard”;
$confirmmessage = “Hello “ . $fromname . “,\n\n”;
$confirmmessage .= “Please click on the link below to confirm that

you would like to send this postcard:\n\n”;
$confirmmessage .= $html_msg . “\n\n”;
$confirmmessage .= “<a href=\”http://localhost/wrox/confirmmail.php

?id=$msgid\”>Click here to confirm”;
$textconfirm = “Hello “ . $fromname . “,\n\n”;
$textconfirm .= “Please visit the following URL to confirm your

postcard:\n\n”;
$textconfirm .= “http://localhost/wrox/confirmmail.php

?id=\”$msgid\””;
$message = “This is a Multipart Message in MIME format\n”;
$message .= “—$boundary\n”;
$message .= “Content-type: text/html; charset=iso-8859-1\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $confirmmessage . “\n”;
$message .= “—$boundary\n”;
$message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $textconfirm . “\n”;
$message .= “—$boundary—”;
$mailsent = mail($from, $confirmsubject, $message, $headers);
if ($mailsent) {

echo “Here is the postcard you wish to send.
”;
echo “A confirmation e-mail has been sent to $from.
”;
echo “Open your e-mail and click on the link to confirm that you would

like to send this postcard to $toname.

”;
echo “Subject: $subject
”;
echo “Message:
”;
echo $html_msg;

} else {
echo “There was an error sending the e-mail.”;

}
?>
</body>
</html>

303

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 303

5. Next is pc_confirm.php. This file is loaded in the browser with an ID in the URL to designate
which saved postcard is awaiting confirmation, and it then sends the postcard to the intended
recipient. Again, parts can be pulled from the old pc_sendmail.php file.

<?php
$id = $_GET[‘id’];
require(‘./includes/conn_comic.inc’);
$sql = “SELECT * FROM confirm WHERE validator = ‘$id’”;
$query = mysql_query($sql, $conn) or die(mysql_error());
$pcarray = mysql_fetch_array($query);
if (!is_array($pcarray)) {

echo “Oops! Nothing to confirm. Please contact
your administrator”;

exit;
}
$to = $pcarray[“to_e-mail”];
$toname = $pcarray[“toname”];
$from = $pcarray[“from_e-mail”];
$fromname = $pcarray[“fromname”];
$bcc = $pcarray[“bcc_e-mail”];
$cc = $pcarray[“cc_e-mail”];
$subject = $pcarray[“subject”];
$postcard = $pcarray[“postcard”];
$messagebody = $pcarray[“message”];

$boundary = “==MP_Bound_xyccr948x==”;
$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: multipart/alternative; boundary=\”$boundary\”\r\n”;
if (!$cc == “”) {

$headers .= “CC: “ . $cc . “\r\n”;
}
if (!$bcc == “”) {

$headers .= “BCC: “ . $bcc . “\r\n”;
}
$headers .= “From: “ . $from . “\r\n”;

$html_msg .= “<center>”;
$html_msg .= “<table width=\”500\” border=0 cellpadding=\”4\”>”;
$html_msg .= “<tr><td>Greetings, $toname!”;
$html_msg .= “</td></tr><tr><td>”;
$html_msg .= “$fromname has sent you a postcard today.
Enjoy!”;
$html_msg .= “</td></tr><tr><td align=\”center\”>”;
$html_msg .= “”;
$html_msg .= “</td></tr><tr><td align=center>”;
$html_msg .= $messagebody . “\n”;
$html_msg .= “</td></tr></table></center>”;

$message = “This is a Multipart Message in MIME format\n”;
$message .= “—$boundary\n”;
$message .= “Content-type: text/html; charset=iso-8859-1\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $html_msg . “\n”;
$message .= “—$boundary\n”;
$message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\n”;

304

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 304

$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $messagebody . “\n”;
$message .= “—$boundary—”;
$mailsent = mail($to, $subject, $message, $headers);
?>
<html>
<head>
<title>Postcard Sent!</title>
</head>
<body>
<?php
if ($mailsent) {

echo “Congrats! The following message has been sent:

”;
echo “To: $to
”;
echo “From: $from
”;
echo “Subject: $subject
”;
echo “Message:
”;
echo $html_msg;

} else {
echo “There was an error...”;

}
?>
</body>
</html>

6. Let’s create a form that allows a user to view the postcard. Call this one viewpostcard.php.
(Funny how the name matches the functionality, isn’t it?) The great thing about viewpost
card.php is that most of it is very similar to pc_confirm.php. Yes, now you get to cannibalize
some of your own code!

<?php
$id = $_GET[‘id’];
require(‘./includes/conn_comic.inc’);
$sql = “SELECT * FROM confirm WHERE validator = ‘$id’”;
$query = mysql_query($sql, $conn) or die(mysql_error());
$pcarray = mysql_fetch_array($query);
$path = “http” . ($_SERVER[“HTTPS”]==”on”?”s”:””) .

“://” . $_SERVER[‘SERVER_NAME’] .
strrev(strstr(strrev($_SERVER[‘PHP_SELF’]),”/”));

if (!is_array($pcarray)) {
echo “Oops! Can’t find a postcard. Please contact your

administrator.”;
exit;

}
$to = $pcarray[“to_e-mail”];
$toname = $pcarray[“toname”];
$from = $pcarray[“from_e-mail”];
$fromname = $pcarray[“fromname”];
$bcc = $pcarray[“bcc_e-mail”];
$cc = $pcarray[“cc_e-mail”];
$subject = $pcarray[“subject”];
$postcard = $pcarray[“postcard”];
$messagebody = $pcarray[“message”];

$html_msg .= “<table width=\”500\” border=0 cellpadding=\”4\”>”;

305

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 305

$html_msg .= “<tr><td>Greetings, $toname!”;
$html_msg .= “</td></tr><tr><td>”;
$html_msg .= “$fromname has sent you a postcard today.
Enjoy!”;
$html_msg .= “</td></tr><tr><td align=\”center\”>”;
$html_msg .= “”;
$html_msg .= “</td></tr><tr><td align=center>”;
$html_msg .= $messagebody . “\n”;
$html_msg .= “</td></tr></table>”;

echo <<<EOD
<html>
<head>
<title>Viewing postcard for $toname</title>
</head>
<body>
$html_msg
</body>
</html>

EOD;
?>

7. Load postcard.php in your browser to verify that it works. The results should look similar to
what’s shown in Figure 10-6.

Figure 10-6

8. Enter the appropriate data; remember to put in your valid e-mail address in the From:
email field.

306

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 306

9. In the Choose a Postcard field, select a postcard from the drop-down list, enter a message, and
click the Send button. A screen similar to the one shown in Figure 10-7 loads.

Figure 10-7

10. Check your e-mail. You should receive an e-mail that looks something like Figure 10-8.

Note the text attachment; this is the part of the e-mail that users would see if their e-mail client
did not support HTML. They would see something similar to this:

Hello Grebnok,
Please visit the following URL to confirm your postcard:
http://www.ultimatespin.com/wrox/pc_confirm.php?id=8d3ba748a0aea409fd6b6005be67f262

307

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 307

Figure 10-8

11. Click the link at the bottom of the e-mail to confirm that you want to send the postcard.

12. Open the e-mail account this postcard was sent to (see Figure 10-9).

You did send it to an e-mail address you have access to, right? If you sent this to your little sis-
ter, we sure hope you didn’t scare her!

How It Works
Your application is getting more complex. However, it is still fairly basic in its functionality. Here’s what
it does:

❑ The user loads postcard.php and fills out all the fields. He or she also selects a postcard to be
sent. In the From field, the user enters his or her e-mail address.

308

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 308

❑ After clicking Send, the user receives an e-mail showing him or her what the postcard and mes-
sage look like. A link is provided at the bottom of the e-mail asking the user to click to confirm
the postcard.

❑ Once the user clicks the confirmation link, the postcard is sent to the intended recipient.

Figure 10-9

By now, you should be fairly familiar with using PHP to access MySQL. The file db_makeconfirm.php
is pretty standard:

$sql = <<<EOD
CREATE TABLE confirm (

id int NOT NULL PRIMARY KEY AUTO_INCREMENT,
validator VARCHAR (32) NOT NULL,

309

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 309

to_e-mail VARCHAR (100) NOT NULL,
toname VARCHAR (50) NOT NULL,
from_e-mail VARCHAR (100) NOT NULL,
fromname VARCHAR (50) NOT NULL,
bcc_e-mail VARCHAR (100),
cc_e-mail VARCHAR (100),
subject VARCHAR (255),
postcard VARCHAR (255) NOT NULL,
message text

)
EOD;

Note the use of the heredoc syntax. This makes the SQL statement a little easier to read. It also allows
you to get a more accurate indication of where errors occur because errors usually tell you the line num-
ber on which they occurred.

Now let’s take a look at the postcard.php file. This is your standard HTML form tag. Make sure
sendconf.php is in the same directory as postcard.php. If not, then you will need to provide the
proper path for sendconf.php:

<form name=”theform” method=”post” action=”sendconf.php”>

Next is a simple select statement. It will be followed by PHP code that builds the list of postcards the
user will be able to select. Note the square brackets after postcard[]. These are required so that PHP is
able to access the $postcard variable as a proper array:

<select name=”postcard[]” onchange=”changepostcard(this.value)”>

You then connect to the MySQL server and open a connection to the postcard database:

$conn = mysql_connect(“yourserver”, “joeuser”, “yourpass”);
mysql_select_db(“postcard”, $conn);

This gets all image data and puts it into the $images array:

$sql = “SELECT * FROM images ORDER BY img_desc”;
$images = mysql_query($sql, $conn) or die(mysql_error());

You are tracking $iloop; if $iloop == 1$iloop == 1, the first option tag will be selected by default on
the form. This assures you that when the page first loads, you’ll see a postcard.

$iloop = 0;

Next you loop through the $images array, constructing the rest of your HTML select tag (options).
The $image_url variable is set to the default image’s URL:

while ($imagearray = mysql_fetch_array($images)) {
$iloop++;
//$iid = $imagearray[‘id’];
$iurl = $imagearray[‘img_url’];
$idesc = $imagearray[‘img_desc’];
if ($iloop == 1) {

310

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 310

echo “<option selected value=\”$iurl\”>$idesc</option>\n”;
$image_url = $imagearray[‘img_url’];

} else {
echo “<option value=\”$iurl\”>$idesc</option>\n”;

}
}
?>

Then you place the default image on the page, just below the select box. You are going to use JavaScript
to change this image whenever the user selects a different postcard from the select box. This enables you
to minimize the number of times this page has to reload.

<img src=”<?php echo($image_url)?>” width=320 height=240 border=0
id=”postcard”>

What follows, of course, is the JavaScript function that changes the image. It should be pretty self-explanatory
if you know JavaScript. If you don’t know JavaScript, this is the JavaScript function that changes the image.
Perhaps you should buy JavaScript For Dummies, Third Edition, by Emily A. Vander Veer (Wiley, 2000).

<script language=”Javascript”>
function changepostcard(imgurl) {
window.document.theform.postcard.src = imgurl;

}
</script>

Now you move on to sendconf.php. Much of it is similar to pc_sendmail.php, so we’ll just touch on
some of the more important points:

if (!empty($_POST[“postcard”])) {
foreach($_POST[“postcard”] as $value) {
$postcard = $value;

}
}

Remember, $postcard is an array. A simpler method of getting the value of the postcard would have
been to use the 0 key of the $postcard array:

$postcard = $_POST[“postcard”][0];

However, to ensure that you get the first value in the $postcard array regardless of the key, you use the
foreach() loop. You must use the if statement because if there is no $postcard array, foreach()
returns an “invalid argument” warning. Yes, we know that currently a postcard value is always posted
to the sendconf.php page, but if you make a change to postcard.php (for instance, to make the post-
card image optional), you don’t want sendconf.php to break, right? Let’s move on.

Your sendconf.php script performs an extra step you did not take care of in pc_sendmail.php. You
must temporarily store the postcard data while you await confirmation.

$temp=gettimeofday();
$msec=(int)$temp[“usec”];
$msgid = md5(time() . $msec);

311

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 311

Note the use of a new PHP function, md5(). This returns a 128-bit “fingerprint,” or “hash,” of the mes-
sage passed to it. For example, the md5 hash of “Hello World” is b10a8db164e0754105b7a99be72e3fe5. It
is designed as a one-way encryption of the data passed in to it, so you cannot reverse it to discover the
original value.

By passing in a time value, you can be fairly certain that the md5 hash returned will be a unique value,
which you use as a unique ID for the data. It is not 100 percent guaranteed to be unique, but because it is
generated based on the current time in seconds and contains 32 alphanumeric characters, you can be rea-
sonably sure it will be unique.

If you are interested in finding out more information about the md5 hash, visit RFC 1321: The MD5
Message-Digest Algorithm at www.faqs.org/rfcs/rfc1321.

$conn = mysql_connect(“yourserver”, “joeuser”, “yourpass”);
mysql_select_db(“postcard”, $conn);
$sql = “INSERT INTO confirm (validator, to_e-mail, toname, from_e-mail,

fromname, bcc_e-mail, cc_e-mail, subject, postcard, message) VALUES
(\”$msgid\”, \”$to\”, \”$toname\”, \”$from\”, \”$fromname\”,
\”$bcc\”, \”$cc\”, \”$subject\”, \”$postcard\”,
\”$messagebody\”)”;

$query = mysql_query($sql, $conn) or die(mysql_error());

Next, you store the postcard data temporarily until it is validated. When the user clicks the confirmation
link in the e-mail to send it, the postcard is sent on to its intended recipient.

$confirmsubject = “Please Confirm your postcard”;
$confirmmessage = “Hello “ . $fromname . “,\n\n”;
$confirmmessage .= “Please click on the link below to confirm that

you would like to send this postcard:\n\n”;
$confirmmessage .= $html_msg . “\n\n”;
$confirmmessage .= “<a href=\”http://localhost/wrox/confirmmail.php

?id=$msgid\”>Click here to confirm”;
$textconfirm = “Hello “ . $fromname . “,\n\n”;
$textconfirm .= “Please visit the following URL to confirm your

postcard:\n\n”;
$textconfirm .= “http://localhost/wrox/confirmmail.php

?id=\”$msgid\””;
$message = “This is a Multipart Message in MIME format\n”;
$message .= “—$boundary\n”;
$message .= “Content-type: text/html; charset=iso-8859-1\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $confirmmessage . “\n”;
$message .= “—$boundary\n”;
$message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $textconfirm . “\n”;
$message .= “—$boundary—”;

The variable $confirmmessage is the HTML version of the confirmation e-mail. The variable
$textconfirm is the plain text version. The variable $message is the entire message, coded to send
both plain and HTML e-mails. Note where you insert the $confirmmessage and $textconfirm vari-
ables in the multipart message.

312

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 312

Finally, the following sends the e-mail. Don’t be confused by the variable $from. That actually controls
who this e-mail is being sent to. That’s the whole idea behind sending out this confirmation e-mail.

$mailsent = mail($from, $confirmsubject, $message, $headers);

When the user receives the confirmation e-mail, there is a link at the bottom:

$confirmmessage .= “<a href=\”http://localhost/confirmmail.php
?id=$msgid\”>Click here to confirm”;

When the user clicks the link, confirmmail.php is loaded in his or her browser, appended with ?id=
plus the unique validation ID. This is used within confirmmail.php to access the proper postcard in
the database, compose the e-mail, and send it on its way. A quick reminder: If you always set your vari-
ables like this, you never have to worry about the register_globals setting in your php.ini file.

$id = $_GET[‘id’];

The following gets all postcards that match your ID. Of course, there should always be just one match,
because $id is unique.

$sql = “SELECT * FROM confirm WHERE validator = ‘$id’”;

The array $pcarray contains all of the postcard data you need to send the postcard to its intended recipient:

$query = mysql_query($sql, $conn) or die(mysql_error());
$pcarray = mysql_fetch_array($query);

Here’s a little insurance to make sure you don’t try to send out a postcard if no postcard data exists. (Of
course, you will think of a much more elegant error message, won’t you?) This might be a good place for
the PHP header() function to redirect the user to a “more information” error page.

if (!is_array($pcarray)) {
echo “Oops! Nothing to confirm. Please contact your administrator”;
exit;

}

The following lines are not entirely necessary. They do make life easier, however, if you have to refer to
the values multiple times. It’s also good to have your variables in a centralized location; if something
goes wrong, you have one place to look.

$to = $pcarray[“to_e-mail”];
$toname = $pcarray[“toname”];
$from = $pcarray[“from_e-mail”];
$fromname = $pcarray[“fromname”];
$bcc = $pcarray[“bcc_e-mail”];
$cc = $pcarray[“cc_e-mail”];
$subject = $pcarray[“subject”];
$postcard = $pcarray[“postcard”];
$messagebody = $pcarray[“message”];

313

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 313

What follows is pretty standard stuff; you did this before in pc_sendmail.php. Here’s a quick review:
To create a multipart message, use the Content-type of multipart/alternative, and a boundary that con-
tains unique alphanumeric text to designate the HTML and text portions of the e-mail.

$boundary = “==MP_Bound_xyccr948x==”;
$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: multipart/alternative; boundary=\”$boundary\”\r\n”;
if (!$cc == “”) {
$headers .= “CC: “ . $cc . “\r\n”;

}
if (!$bcc == “”) {
$headers .= “BCC: “ . $bcc . “\r\n”;

}
$headers .= “From: “ . $from . “\r\n”;

$html_msg .= “<center>”;
$html_msg .= “<table width=\”500\” border=0 cellpadding=\”4\”>”;
$html_msg .= “<tr><td>Greetings, $toname!”;
$html_msg .= “</td></tr><tr><td>”;
$html_msg .= “$fromname has sent you a postcard today.
Enjoy!”;
$html_msg .= “</td></tr><tr><td align=\”center\”>”;
$html_msg .= “”;
$html_msg .= “</td></tr><tr><td align=center>”;
$html_msg .= $messagebody . “\n”;
$html_msg .= “</td></tr></table></center>”;

$message = “This is a Multipart Message in MIME format\n”;
$message .= “—$boundary\n”;
$message .= “Content-type: text/html; charset=iso-8859-1\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $html_msg . “\n”;
$message .= “—$boundary\n”;
$message .= “Content-Type: text/plain; charset=\”iso-8859-1\”\n”;
$message .= “Content-Transfer-Encoding: 7bit\n\n”;
$message .= $messagebody . “\n”;
$message .= “—$boundary—”;
$mailsent = mail($to, $subject, $message, $headers);
?>

Until now, nothing has been sent to the browser. That is a good thing. For example, if you had received
any errors, and wished to use the header() function to redirect the user to a different page, it works
only if no text has already been sent to the browser. The lesson here is: Don’t put your <html> (and
other) tags in the code until you are ready to send text to the user’s browser.

<html>
<head>
<title>Postcard Sent!</title>
</head>
<body>
<?php
if ($mailsent) {
echo “Congrats! The following message has been sent:

”;
echo “To: $to
”;

314

Chapter 10

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 314

echo “From: $from
”;
echo “Subject: $subject
”;
echo “Message:
”;
echo $html_msg;
} else {
echo “There was an error...”;
}

?>
</body>
</html>

Summary
In this chapter, you’ve looked at PHP’s mail() function and learned how to use it by creating a postcard
application. You may have seen similar applications at Hallmark’s or Yahoo!’s Web sites. Your applica-
tion is not as complex as theirs, but with a little bit more work, it shouldn’t be too difficult to offer users
some terrific features.

The mail() function gives PHP the capability to communicate with the outside world, whether it be
with users of the Web site, Web site or server administrators, or even another server. There are many
opportunities to use mail(): A simple form on the Web page that a user fills out to describe a technical
problem can be immediately mailed to a tech support person, for example. Or, the PHP server can send
the Web site administrator an e-mail any time a Web page displays a fatal error. Complicated workflow
applications can be created, such as content management applications.

315

E-mailing with PHP

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 315

15 557440 Ch10.qxd 2/6/04 9:17 AM Page 316

11
User Logins, Profiles,
and Personalization

In this chapter, you learn to manipulate Web pages with user logins, profiles, and personalization
using PHP’s session and cookie functions. You create a useful login and personalization applica-
tion that you can use in conjunction with the applications you have created thus far.

Session and cookie functions are two of the most fundamental, important, and useful functions
you will encounter in the PHP programming language. Not convinced about the value of these
yet? Think about it this way: You wouldn’t want just anyone guessing where you have your
important files and messing with information to change your Web site in any way he or she
wanted, would you? Well, with htaccess, and better yet, PHP sessions, you can combat hackers
or the general public from “stumbling” onto your sensitive files and directories.

Specifically, we will be showing you how to:

❑ Restrict access to files/directories via htaccess

❑ Use PHP to accomplish the same function as htaccess, but with more control and
functionality

❑ Store user and admin information in a database to utilize database-driven logins

❑ Create a registration system with required and optional fields for users to sign up

❑ Take a quick look at cookies to keep login information between sessions

❑ Create a navigation system dependent on whether or not a user has logged in

The Easiest Way to Protect Your Files
Using htaccess is a simple and quick solution to restricting access to files or directory structures.
Some Web sites contain sensitive information that you don’t want the public to access. Or perhaps
you have an administration section where administrators can change the content of the public site,
such as in a news or upcoming events section; you don’t want just anybody to change that content.

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 317

In this section, you protect a folder so that when a user visits a page in that directory, a dialog box pops
up requiring that a username and password be entered.

Try It Out Creating htaccess and htpasswd Files
First of all, let’s take a look at your Apache configuration file, httpd.conf. The Linux example is
located at something similar to /usr/local/apache/conf, and the Windows example will be something
similar to: c:\FoxServ\Apache\conf.

Follow these steps:

1. Open the httpd.conf file and look for the following lines around line 270 or so. By default the
lines are likely to look like this and will reside in the <Directory /> section that contains your
Web root:

#
AllowOverride controls what directives may be placed in .htaccess
files.
It can be “All”, “None”, or any combination of the keywords:
Options FileInfo AuthConfig Limit
#
AllowOverride None
#

2. For htaccess capabilities, change the lines to look like this:

#
AllowOverride controls what directives may be placed in .htaccess files.
It can be “All”, “None”, or any combination of the keywords:
Options FileInfo AuthConfig Limit
#
AllowOverride AuthConfig
#

3. Create a text file named .htaccess in the directory that you wish to restrict access to. This file
will require only the following lines to function correctly:

AuthType Basic
AuthUserFile /usr/local/apache/htdocs/protected #or your windows path
AuthName “Restricted”
<LIMIT GET POST>
require valid-user
</LIMIT>

4. Now, when creating the password file and adding your first user, you need to separate the
installation based on your operating system selection. Create your password file in your main
login directory by completing these steps:

For Linux htaccess installation:

318

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 318

a. Go to your command prompt and type the following:

/usr/local/apache/bin -c /usr/local/apache/htdocs/protected john

Note: Use the location of your apache installation’s htpasswd command, if not located
in /usr/bin.

b. You will be prompted to enter john’s password; enter it as doe. You will then be
required to re-enter the password for confirmation. That’s it; your Linux htaccess instal-
lation is complete.

For Windows htaccess installation:

a. To run htpasswd, go to Start➪Run and type cmd to run commands from the command
prompt. The command prompt should look like Figure 11-1.

Figure 11-1

b. Navigate to the c:\FoxServ\Apache\bin directory (or wherever your htpasswd.exe
program resides), using the cd command and run htpasswd with the following syntax
at the prompt (>):

c:\>cd “FoxServ\Apache\bin”
c:\FoxServ\Apache\bin>htpasswd users john

c. At the prompt to enter john’s password, enter it as doe; you will then be required to re-
enter the password for confirmation. That’s it; your Windows htaccess installation is
complete.

5. Navigate to a file in your protected directory, and you should see a screen similar to Figure 11-2.

Assuming you enter the appropriate username and password, you will be allowed to view the page you
are requesting, along with any file or folder that resides there. However, if you fail to enter the appropri-
ate username and password three consecutive times, or press Cancel, you will see a screen similar to that
shown in Figure 11-3.

319

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 319

Figure 11-2

How It Works
When you request the page, Apache checks for .htaccess files in every folder from the Web site’s doc-
ument root all the way down to the file that you are requesting. Apache then opens the file and inter-
prets it. It does this by reading which directory to protect, according to your file path, and then by
reading to whom to allow access. We gave access to valid users only, as in the example of john, so no
anonymous users will be allowed access. Anonymous users will see the screen shown previously in
Figure 11-3.

Because no usernames or passwords are submitted with your initial request, Apache sends a message
back to the browser, requesting you to enter a username and password to access this section of the site.
Therefore, a dialog box is displayed, and you can submit the username and password by entering them
there. Once these are accepted, you will be allowed to view the site. Also, your Web browser will remem-
ber to automatically submit this username and password when accessing the particular folder and
throughout the directory tree for the rest of the browser session.

320

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 320

Figure 11-3

There are some problems and drawbacks to using htaccess:

❑ The dialog box that pops up is ugly.

❑ Your third-party hosting company may not allow the use of htaccess.

❑ It’s easier to use brute force attacks with htaccess than when you use program-driven login
authorization.

❑ It’s not easy to customize “on the fly” for a dynamic, user-driven Web site.

Those are just some of the drawbacks to htaccess. Luckily for you, you can use PHP to solve the access
problem to your Web-based files. You are likely to still have to use htaccess to protect files such as down-
loadable images, PDFs, Zip files, and other files that can’t contain PHP code.

321

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 321

Friendlier Logins Using PHP’s
Session and Cookie Functions

This section is not just for restricted access to certain PHP files; these functions are used to require that
users of your Web site be authorized before they are allowed to use the Web pages to their full functional-
ity. Keep in mind that this is really useful only when protecting sections of Web pages, not for protecting all
files and directories. (This will make more sense when we jump into the code.)

This form of authorization could be used in an administration area of a Web site where the administrator
can change content that is viewable by the public. Note that this can be used in conjunction with htac-
cess for higher security, if needed.

Try It Out Using PHP for Logins
Now let’s use some code within PHP itself to authorize the user’s username and password:

1. Open your favorite text editor.

2. Create a new PHP file, saving it as template.php. This file will be the template we’ll use to
illustrate how you protect a page.

3. Start off each Web page you wish to protect with this code:

<?php
include ‘auth.inc.php’;
?>
<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>This is the Template Page</h1>
</body>
</html>

The preceding template file is just an example of what you would do to protect a PHP page. In
a real working situation, you can replace everything between the opening and closing <body>
tags to protect any PHP page that you feel necessary.

This takes us to the authorization file, which is checking to see if the user has successfully
started a session by logging in. If not, the user is redirected to the login page.

4. Use the following code to create a page and save it as auth.inc.php.

<?php
session_start();
if ($_SESSION[‘logged’] != 1)
{
$redirect = $_SERVER[‘PHP_SELF’];
header(“Refresh: 5; URL=login.php?redirect=$redirect”);
echo “You are being redirected to the login page!
”;
echo “(If your browser doesn’t support this, click here)”;
die();
}
?>

322

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 322

5. Now that you have the template page and the authorization page done, let’s create the login page
that you use to create the sessions that allow you to gain access to your protected pages. Enter the
following code, which actually does the login authorization and the creation of the session for the
user once he or she has successfully provided the correct username and password.

<?php
session_start();
$_SESSION[‘logged’] = 0;

if (isset($_POST[‘submit’]))
{

if ($_POST[‘username’] == “wroxbooks” && $_POST[‘password’] == “aregreat”)
{
$_SESSION[‘logged’] = 1;
header (“Refresh: 5; URL=” . $_POST[‘redirect’] . “”);
echo “You are being redirected to your original page request!
”;
echo “(If your browser doesn’t support this, <a href=\”” .

$_POST[‘redirect’]. “\”>click here)”;
}
else
{
?>
<html>
<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
Invalid Username and/or Password

<form action=”login.php” method=”post”>
<input type=”hidden” name=”redirect” value=”<?php echo $_POST[‘redirect’];

?>”>
Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”submit” name=”submit” value=”Login”>
</form>
<?php
}

}
else
{
?>
<html>
<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
You must be logged in to view this page

<form action=”login.php” method=”post”>
<input type=”hidden” name=”redirect” value=”<?php echo $_GET[‘redirect’]; ?>”>
Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”submit” name=”submit” value=”Login”>
</form>
<?php

323

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 323

}
?>
</body>
</html>

This may seem to be a less-than-useful example, but it shows that you can protect pages so not just any
Joe Shmoe can gain access to them. In fact, this example would work just fine if you need to have just
one or two users and/or administrators share usernames and passwords.

Later in the chapter, we will show you how you can use PHP in conjunction with MySQL to create user-
driven login systems. We also show you how to allow multiple administrators, multiple usernames and
passwords, and privilege levels that can be managed with the MySQL database.

How It Works
Now that you have all the code typed in, you can navigate to the template.php page you created.
Because you haven’t logged in, the auth.inc.php file we included redirects you to the login.php page
that requires you to log in to view the initial page you requested.

Try inputting the incorrect information so you can see how the login page works. You will see a screen
similar to the one shown in Figure 11-4.

Figure 11-4

324

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 324

Input the correct information: wroxbooks for the username, and aregreat for the password. At this
point, you are redirected to the page you originally requested because you supplied the information cor-
rectly. You will see a screen similar to Figure 11-5.

Figure 11-5

This is a very useful way to protect your PHP files to limit use to logged-in users and administrators.
However, there are a couple of minor drawbacks that you will solve later when you integrate the
database-driven system:

❑ This is manageable only for a few users with login information.

❑ It’s somewhat labor intensive when the need to move to a user-driven database system arises.

Using Database-Driven Information
We will now show you what you can do with a database-driven Web site. Obviously, we will be using a
MySQL database as our preferred database, but keep in mind that PHP can be used with many other
databases as well.

325

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 325

We will first set up a couple of tables in our database. For this we will show you the table schema you
will need. We call our database registration and our tables admin and user_info. You can then go
ahead and create the tables as necessary using one of the methods you learned in previous chapters.

1. First of all, create an administration table schema called admin.

You won’t be using this table information until the last section of the chapter, but because you
are creating table schemas you may as well do it now. This is where you can keep track of your
administrators managing your system.

CREATE TABLE admin (
username varchar(50) NOT NULL,
password varchar(255) NOT NULL,
first_name varchar(50) NOT NULL,
last_name varchar(50) NOT NULL,
email varchar(50) NOT NULL,
admin_level int(2) NOT NULL,
id int(10) NOT NULL auto_increment,
PRIMARY KEY (id)

);

2. Create a table to store users and their information. Call this table user_info and create it with
the following schema:

CREATE TABLE user_info (
email varchar(50) NOT NULL,
username varchar(50) NOT NULL,
password varchar(255) NOT NULL,
first_name varchar(50) NOT NULL,
last_name varchar(50) NOT NULL,
city varchar(50) default NULL,
state varchar(50) default NULL,
hobbies varchar(255) default NULL,
id int(10) NOT NULL default ‘0’

);

3. Add a couple of administrators to your database, using your preferred method.

We will add two as an example; you can add as many as you wish. For this example, we will
use John Doe and Jane Doe. Keep in mind that we will be using these in all the examples we
create here:

INSERT INTO admin (username , password , first_name , last_name , email
, admin_level , id)
VALUES (
‘johndoe’, PASSWORD(‘jane’) , ‘John’, ‘Doe’, ‘john@johndoe.com’, ‘1’, ‘’
);

and

INSERT INTO admin (username , password , first_name , last_name , email
, admin_level , `id`)

VALUES (

326

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 326

‘janedoe’, PASSWORD(‘john’) , ‘Jane’, ‘Doe’, ‘jane@janedoe.com’, ‘2’, ‘’
);

We now have a couple of administrators set up in our admin table, so we can begin to create the registra-
tion portion of our PHP code to allow users to register and login and update their information or delete
their accounts if needed. We will, again, be using sessions to track our users, and we will also be using
some cookie information to keep persistent logins between sessions should the user want that option.

Try It Out Session Tracking with PHP and MySQL
In this section, you create a user login system. You will create it so that the user is required to input a
username, password, first name, last name, and e-mail address. The other fields will be optional.

1. First, create an index page that looks for login information similar to the previous example, but
don’t include an authorization page so that you can show different content based on whether
the user is logged in or not. This allows the user the chance to log in if he or she wishes to. Call
this page index.php, and use the following code to create it:

<?php
session_start();
if ($_SESSION[‘user_logged’] == “” || $_SESSION[‘user_password’] == “”)
{
include “unlogged_user.php”;
}
else
{
include “logged_user.php”;
}
?>

That page checks for whether a user is logged in or not.

2. Create unlogged_user.php and logged_user.php so you can have different content show up
depending on whether or not a user is logged in. This first page will be unlogged_user.php,
and will simply contain some information about the benefits registering provides and how to go
about registering:

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Welcome to the home page!</h1>
You are currently not logged into our system.

Once logged in, you will have access to your personal area, along with other user
information.

If you have already registered, click here to login,
or if you would like to create an account, click here to
register.
</body>
</html>

327

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 327

3. Next, create the page that tells a user he or she is logged in; then you can show links to the user’s
own personal area (which you create later) to allow him or her to update personal information, or
delete their account entirely. Call this one logged_user.php and use the following code:

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Welcome to the home page!</h1>
And thank you for logging into our system.

You may now click here
to go into your own personal information area, and
update or remove your information should you wish to do so.
</body>
</html>

4. Create a page called conn.inc.php to include in your pages for your MySQL connection
information:

<?php
$conn = mysql_connect(“localhost”, “wrox_user “, “wrox_pass”) or
die(mysql_error());
$db = mysql_select_db(“registration”) or die(mysql_error());
?>

5. Create the registration page, making sure you include the optional fields and that the username
chosen by the user registering isn’t the same as an existing username. Call it register.php (it’s
a lot of code all at once, but we explain it all later when we get this system together).

Should users not fill out some required field, or use an already registered username, we will
notify them, and keep what had previously been entered in the appropriate fields so they don’t
have to re-enter everything.

<?php
session_start();
include “conn.inc.php”;
?>
<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<?php
if ($_POST[‘submit’] == “Register”)
{

if ($_POST[‘username’] != “” && $_POST[‘password’] != “” &&
$_POST[‘first_name’] != “” && $_POST[‘last_name’] != “” &&

$_POST[‘email’] != “”)
{

$check_user = $_POST[‘username’];

$query = “SELECT username FROM user_info WHERE username =
‘$check_user’;”;

328

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 328

$result = mysql_query($query) or die(mysql_error());

if (mysql_num_rows($result) != 0)
{

?>
The Username, <?php echo $_POST[‘username’]

; ?>, is already in use, please choose another!
<form action=”register.php” method=”post”>
Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password” value=”<?php echo

$_POST[‘password’]; ?>”>

Email: <input type=”text” name=”email” value=”<?php echo

$_POST[‘email’]; ?>”>

First Name: <input type=”text” name=”first_name” value=”<?php echo

$_POST[‘first_name’]; ?>”>

Last Name: <input type=”text” name=”last_name” value=”<?php echo

$_POST[‘last_name’]; ?>”>

City: <input type=”text” name=”city” value=”<?php echo

$_POST[‘city’]; ?>”>

State: <input type=”text” name=”state” value=”<?php echo

$_POST[‘state’]; ?>”>

Hobbies/Interests: (choose at least one)

<select name=”hobbies[]” size=”10” multiple>

<option value=”Golfing”<?php if (in_array(“Golfing”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Golfing</option>

<option value=”Hunting”<?php if (in_array(“Hunting”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Hunting</option>

<option value=”Reading”<?php if (in_array(“Reading”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Reading</option>

<option value=”Dancing”<?php if (in_array(“Dancing”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Dancing</option>

<option value=”Internet”<?php if (in_array(“Internet”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Internet</option>

<option value=”Flying”<?php if (in_array(“Flying”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Flying</option>

<option value=”Traveling”<?php if (in_array(“Traveling”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Traveling</option>

<option value=”Exercising”<?php if (in_array(“Exercising”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Exercising</option>

<option value=”Computers”<?php if (in_array(“Computers”,
$_POST[‘hobbies’])) echo “ selected”; ?>>Computers</option>

<option value=”Other Than Listed”<?php if (in_array(“Other Than
Listed”, $_POST[‘hobbies’])) echo “ selected”; ?>>Other Than
Listed</option>

</select>

<input type=”submit” name=”submit” value=”Register”> <input

type=”reset” value=”Clear”>
</form>

<?php
}
else
{
$query = “INSERT INTO user_info(username, password, email, first_name,

last_name, city, state, hobbies) VALUES (‘“ . $_POST[‘username’] .

329

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 329

“‘, (password(‘“
. $_POST[‘password’] . “‘)), ‘“ . $_POST[‘email’] . “‘, ‘“ .
$_POST[‘first_name’] .
“‘, ‘“ . $_POST[‘last_name’] . “‘, ‘“ . $_POST[‘city’] . “‘, ‘“ .
$_POST[‘state’] .

“‘, ‘“ . implode(“, “, $_POST[‘hobbies’]) . “‘);”;
$result = mysql_query($query) or die(mysql_error());
$_SESSION[‘user_logged’] = $_POST[‘username’];
$_SESSION[‘user_password’] = $_POST[‘password’];

?>
Thank you, <?php echo $_POST[‘first_name’] . “, “ . $_POST[‘last_name’];

?> for registering!

Click here to continue.

<?php
}

}
else
{

?> The Username, Password, Email, First Name, and
Last Name fields are required!
<form action=”register.php” method=”post”>
Username: <input type=”text” name=”username” value=”<?php echo

$_POST[‘username’]; ?>”>

Password: <input type=”password” name=”password” value=”<?php echo
$_POST[‘password’]; ?>”>

Email: <input type=”text” name=”email” value=”<?php echo $_POST[‘email’];
?>”>

First Name: <input type=”text” name=”first_name” value=”<?php echo
$_POST[‘first_name’]; ?>”>

Last Name: <input type=”text” name=”last_name” value=”<?php echo
$_POST[‘last_name’]; ?>”>

City: <input type=”text” name=”city” value=”<?php echo $_POST[‘city’];
?>”>

State: <input type=”text” name=”state” value=”<?php echo $_POST[‘state’];
?>”>

Hobbies/Interests: (choose at least one)

<select name=”hobbies[]” size=”10” multiple>
<option value=”Golfing”<?php if (in_array(“Golfing”, $_POST[‘hobbies’]))

echo “ selected”; ?>>Golfing</option>
<option value=”Hunting”<?php if (in_array(“Hunting”, $_POST[‘hobbies’]))

echo “ selected”; ?>>Hunting</option>
<option value=”Reading”<?php if (in_array(“Reading”, $_POST[‘hobbies’]))

echo “ selected”; ?>>Reading</option>
<option value=”Dancing”<?php if (in_array(“Dancing”, $_POST[‘hobbies’]))

echo “ selected”; ?>>Dancing</option>
<option value=”Internet”<?php if (in_array(“Internet”,

$_POST[‘hobbies’]))
echo “ selected”; ?>>Internet</option>

<option value=”Flying”<?php if (in_array(“Flying”, $_POST[‘hobbies’]))
echo

“ selected”; ?>>Flying</option>
<option value=”Traveling”<?php if (in_array(“Traveling”,

$_POST[‘hobbies’])) echo “ selected”; ?>>Traveling</option>
<option value=”Exercising”<?php if (in_array(“Exercising”,

330

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 330

$_POST[‘hobbies’])) echo “ selected”; ?>>Exercising</option>
<option value=”Computers”<?php if (in_array(“Computers”,

$_POST[‘hobbies’])) echo “ selected”; ?>>Computers</option>
<option value=”Other Than Listed”<?php if (in_array(“Other Than Listed”,

$_POST[‘hobbies’])) echo “ selected”; ?>>Other Than Listed</option>
</select>

<input type=”submit” name=”submit” value=”Register”> <input

type=”reset” value=”Clear”>
</form>

<?php
}

}
else
{
?>
Welcome to the registration page!

The Username, Password, Email, First Name, and Last Name fields are required!
<form action=”register.php” method=”post”>
Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

Email: <input type=”text” name=”email”>

First Name: <input type=”text” name=”first_name”>

Last Name: <input type=”text” name=”last_name”>

City: <input type=”text” name=”city”>

State: <input type=”text” name=”state”>

Hobbies/Interests: (choose at least one)

<select name=”hobbies[]” size=”10” multiple>
<option value=”Golfing”>Golfing</option>
<option value=”Hunting”>Hunting</option>
<option value=”Reading”>Reading</option>
<option value=”Dancing”>Dancing</option>
<option value=”Internet”>Internet</option>
<option value=”Flying”>Flying</option>
<option value=”Traveling”>Traveling</option>
<option value=”Exercising”>Exercising</option>
<option value=”Computers”>Computers</option>
<option value=”Other Than Listed”>Other Than Listed</option>
</select>

<input type=”submit” name=”submit” value=”Register”> <input type=”reset”

value=”Clear”>
</form>
<?php
}
?>
</body>
</html>

Let’s recap quickly what you’ve done:

❑ You have an index page that checks whether or not a user is logged in.

❑ Based on that check, it either tells the user to log in or register to allow them access to their per-
sonal information area.

331

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 331

❑ You have the registration area covered, along with the login process, and are keeping them
tracked with their session information.

Now that you have accomplished all that, you can create the area where each user is allowed to change
his or her information or delete the account. Call this page user_personal.php, but first you will cre-
ate a slightly modified authorization page, which checks whether or not the user is logged in and, if he
or she is not, redirects the user to your also slightly modified login page:

1. Enter the first set of code and call it auth_user.inc.php:

<?
session_start();
if ($_SESSION[‘user_logged’] == “” || $_SESSION[‘user_password’] == “”)
{

$redirect = $_SERVER[‘PHP_SELF’];
header(“Refresh: 5; URL=user_login.php?redirect=$redirect”);
echo “You are currently not logged in, we are redirecting you, be

patient!
”;
echo “(If your browser doesn’t support this, click here)”;
die();

}
else {}
?>

2. Create the modified login page. Call this one user_login.php.

The modification is in the way that you check the username and password against usernames
and passwords stored in the MySQL database. Previously, you just hard-coded a username and
password in the code.

<?php
session_start();
include “conn.inc.php”;
if (isset($_POST[‘submit’]))
{

$query = “SELECT username, password FROM user_info WHERE username = ‘“ .
$_POST[‘username’] . “‘ AND password = (password(‘“ . $_POST[‘password’]
. “‘));”;

$result = mysql_query($query) or die(mysql_error());

if (mysql_num_rows($result) == 1)
{

$_SESSION[‘user_logged’] = $_POST[‘username’];
$_SESSION[‘user_password’] = $_POST[‘password’];
header (“Refresh: 5; URL=” . $_POST[‘redirect’] . “”);
echo “You are being redirected to your original page request!
”;
echo “(If your browser doesn’t support this, <a href=\”” .

$_POST[‘redirect’]. “\”>click here)”;
}
else
{

?>
<html>

332

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 332

<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
Invalid Username and/or Password

Not registered? Click here to register.

<form action=”user_login.php” method=”post”>
<input type=”hidden” name=”redirect” value=”<?php echo

$_POST[‘redirect’];
?>”>

Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”submit” name=”submit” value=”Login”>
</form>

<?
}

}
else
{
if ($_SERVER[‘HTTP_REFERER’] == “” || $_SERVER[‘HTTP_REFERER’] ==

“http://localhost/index.php”)
{
$redirect = “/index.php”;
}
else
{
$redirect = $_GET[‘redirect’];
}
?>

<html>
<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
Login below by supplying your username/password...

Or click here to register.

<form action=”user_login.php” method=”post”>
<input type=”hidden” name=”redirect” value=”<? echo $redirect; ?>”>
Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”submit” name=”submit” value=”Login”>
</form>
</body>
</html>

<?php
}
?>

3. Create the user_personal.php page with the following code:

<?php
session_start();
include “auth_user.inc.php”;
include “conn.inc.php”;
?>

333

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 333

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Welcome to your personal information area</h1>
Here you can update your personal information, or delete your account.

Your information as we currently have it is shown below:

Click here to return to the home page

<?php
$query = “SELECT * FROM user_info WHERE username = ‘“ . $_SESSION[‘user_logged’].
“‘
AND password = (password(‘“ . $_SESSION[‘user_password’] . “‘));”;

$result = mysql_query($query) or die(mysql_error());

$row = mysql_fetch_array($result);
?>
First Name: <?php echo $row[‘first_name’]; ?>

Last Name: <?php echo $row[‘last_name’]; ?>

City: <?php echo $row[‘city’]; ?>

State: <?php echo $row[‘state’]; ?>

Email: <?php echo $row[‘email’]; ?>

Hobbies/Interests: <?php echo $row[‘hobbies’]; ?>

Update Account |
Delete Account
</body>
</html>

You may have noticed that there are links in the preceding code to pages that you haven’t created yet.
Let’s do that now. One page will allow a logged-in user to update his or her account. The other will
allow the user to delete the account upon confirming that that is the intention.

1. Create the first page update_account.php with the following code:

<?php
session_start();
include “auth_user.inc.php”;
include “conn.inc.php”;
?>
<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Update Account Information</h1>
Here you can update your account information for viewing in your profile.

<?php
if ($_POST[‘submit’] == “Update”)
{

$query_update = “UPDATE user_info SET email = ‘“ . $_POST[‘email’] . “‘, city
= ‘“ . $_POST[‘city’] . “‘, state = ‘“ . $_POST[‘state’] . “‘, hobbies =
‘“ . implode(“, “, $_POST[‘hobbies’]) . “‘ WHERE username = ‘“ .
$_SESSION[‘user_logged’]. “‘ AND password = (password(‘“ .
$_SESSION[‘user_password’] . “‘;”;

334

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 334

$result_update = mysql_query($query_update) or die(mysql_error());

$query = “SELECT * FROM user_info WHERE username = ‘“ .
$_SESSION[‘user_logged’]. “‘ AND password = (password(‘“ .
$_SESSION[‘user_password’] . “‘));”;

$result = mysql_query($query) or die(mysql_error());

$row = mysql_fetch_array($result);
$hobbies = explode(“, “, $row[‘hobbies’])

?>
Your account information has been updated.

Click here to return to your account.
<form action=”update_account.php” method=”post”>
Email: <input type=”text” name=”email” value=”<?php echo $row[‘email’];

?>”>

City: <input type=”text” name=”city” value=”<?php echo $row[‘city’]; ?>”>

State: <input type=”text” name=”state” value=”<?php echo $row[‘state’];

?>”>

Hobbies/Interests: (choose at least one)

<select name=”hobbies[]” size=”10” multiple>
<option value=”Golfing”<?php if (in_array(“Golfing”, $hobbies)) echo “

selected”;
?>>Golfing</option>

<option value=”Hunting”<?php if (in_array(“Hunting”, $hobbies)) echo “
selected”;

?>>Hunting</option>
<option value=”Reading”<?php if (in_array(“Reading”, $hobbies)) echo “

selected”;
?>>Reading</option>

<option value=”Dancing”<?php if (in_array(“Dancing”, $hobbies)) echo “
selected”;

?>>Dancing</option>
<option value=”Internet”<?php if (in_array(“Internet”, $hobbies)) echo “

selected”; ?>>Internet</option>
<option value=”Flying”<?php if (in_array(“Flying”, $hobbies)) echo “

selected”;
?>>Flying</option>

<option value=”Traveling”<?php if (in_array(“Traveling”, $hobbies)) echo “
selected”; ?>>Traveling</option>

<option value=”Exercising”<?php if (in_array(“Exercising”, $hobbies)) echo “
selected”; ?>>Exercising</option>

<option value=”Computers”<?php if (in_array(“Computers”, $hobbies)) echo “
selected”; ?>>Computers</option>

<option value=”Other Than Listed”<?php if (in_array(“Other Than Listed”,
$hobbies)) echo “ selected”; ?>>Other Than Listed</option>

</select>

<input type=”submit” name=”submit” value=”Update”> <input type=”button”

value=”Cancel” onclick=”history.go(-1);”>
</form>

<?php
}
else
{

$query = “SELECT * FROM user_info WHERE username = ‘“ .

335

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 335

$_SESSION[‘user_logged’]. “‘ AND password = (password(‘“ .
$_SESSION[‘user_password’] . “‘));”;

$result = mysql_query($query) or die(mysql_error());

$row = mysql_fetch_array($result);
$hobbies = explode(“, “, $row[‘hobbies’])

?>
<form action=”update_account.php” method=”post”>
Email: <input type=”text” name=”email” value=”<?php echo $row[‘email’];

?>”>

City: <input type=”text” name=”city” value=”<?php echo $row[‘city’]; ?>”>

State: <input type=”text” name=”state” value=”<?php echo $row[‘state’];

?>”>

Hobbies/Interests: (choose at least one)

<select name=”hobbies[]” size=”10” multiple>
<option value=”Golfing”<?php if (in_array(“Golfing”, $hobbies)) echo “

selected”;
?>>Golfing</option>

<option value=”Hunting”<?php if (in_array(“Hunting”, $hobbies)) echo “
selected”;
?>>Hunting</option>

<option value=”Reading”<?php if (in_array(“Reading”, $hobbies)) echo “
selected”;
?>>Reading</option>

<option value=”Dancing”<?php if (in_array(“Dancing”, $hobbies)) echo “
selected”;
?>>Dancing</option>

<option value=”Internet”<?php if (in_array(“Internet”, $hobbies)) echo “
selected”; ?>>Internet</option>

<option value=”Flying”<?php if (in_array(“Flying”, $hobbies)) echo “
selected”;
?>>Flying</option>

<option value=”Traveling”<?php if (in_array(“Traveling”, $hobbies)) echo “
selected”; ?>>Traveling</option>

<option value=”Exercising”<?php if (in_array(“Exercising”, $hobbies)) echo “
selected”; ?>>Exercising</option>

<option value=”Computers”<?php if (in_array(“Computers”, $hobbies)) echo “
selected”; ?>>Computers</option>

<option value=”Other Than Listed”<?php if (in_array(“Other Than Listed”
, $hobbies)) echo “ selected”; ?>>Other Than Listed</option>

</select>

<input type=”submit” name=”submit” value=”Update”> <input type=”button”

value=”Cancel” onclick=”history.go(-1);”>
</form>

<?php
}
?>
</body>
</html>

2. Create the next page (call it delete_account.php) to allow users to delete their accounts,
using the following code:

<?php
session_start();
include “auth_user.inc.php”;

336

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 336

include “conn.inc.php”;

if ($_POST[‘submit’] == “Yes”)
{

$query_delete = “DELETE FROM user_info WHERE username = ‘“ .
$_SESSION[‘user_logged’]. “‘ AND password = (password(‘“ .
$_SESSION[‘user_password’] . “‘));”;

$result_delete = mysql_query($query_delete) or die(mysql_error());

$_SESSION[‘user_logged’] = “”;
$_SESSION[‘user_password’] = “”;

header(“Refresh: 5; URL=index.php”);
echo “Your account has been deleted! You are being sent to the home

page!
”;
echo “(If your browser doesn’t support this, click

here)”;
die();

}
else
{
?>
<html>
<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
<body>
Are you sure you want to delete your account?

There is no way to retrieve your account once you confirm!

<form action=”delete_account.php” method=”post”>
<input type=”submit” name=”submit” value=”Yes”> <input type=”button” value=”

No “ onclick=”history.go(-1);”>
</form>
</body>
</html>
<?php
}
?>

That’s all the code for now. It was a lot to absorb all at once, but it will make more sense when we
explain what we are doing in the next section.

How It Works
Well, let’s imagine new users coming to this section of the site for the first time. They navigate to the
index.php page and initially see a screen similar to the one shown in Figure 11-6.

The users obviously haven’t logged in yet, so they are not allowed to do anything else here. They are
given the choice to log in if they have registered before, or they can register to activate an account.

Should the users decide to log in, they will be presented with the same options as when you created the
previous login pages. The page should look like the one in Figure 11-7.

337

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 337

Figure 11-6

Users will be required to supply the usernames and passwords they chose for themselves. The only dif-
ference between this login portion and the previous one you created is that the authorization is coming
from a MySQL database, rather than hard coding of the authorization into the pages themselves. Should
a user not enter the information correctly, he or she will be asked for the information again, and have the
option to register from that page as well.

Should the user choose to register, he or she will see a page similar to the one in Figure 11-8.

Now the user can fill in information and register to be a user of this site. Once the user fills in the infor-
mation and hits the register button, the code checks whether or not the required fields have been filled
out. If one (or more) of the required fields is not filled out, the form appears again with the information
entered still in the form, and an error message stating the problem. The page will look similar to the one
shown in Figure 11-9.

338

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 338

Figure 11-7

Figure 11-8

339

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 339

Figure 11-9

A user can now fill in the missing information and continue. A check is performed after the required
fields are satisfied to see if the username chosen is already taken. Should that be the case, the form again
retains any information that has been filled out, and a different error message appears on the screen stat-
ing that the username is taken. The username field is erased so users know that they need to choose
another username. The screen will look like that in Figure 11-10.

Now the user can choose another username and complete the registration process. Once the user
chooses a username that is not already taken, the registration is complete. Once the registration is com-
plete, the user is automatically logged in for this session using the username and password as the ses-
sion values, and he or she will be redirected to the home page. After being redirected, the user’s screen
should look similar to Figure 11-11.

Now the logged-in users are able to navigate to their own personal information pages where they can
update their information at any time and are also allowed to delete their account from this location.

340

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 340

Figure 11-10

Figure 11-11

341

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 341

The beauty of sessions and keeping track of users is that you don’t have to worry about passing infor-
mation about the users with form data, or passing it through the query string or address bar. All the data
is stored temporarily on the server where the Web site resides. You also don’t have to worry about peo-
ple trying to put parameters into the address bar to fake the identity of another user. The session data is
unavailable to users on the site, so only if they had access to the server itself would they be able to obtain
the user-supplied data.

Now we will look at the pages where the user’s information is displayed, and where a user can update
or delete his or her account. The display page simply displays the previously entered user information.
The update page is also straightforward: It shows a form will the user’s previously entered data and
gives the user the ability to update it if he or she wishes, or simply cancel the update and return to the
previous screen. The delete page merely asks if the user is sure he or she wants to delete the account and
gives the option of returning to the previous screen. The user’s information display page should look
something like the one shown in Figure 11-12.

When users choose to update their accounts, they will see a screen similar to Figure 11-13.

Figure 11-12

342

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 342

Figure 11-13

Should they update their information, they will be told that the information was indeed updated and
then they will be allowed to update the information again if they wish (for example if on review they
realize they input something incorrectly). That page will look like the one in Figure 11-14.

Finally, the delete page looks similar to the one shown in Figure 11-15. This appears once users choose
the Delete Account link on the display page. From here, if users choose Yes, their account is deleted,
their logged in session will be destroyed, and they will be redirected to the index page.

That’s it for the user portion of the registration system. We show you an administration section later in
the chapter, where you can allow certain levels of admins to have different privileges from others. But
now, let’s move on to a quick cookie example, which you can implement into the previous registration
system.

343

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 343

Figure 11-14

Figure 11-15

344

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 344

Try It Out Cookie Tracking with PHP
Here’s a quick example of how to use a cookie in a page to see if the users have a corresponding cookie
stored on their machines. Then, if you wish, you can implement this into your login system to allow per-
sistent logins between single browser sessions. We will be supplying the cookie’s value through the
code, but if you were to implement it, you could use the session variable in the cookie value portion. We
use five small pages for this example. We will give you all of them and then explain how they work.

1. Create the first file, setcookie.php:

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>This is the Set Cookie Page</h1>
Click here to set your cookies.
</body>
</html>

2. Create the second file, setcookie_un.php:

<?php
$username = “jeremys”;
setcookie(‘username’, $username, time() + 60 * 60 * 24 * 30); // sets cookie for 30
days
header(“Location: setcookie_pw.php”);
?>

3. Create the third file, setcookie_pw.php:

<?php
$password = “apache”;
setcookie(‘password’, $password, time() + 60 * 60 * 24 * 30); // sets cookie for 30
days
header(“Location: cookies_set.php”);
?>

4. Create the fourth file, cookies_set.php:

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>This is the Set Cookie Page</h1>
Your cookies have been set.

Click here to test your cookies.
</body>
</html>

345

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 345

5. Finally, create the fifth file, testcookie.php:

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>This is the Test Cookie Page</h1>
<?php
if ($_COOKIE[‘username’] == “” || $_COOKIE[‘password’] == “”)
{
?>
No cookies were set.

Click here to set your cookies.
<?php
}
else
{
?>
Your cookies were set:

Username cookie value: <?php echo $_COOKIE[‘username’]; ?>

Password cookie value: <?php echo $_COOKIE[‘password’]; ?>

<?php
}
?>
</body>
</html>

How It Works
We ran through the previous cookie example to show you how you can keep persistent logins between
single browser sessions. As you may have noticed, some of the pages are just display or navigation
pages. For that reason, we won’t explain those. We will focus instead on setcookie_un.php,
setcookie_pw.php, and testcookie.php.

The setcookie_un.php page does just what the name says: It sets the cookie for the username, which is
just hard coded for this example. It then uses a header redirect to send you to the next page.

That next page is setcookie_pw.php, which does the same as setcookie_un.php, except that it is set-
ting the cookie for the password. Then you’re redirected to a simple display page that tells you your
cookies have been set.

You can then navigate to testcookie.php. This page checks to see if the cookie values are valid. If they
are not, it says, “No cookies were set,” and you can try to set the cookies again. If you are successful in
your login, the screen will look like the one in Figure 11-16.

Should you need to delete or end a cookie, simply run some code (such as the code that follows) to end
the cookie from the user’s browser.

setcookie(‘username’, “”, time() - 3600);

346

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 346

Figure 11-16

This sets the username cookie for one hour ago and sets the username value to an empty string, thereby
making the username cookie unavailable to the Web site the user is logged into.

Now that you have some cookie knowledge, you can use it in the login system if you want. Although
cookies are a good way to keep persistent logins between browser sessions, they can be altered and/or
spoofed by a user because the cookie is stored on the client machine. That is generally why many sys-
tems house their main login information with sessions and use cookies as a subfeature only.

Now let’s move on to the last portion of this chapter. We will show you how logged-in admins can
change information and delete information based on their access privileges. You may notice similarities
between this system and the user login system and you’d be right. Remember that the more you prac-
tice, the easier this will be when you are writing systems like this for your clients.

347

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 347

Try It Out Administration Section
In this section, administrators are required to log in before they can view the users signed up in the user
registration database. Once they are logged in, only certain privileged admins will be allowed to per-
form certain operations. For this example, admins with a privilege level of 1 are allowed to update user
accounts and delete user accounts. Admins with a privilege level of 2 are allowed to update user infor-
mation; they will not be allowed to delete a user’s account. This would be useful if a user was, for some
reason, unable to log into the site and the administrator needed to reset passwords, change usernames,
and so on, but you don’t want just any administrator to be allowed to do everything the main adminis-
trator does.

The code for all the pages follows. Key the pages in, and save them in a folder called admin in your Web
directory. We will explain how they work after showing you the code.

1. Create the first file, conn.inc.php:

<?php
$conn = mysql_connect(“localhost”, “jcstolz”, “r3minyL”) or die(mysql_error());
$db = mysql_select_db(“registration”) or die(mysql_error());
?>

2. Create the second file, auth_admin.inc.php:

<?php
session_start();
if ($_SESSION[‘admin_logged’] == “” || $_SESSION[‘admin_password’] == “”)
{

$redirect = $_SERVER[‘PHP_SELF’];
header(“Refresh: 5; URL=admin_login.php?redirect=$redirect”);
echo “You are currently not logged in, we are redirecting you, be

patient!
”;
echo “(If your browser doesn’t support this, click here)”;
die();

}
else {}
?>

3. Create the third file, saving it as index.php:

<?php
session_start();
if ($_SESSION[‘admin_logged’] == “” || $_SESSION[‘admin_password’] == “”)
{
include “unlogged_admin.php”;
}
else
{
include “logged_admin.php”;
}
?>

348

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 348

4. Create the fourth file, logged_admin.php:

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Welcome to the Admin Area!</h1>
You are currently logged in.

Click here to access your administrator tools.
</body>
</html>

5. Create and save the fifth file as unlogged_admin.php:

<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Welcome to the Admin Area!</h1>
You are currently not logged in.

Once logged in, you will have access to your administrator tools.

Click here to login.
</body>
</html>

6. Create the sixth file, admin_login.php:

<?php
session_start();
include “conn.inc.php”;
if (isset($_POST[‘submit’]))
{

$query = “SELECT username, password, admin_level FROM admin WHERE username =
‘“ . $_POST[‘username’] . “‘ AND password = (password(‘“ . $_POST[‘password’] .
“‘));”;

$result = mysql_query($query) or die(mysql_error());

$row = mysql_fetch_array($result);
$admin_level = $row[‘admin_level’];

if (mysql_num_rows($result) == 1)
{

$_SESSION[‘admin_logged’] = $_POST[‘username’];
$_SESSION[‘admin_password’] = $_POST[‘password’];
$_SESSION[‘admin_level’] = $row[‘admin_level’];
header (“Refresh: 5; URL=” . $_POST[‘redirect’] . “”);
echo “You are being redirected to your original page request!
”;
echo “(If your browser doesn’t support this, <a href=\”” .

$_POST[‘redirect’]. “\”>click here)”;
}

349

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 349

else
{

?>
<html>
<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
Invalid Username and/or Password

<form action=”admin_login.php” method=”post”>
<input type=”hidden” name=”redirect” value=”<?php echo

$_POST[‘redirect’];
?>”>

Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”submit” name=”submit” value=”Login”>
</form>

<?php
}

}
else
{

if ($_SERVER[‘HTTP_REFERER’] == “” || $_SERVER[‘HTTP_REFERER’] ==
“http://localhost/admin/index.php” || $_SERVER[‘HTTP_REFERER’] ==
“http://localhost/admin/”)

{
$redirect = “/admin/index.php”;

}
else
{

$redirect = $_GET[‘redirect’];
}

?>
<html>
<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
Login below by supplying your username/password...

<form action=”admin_login.php” method=”post”>
<input type=”hidden” name=”redirect” value=”<?php echo $redirect; ?>”>
Username: <input type=”text” name=”username”>

Password: <input type=”password” name=”password”>

<input type=”submit” name=”submit” value=”Login”>
</form>
</body>
</html>

<?php
}
?>

7. Create the seventh file and save it as admin_area.php:

<?php
session_start();
include “auth_admin.inc.php”;

350

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 350

include “conn.inc.php”;
?>
<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Admin Area</h1>
Below is a list of users and your available administrator privileges.

<?php
if ($_SESSION[‘admin_level’] == “1”)
{
$query = “SELECT first_name, last_name, id FROM user_info ORDER BY last_name;”;
$result = mysql_query($query) or die(mysql_error());

while ($row = mysql_fetch_array($result))
{
echo $row[‘first_name’]; ?> <?php echo $row[‘last_name’];
?>
 <a href=”update_user.php?id=<?php echo $row[‘id’]; ?>”>Update User
|
<a href=”delete_user.php?id=<?php echo $row[‘id’]; ?>”>Delete User

<?php
}
}
else
{
$query = “SELECT first_name, last_name, id FROM user_info ORDER BY last_name;”;
$result = mysql_query($query) or die(mysql_error());

while ($row = mysql_fetch_array($result))
{
echo $row[‘first_name’]; ?> <?php echo $row[‘last_name’];
?>
 <a href=”update_user.php?id=<?php echo $row[‘id’]; ?>”>Update
User

<?php
}
}
?>
</body>
</html>

8. Create the eighth file, update_user.php:

<?php
session_start();
include “auth_admin.inc.php”;
include “conn.inc.php”;
?>
<html>
<head>

<title>Beginning PHP, Apache, MySQL Web Development</title>
</head>
<body>
<h1>Update User Information</h1>

351

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 351

<?php
if ($_POST[‘submit’] == “Update”)
{

$query_update = “UPDATE user_info SET username = ‘“ . $_POST[‘username’] . “‘,
password = (password(‘“ . $_POST[‘password’] . “‘)), first_name = ‘“ .

$_POST[‘first_name’] . “‘, last_name = ‘“ . $_POST[‘last_name’] . “‘,
email = ‘“ . $_POST[‘email’] . “‘, city = ‘“ . $_POST[‘city’] . “‘,
state = ‘“ . $_POST[‘state’] . “‘, hobbies = ‘“ . implode(“, “,
$_POST[‘hobbies’]) .
“‘ WHERE id = ‘“ . $_POST[‘id’] . “‘;”;

$result_update = mysql_query($query_update) or die(mysql_error());

$query = “SELECT * FROM user_info WHERE id = ‘“ . $_POST[‘id’] . “‘;”;
$result = mysql_query($query) or die(mysql_error());

$row = mysql_fetch_array($result);
$hobbies = explode(“, “, $row[‘hobbies’])

?>
User information has been updated.

Click here to return to the admin area.
<form action=”update_user.php” method=”post”>
<input type=”hidden” name=”id” value=”<?php echo $_POST[‘id’]; ?>”>
Username: <input type=”text” name=”username” value=”<?php echo

$row[‘username’];
?>”>

Password: <input type=”password” name=”password” value=””> Not displayed

First Name: <input type=”text” name=”first_name” value=”<?php echo

$row[‘first_name’]; ?>”>

Last Name: <input type=”text” name=”last_name” value=”<?php echo

$row[‘last_name’]; ?>”>

Email: <input type=”text” name=”email” value=”<?php echo $row[‘email’];

?>”>

City: <input type=”text” name=”city” value=”<?php echo $row[‘city’]; ?>”>

State: <input type=”text” name=”state” value=”<?php echo $row[‘state’];

?>”>

Hobbies/Interests: (choose at least one)

<select name=”hobbies[]” size=”10” multiple>
<option value=”Golfing”<?php if (in_array(“Golfing”, $hobbies)) echo “

selected”;
?>>Golfing</option>

<option value=”Hunting”<?php if (in_array(“Hunting”, $hobbies)) echo “
selected”;

?>>Hunting</option>
<option value=”Reading”<?php if (in_array(“Reading”, $hobbies)) echo “

selected”;
?>>Reading</option>

<option value=”Dancing”<?php if (in_array(“Dancing”, $hobbies)) echo “
selected”;

?>>Dancing</option>
<option value=”Internet”<?php if (in_array(“Internet”, $hobbies)) echo “

selected”; ?>>Internet</option>
<option value=”Flying”<?php if (in_array(“Flying”, $hobbies)) echo “

selected”;
?>>Flying</option>

352

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 352

<option value=”Traveling”<?php if (in_array(“Traveling”, $hobbies)) echo “
selected”; ?>>Traveling</option>

<option value=”Exercising”<?php if (in_array(“Exercising”, $hobbies)) echo “
selected”; ?>>Exercising</option>

<option value=”Computers”<?php if (in_array(“Computers”, $hobbies)) echo “
selected”; ?>>Computers</option>

<option value=”Other Than Listed”<?php if (in_array(“Other Than Listed”,
$hobbies)) echo “ selected”; ?>>Other Than Listed</option>

</select>

<input type=”submit” name=”submit” value=”Update”>
</form>

<?php
}
else
{

$query = “SELECT * FROM user_info WHERE id = ‘“ . $_GET[‘id’] . “‘;”;
$result = mysql_query($query) or die(mysql_error());

$row = mysql_fetch_array($result);
$hobbies = explode(“, “, $row[‘hobbies’])

?>
<form action=”update_user.php” method=”post”>
<input type=”hidden” name=”id” value=”<?php echo $_GET[‘id’]; ?>”>
Username: <input type=”text” name=”username” value=”<?php echo

$row[‘username’];
?>”>

Password: <input type=”password” name=”password” value=””> Not displayed

First Name: <input type=”text” name=”first_name” value=”<?php Echo

$row[‘first_name’]; ?>”>

Last Name: <input type=”text” name=”last_name” value=”<?php Echo

$row[‘last_name’]; ?>”>

Email: <input type=”text” name=”email” value=”<?php echo $row[‘email’];

?>”>

City: <input type=”text” name=”city” value=”<?php echo $row[‘city’]; ?>”>

State: <input type=”text” name=”state” value=”<?php echo $row[‘state’];

?>”>

Hobbies/Interests: (choose at least one)

<select name=”hobbies[]” size=”10” multiple>
<option value=”Golfing”<?php if (in_array(“Golfing”, $hobbies)) echo “

selected”;
?>>Golfing</option>

<option value=”Hunting”<?php if (in_array(“Hunting”, $hobbies)) echo “
selected”;

?>>Hunting</option>
<option value=”Reading”<?php if (in_array(“Reading”, $hobbies)) echo “

selected”;
?>>Reading</option>

<option value=”Dancing”<?php if (in_array(“Dancing”, $hobbies)) echo “
selected”;

?>>Dancing</option>
<option value=”Internet”<?php if (in_array(“Internet”, $hobbies)) echo “

selected”; ?>>Internet</option>
<option value=”Flying”<?php if (in_array(“Flying”, $hobbies)) echo “

selected”;

353

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 353

?>>Flying</option>
<option value=”Traveling”<?php if (in_array(“Traveling”, $hobbies)) echo “

selected”; ?>>Traveling</option>
<option value=”Exercising”<?php if (in_array(“Exercising”, $hobbies)) echo “

selected”; ?>>Exercising</option>
<option value=”Computers”<?php if (in_array(“Computers”, $hobbies)) echo “

selected”; ?>>Computers</option>
<option value=”Other Than Listed”<?php if (in_array(“Other Than Listed”,

$hobbies)) echo “ selected”; ?>>Other Than Listed</option>
</select>

<input type=”submit” name=”submit” value=”Update”> <input type=”button”

value=”Cancel” onclick=”history.go(-1);”>
</form>

<?php
}
?>
</body>
</html>

9. Finally, create the ninth file, delete_user.php:

<?php
session_start();
include “auth_admin.inc.php”;
include “conn.inc.php”;
if ($_SESSION[‘admin_level’] == “1”)
{

if ($_POST[‘submit’] == “Yes”)
{

$query_delete = “DELETE FROM user_info WHERE id = ‘“ . $_POST[‘id’] .
“‘;”;

$result_delete = mysql_query($query_delete) or die(mysql_error());

$_SESSION[‘user_logged’] = “”;
$_SESSION[‘user_password’] = “”;

header(“Refresh: 5; URL=admin_area.php”);
echo “Account has been deleted! You are being sent to the admin

area!
”;
echo “(If your browser doesn’t support this, click here)”;
die();

}
else
{
?>

<html>
<head>
<title>Beginning PHP, Apache, MySQL Web Development</title>
<body>
<h1>Admin Area</h1>
Are you sure you want to delete this user’s account?

There is no way to retrieve your account once you confirm!

354

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 354

<form action=”delete_user.php” method=”post”>
<input type=”hidden” name=”id” value=”<?php echo $_GET[‘id’]; ?>”>
<input type=”submit” name=”submit” value=”Yes”> <input

type=”button” value=” No “ onclick=”history.go(-1);”>
</form>
</body>
</html>

<?php
}

}
else
{
?>
You don’t have a high enough privilege to delete a user.

Click here to go back.
<?php
}
?>
</body>
</html>

How It Works
Now we’ll explain how a typical run through with an admin (we’ll call him Joe) works. Some of the
pages you keyed in don’t really need explaining so we won’t discuss those.

When our administrator goes to the admin area, Joe is told whether or not he is logged in. If he is, he can
go to his personal administration area where he is able to do whatever he is allowed to do.

The authorization is the same as the previous example so you can refer to previous figures for examples
of how those pages look. We will show you what screens look like when administrators with different
levels log in and go to the admin area.

You keyed in all the code needed to do every aspect of the admin section, but this functionality is very
similar to the update and delete aspects of the user section so we won’t cover those.

When an admin with a privilege level of 2 logs in, the screen should look like the one in Figure 11-17.

Now notice in Figure 11-17 that the admin logged in here is able to update the user but is not allowed to
delete the user because we did a check with the first if statement to see what the admin’s level is.
Should Joe log in with a level of 1, he would see something similar to Figure 11-18.

Depending on what link he chooses and whether he has a high enough admin level, the admin will be
able to update or delete the user’s account. To guard against an admin of lower level trying to navigate
to the delete page and supply a user ID through the query string, we inserted a line of code that checks
the admin level and notifies the admin that he or she doesn’t have privileges to delete a user’s account.
We then provide a link back to the admin area.

Now that you have learned how to use database-driven information with an administration section, you
should be on your way to creating login systems for your own personal site or for your clients.

355

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 355

Figure 11-17

Figure 11-18

356

Chapter 11

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 356

Summary
By now, you’ve got a good understanding of the power of PHP and its session and cookie functions,
along with MySQL and database-driven information. With these two powerful programs, along with
Apache, you have some great tools to further your Web development skills. Just think about the possibil-
ities you can explore with all you learned in this chapter. You can:

❑ Restrict access to files/directories via htaccess.

❑ Use PHP to accomplish the same as htaccess but with more control and functionality.

❑ Store user and admin information in a database to utilize database-driven logins.

❑ Create a registration system for users to sign up with the required and optional fields.

❑ Use cookies to retain login information between sessions.

❑ Create a navigation system dependent on whether or not a user has logged in.

357

Using Logins, Profiles, and Personalization

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 357

16 557440 Ch11.qxd 2/6/04 9:17 AM Page 358

12
Building a Content

Management System

Whatever the reason, people these days seem to get bored easily. One of your jobs as the Web site
administrator is not only to figure out how to get as many people to visit your site as possible but
how to keep them there and keep them coming back.

There are many things you can focus on to get the masses to your site, such as word of mouth,
advertising, and search engines. To keep your users at your site, the experts give plenty of hints,
such as making your site easy to navigate, making sure your pages load quickly, and giving the
user a personal experience. Getting your users to return, however, is how you keep your site going
over time.

Getting Your Users to Return
Take a moment to think about all the sites you return to. You know . . . the ones you have saved in
your bookmark list in your browser. With the exception of sites you had to visit such as those in
the “research” folder, what do most of those sites have in common?

Most likely, each site periodically has new information. You might visit a news site each day or
look up the weather in your area. Perhaps you are interested in your daily horoscope, or maybe
you belong to an online message board and would like to read new posts. In each case, the content
gets updated on a regular basis—sometimes daily, sometimes weekly, and sometimes even hourly.
Can you imagine how much work the Web site developers must have to do to update the content
every day?

Actually, if the site is designed well, the designer shouldn’t have to enter any content.

Content
According to the Merriam-Webster dictionary, the term “content” refers to the “events, physical
detail, and information in a work of art.”

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 359

Wow . . . “a work of art.” That might be stretching it a little bit, but your Web site is certainly a collection
of events, details, and information. In other words, your site contains lots of content. You don’t want to
have to maintain all that content, do you? It would be very nice to offload some of that work to others.

In fact, all a Web site developer should ever have to do is maintain the site design itself (update some
HTML, change a background color, fix a bug in the PHP code, for example). The content should be com-
pletely separate from the design of the site, and should be maintained by other people. Because the con-
tent is separate from the design, those content people don’t have to know anything about Web site
design! But once you have your content separated, you need to figure out how to manage it.

Management
Assuming you have a lot of content, entering it into your site will most likely take a lot of work. What
you need to do is come up with a way to organize it, categorize it, and push the content to your Web site.
You will need a number of people, each assigned a certain role, working together to create the content
and mold it into the appropriate form for presentation on the Web site.

Of course, you want this process to be efficient, and you definitely need to have the appropriate tools to
the do the job.

System
Chapter 9 showed you how to create your own databases and tables and how to create Web pages used
to insert, delete, update, and retrieve the information in those tables. In Chapter 11, you learned how to
authenticate and recognize your users by making them log in to your Web site. Armed with this knowl-
edge, we could create a system of Web pages designed to allow users to create new content (authors),
edit that content (editors), and publish it. By assigning users to certain roles, you can manage who has
access to certain functions within the site.

Putting It All Together
So, it seems that we need a group of Web site pages and tables, and an organized set of rules, that will give
us the means to gather information, format it, and present it to the world for its enjoyment. In other words,
we need a system in place to allow us to manage our Web site content (separately from the site design).

We need a Content Management System (or CMS, as we’ll refer to it from now on).

There are many degrees of content management. On some sites, this might simply refer to a message
board, where users sign up to post messages to each other about their favorite color of lint. Another site
might have reporters in the field writing news stories and sending them in to be published online. Yet
another site might not only allow users to update content, but will allow administrators to change the
layout of the site, including colors and images.

As you have no doubt figured out, the term CMS refers not only to the application used to enter content
but to the people responsible for entering content, and to the rules they must follow. Without proper
rules, and without the people to make it happen, no CMS application in the world is going to help you.

It’s up to you to find the people. We’ll help you establish the rules. Are you ready? Good, let’s get
started.

360

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 360

Getting Star ted
Typically, this is where we throw you into a “Try It Out” section and have you enter code. We’ll get to that
shortly. First, we want to let you know that this is a relatively large application, larger than any you have
done so far in this book. If you don’t want to type it all in, that’s not a problem—just go to the Web site
and download it. Just make sure you go through the “How It Works” section to learn and understand the
important concepts. You can download the code from here:

www.wrox.com

The CMS application you are going to build will allow registered users to post articles. Those articles
will be labeled “pending” until a user with the proper permissions publishes the article. Once it’s pub-
lished, it will show up as the newest article on the home page. Unregistered users will be able to read
articles but will not be able to post new ones.

Registered users will also be able to post comments about an article. When a visitor views a full article,
all comments will be displayed below it. Sound simple? We’re going to do it with about 20 PHP pages.
That may sound like a lot, but it’s fairly typical of a standard Web application such as this. There are
pages for display (index, admin, pending articles, article review, and so on), editing (compose, user
account, control panel), and transaction files (for users and articles). There are also some files used as
includes (such as header and footer). Don’t worry—some are only a few lines long. The whole applica-
tion contains around 1,000 lines of code, which is pretty short by many application standards.

Let’s do some coding.

Try It Out The Content Management System Application
As we mentioned, there are around 20 PHP pages. Enter each of these files in your favorite PHP editor,
and save them with the given filename. We’re going to give you the filename of each one, and introduc-
tions whenever necessary. Make sure all files are saved in the same directory on your Web server. Ours
are saved in a directory called “CMS.”

1. The first file is conn.php. This file will go at the top of each page in the application where you
need to connect to the database.

Be sure to enter in your own host, username, password, and database. (If you don’t have a
database created yet, you’ll need to create one first. Chapter 9 helps you with that if you need it.)

<?php

define(‘SQL_HOST’,’yourhost’);
define(‘SQL_USER’,’joeuser’);
define(‘SQL_PASS’,’yourpassword’);
define(‘SQL_DB’,’yourdatabase’);

$conn = mysql_connect(SQL_HOST,SQL_USER,SQL_PASS)
or die(‘Could not connect to the database; ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn)
or die(‘Could not select database; ‘ . mysql_error());

?>

361

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 361

2. Now you need to create your database tables. You can do this on your MySQL server, or you
can simply use the following cmstables.php file. It will create your tables, as well as insert
your first user so that you can begin administering the site immediately.

<?php
require_once ‘conn.php’;

$sql = <<<EOS
CREATE TABLE IF NOT EXISTS cms_access_levels (
access_lvl tinyint(4) NOT NULL auto_increment,
access_name varchar(50) NOT NULL default ‘’,
PRIMARY KEY (access_lvl)

)
EOS;
$result = mysql_query($sql) or die(mysql_error());

$sql = “INSERT IGNORE INTO cms_access_levels
VALUES (1,’User’)”;

$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT IGNORE INTO cms_access_levels
VALUES (2,’Moderator’)”;

$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT IGNORE INTO cms_access_levels
VALUES (3,’Administrator’)”;

$result = mysql_query($sql) or die(mysql_error());

$sql = <<<EOS
CREATE TABLE IF NOT EXISTS cms_articles (
article_id int(11) NOT NULL auto_increment,
author_id int(11) NOT NULL default ‘0’,
is_published tinyint(1) NOT NULL default ‘0’,
date_submitted datetime NOT NULL default ‘0000-00-00 00:00:00’,
date_published datetime NOT NULL default ‘0000-00-00 00:00:00’,
title varchar(255) NOT NULL default ‘’,
body mediumtext NOT NULL,
PRIMARY KEY (article_id),
KEY IdxArticle (author_id,date_submitted),
FULLTEXT KEY IdxText (title,body)

)
EOS;
$result = mysql_query($sql) or die(mysql_error());

$sql = <<<EOS
CREATE TABLE IF NOT EXISTS cms_comments (
comment_id int(11) NOT NULL auto_increment,
article_id int(11) NOT NULL default ‘0’,
comment_date datetime NOT NULL default ‘0000-00-00 00:00:00’,
comment_user int(11) NOT NULL default ‘0’,
comment text NOT NULL,
PRIMARY KEY (comment_id),
KEY IdxComment (article_id)

)
EOS;

362

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 362

$result = mysql_query($sql) or die(mysql_error());

$sql = <<<EOS
CREATE TABLE IF NOT EXISTS cms_users (
user_id int(11) NOT NULL auto_increment,
e-mail varchar(255) NOT NULL default ‘’,
passwd varchar(50) NOT NULL default ‘’,
name varchar(100) NOT NULL default ‘’,
access_lvl tinyint(4) NOT NULL default ‘1’,
PRIMARY KEY (user_id),
UNIQUE KEY uniq_e-mail (e-mail)

)
EOS;
$result = mysql_query($sql) or die(mysql_error());

$admine-mail = “admin@yoursite.com”;
$adminpass = “admin”;
$adminname = “Admin”;

$sql = “INSERT IGNORE INTO cms_users VALUES (NULL,
‘$admine-mail’, ‘$adminpass’, ‘$adminname’, 3)”;

$result = mysql_query($sql) or die(mysql_error());

echo “<html><head><title>CMS Tables Created</title></head><body>”;
echo “CMS Tables created. Here is your initial login information:\n”;
echo “login: “ . $admine-mail . “\n”;
echo “password: “ . $adminpass . “\n”;
echo “Login to the site now.”;
echo “</body></html>”
?>

3. Some functions are used on many different pages. Those are included in the file outputfunctions
.php, which is included at the top of each appropriate page:

<?php

function trimBody($theText, $lmt=500, $s_chr=”\n”, $s_cnt=2) {
$pos = 0;
$trimmed = FALSE;
for ($i = 1; $i <= $s_cnt; $i++) {
if ($tmp = strpos($theText,$s_chr,$pos)) {
$pos = $tmp;
$trimmed = TRUE;

} else {
$pos = strlen($theText) - 1;
$trimmed = FALSE;
break;

}
}
$theText = substr($theText,0,$pos);

if (strlen($theText) > $lmt) {
$theText = substr($theText,0,$lmt);

363

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 363

$theText = substr($theText,0,strrpos($theText,’ ‘));
$trimmed = TRUE;

}
if ($trimmed) $theText .= ‘...’;
return $theText;

}

function outputStory($article, $only_snippet=FALSE) {
global $conn;

if ($article) {
$sql = “SELECT ar.*,usr.name “ .

“FROM cms_articles ar “ .
“LEFT OUTER JOIN cms_users usr “ .
“ON ar.author_id = usr.user_id “ .
“WHERE ar.article_id = “ . $article;

$result = mysql_query($sql,$conn);

if ($row = mysql_fetch_array($result)) {
echo ‘<h3>’ . htmlspecialchars($row[‘title’]) . “</h3>\n”;
echo “<h5><div class=’byline’>By: “ .

htmlspecialchars($row[‘name’]) .
“</div>”;

echo “<div class=’pubdate’>”;
if ($row[‘is_published’] == 1) {
echo date(“F j, Y”,strtotime($row[‘date_published’]));

} else {
echo “not yet published”;

}
echo “</div></h5>\n”;
if ($only_snippet) {
echo “<p>\n”;
echo nl2br(htmlspecialchars(trimBody($row[‘body’])));
echo “</p>\n”;
echo ‘<h4><a href=”viewarticle.php?article=’ .

$row[‘article_id’] . “\”>Full Story...</h4>
\n”;
} else {
echo “<p>\n”;
echo nl2br(htmlspecialchars($row[‘body’]));
echo “</p>\n”;

}
}

}
}

function showComments($article,$showLink=TRUE) {
global $conn;
if ($article) {
$sql = “SELECT is_published “ .

“FROM cms_articles “ .
“WHERE article_id=” . $article;

$result = mysql_query($sql,$conn)
or die(‘Could not look up comments; ‘ . mysql_error());

$row = mysql_fetch_array($result);

364

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 364

$is_published = $row[‘is_published’];

$sql = “SELECT co.*,usr.name,usr.e-mail “ .
“FROM cms_comments co “ .
“LEFT OUTER JOIN cms_users usr “ .
“ON co.comment_user = usr.user_id “ .
“WHERE co.article_id=” . $article .
“ ORDER BY co.comment_date DESC”;

$result = mysql_query($sql,$conn)
or die(‘Could not look up comments; ‘ . mysql_error());

if ($showLink) {
echo ‘<h4>’ . mysql_num_rows($result) . ‘Comments’;
if (isset($_SESSION[‘user_id’]) and $is_published) {
echo ‘ / <a href=”comment.php?article=’ . $_GET[‘article’] .

‘“>Add one’;
}
echo “</h4>\n”;

}

if (mysql_num_rows($result)) {
echo “<div class=\”scroller\”>\n”;
while ($row = mysql_fetch_array($result)) {
echo “” .
htmlspecialchars($row[‘name’]) .
“ (“ .
date(“l F j, Y H:i”,strtotime($row[‘comment_date’])) .

“)\n”;
echo “<p class=’commentText’>\n” .

nl2br(htmlspecialchars($row[‘comment’])) .
“\n</p>\n”;

}
echo “</div>\n”;

}
echo “
\n”;

}
}
?>

4. Two more files are included in various pages, header.php and footer.php. Enter those next.
First, header.php:

<?php session_start(); ?>
<html>
<head>
<title>BPAM CMS</title>
</head>
<body>
<div id=”logobar”>
<div id=”logoblob”>
<h1>Comic Book Appreciation</h1>

</div>
<?php
if (isset($_SESSION[‘name’])) {
echo ‘ <div id=”logowelcome”>’;

365

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 365

echo ‘ Currently logged in as: ‘.$_SESSION[‘name’];
echo ‘ </div>’;

}
?>

</div>
<div id=”navright”>
<form method=”get” action=”search.php”>
<p class=’head’>Search</p>
<p>
<input id=”searchkeywords” type=”text” name=”keywords”

<?php
if (isset($_GET[‘keywords’])) {
echo ‘ value=”’ . htmlspecialchars($_GET[‘keywords’]) . ‘“ ‘;

}
?>

/>
<input id=”searchbutton” class=”submit” type=”submit”
value=”Search” />

</p>
</form>

</div>
<div id=”maincolumn”>
<div id=’navigation’>

<?php
echo ‘Articles’;
if (!isset($_SESSION[‘user_id’])) {
echo ‘ | Login’;

} else {
echo ‘ | Compose’;

if ($_SESSION[‘access_lvl’] > 1) {
echo ‘ | Review’;

}

if ($_SESSION[‘access_lvl’] > 2) {
echo ‘ | Admin’;

}
echo ‘ | Control Panel’;
echo ‘ | Logout’;

}
?>
</div>
<div id=”articles”>

5. And now enter footer.php. (This one’s a toughie. You might want to take a break first.)

</div>
</div>
</body>
</html>

366

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 366

6. Now another big one, http.php. This one is used for redirections:

<?php
function redirect($url) {
if (!headers_sent()) {
header(‘Location: http://’ . $_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) . ‘/’ . $url);

} else {
die(‘Could not redirect; Headers already sent (output).’);

}
}
?>

Whew. All this coding, and nothing yet to show on the screen! There are two more files to go
that don’t output anything. These are the workhorses of the application, so they are a bit longer
than the rest.

7. First, create transact-user.php:

<?php
require_once ‘conn.php’;
require_once ‘http.php’;

if (isset($_REQUEST[‘action’])) {
switch ($_REQUEST[‘action’]) {
case ‘Login’:
if (isset($_POST[‘e-mail’])

and isset($_POST[‘passwd’]))
{
$sql = “SELECT user_id,access_lvl,name “ .

“FROM cms_users “ .
“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘ “ .
“AND passwd=’” . $_POST[‘passwd’] . “‘“;

$result = mysql_query($sql,$conn)
or die(‘Could not look up user information; ‘ . mysql_error());

if ($row = mysql_fetch_array($result)) {
session_start();
$_SESSION[‘user_id’] = $row[‘user_id’];
$_SESSION[‘access_lvl’] = $row[‘access_lvl’];
$_SESSION[‘name’] = $row[‘name’];

}
}
redirect(‘index.php’);
break;

case ‘Logout’:
session_start();
session_unset();
session_destroy();

redirect(‘index.php’);

367

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 367

break;

case ‘Create Account’:
if (isset($_POST[‘name’])

and isset($_POST[‘e-mail’])
and isset($_POST[‘passwd’])
and isset($_POST[‘passwd2’])
and $_POST[‘passwd’] == $_POST[‘passwd2’])

{
$sql = “INSERT INTO cms_users (e-mail,name,passwd) “ .

“VALUES (‘“ . $_POST[‘e-mail’] . “‘,’” .
$_POST[‘name’] . “‘,’” . $_POST[‘passwd’] . “‘)”;

mysql_query($sql,$conn)
or die(‘Could not create user account; ‘ . mysql_error());

session_start();
$_SESSION[‘user_id’] = mysql_insert_id($conn);
$_SESSION[‘access_lvl’] = 1;
$_SESSION[‘name’] = $_POST[‘name’];

}
redirect(‘index.php’);
break;

case ‘Modify Account’:
if (isset($_POST[‘name’])

and isset($_POST[‘e-mail’])
and isset($_POST[‘accesslvl’])
and isset($_POST[‘userid’]))

{
$sql = “UPDATE cms_users “ .

“SET e-mail=’” . $_POST[‘e-mail’] .
“‘, name=’” . $_POST[‘name’] .
“‘, access_lvl=” . $_POST[‘accesslvl’] . “ “ .
“ WHERE user_id=” . $_POST[‘userid’];

mysql_query($sql,$conn)
or die(‘Could not update user account; ‘ . mysql_error());

}
redirect(‘admin.php’);
break;

case ‘Send my reminder!’:
if (isset($_POST[‘e-mail’])) {
$sql = “SELECT passwd FROM cms_users “ .

“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘“;

$result = mysql_query($sql,$conn)
or die(‘Could not look up password; ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);

$subject = ‘Comic site password reminder’;
$body = “Just a reminder, your password for the “ .

368

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 368

“Comic Book Appreciation site is: “ . $row[‘passwd’] .
“\n\nYou can use this to log in at http://” .
$_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) . ‘/’;

mail($_POST[‘e-mail’],$subject,$body)
or die(‘Could not send reminder e-mail.’);

}
}
redirect(‘login.php’);
break;

case ‘Change my info’:
session_start();

if (isset($_POST[‘name’])
and isset($_POST[‘e-mail’])
and isset($_SESSION[‘user_id’]))

{
$sql = “UPDATE cms_users “ .

“SET e-mail=’” . $_POST[‘e-mail’] .
“‘, name=’” . $_POST[‘name’] . “‘ “ .
“WHERE user_id=” . $_SESSION[‘user_id’];

mysql_query($sql,$conn)
or die(‘Could not update user account; ‘ . mysql_error());

}
redirect(‘cpanel.php’);
break;

}
}
?>

8. Now enter transact-article.php:

<?
session_start();
require_once ‘conn.php’;
require_once ‘http.php’;

if (isset($_REQUEST[‘action’])) {
switch ($_REQUEST[‘action’]) {
case ‘Submit New Article’:
if (isset($_POST[‘title’])

and isset($_POST[‘body’])
and isset($_SESSION[‘user_id’]))

{
$sql = “INSERT INTO cms_articles “ .

“(title,body,author_id,date_submitted) “ .
“VALUES (‘“ . $_POST[‘title’] .
“‘,’” . $_POST[‘body’] .
“‘,” . $_SESSION[‘user_id’] . “,’” .
date(“Y-m-d H:i:s”,time()) . “‘)”;

mysql_query($sql,$conn)

369

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 369

or die(‘Could not submit article; ‘ . mysql_error());
}
redirect(‘index.php’);
break;

case ‘Edit’:
redirect(‘compose.php?a=edit&article=’ . $_POST[‘article’]);
break;

case ‘Save Changes’:
if (isset($_POST[‘title’])

and isset($_POST[‘body’])
and isset($_POST[‘article’]))

{
$sql = “UPDATE cms_articles “ .

“SET title=’” . $_POST[‘title’] .
“‘, body=’” . $_POST[‘body’] . “‘, date_submitted=’” .
date(“Y-m-d H:i:s”,time()) . “‘ “ .
“WHERE article_id=” . $_POST[‘article’];

if (isset($_POST[‘authorid’])) {
$sql .= “ AND author_id=” . $_POST[‘authorid’];

}

mysql_query($sql,$conn)
or die(‘Could not update article; ‘ . mysql_error());

}

if (isset($_POST[‘authorid’])) {
redirect(‘cpanel.php’);

} else {
redirect(‘pending.php’);

}
break;

case ‘Publish’:
if ($_POST[‘article’]) {
$sql = “UPDATE cms_articles “ .

“SET is_published=1,date_published=’” .
date(“Y-m-d H:i:s”,time()) . “‘ “ .
“WHERE article_id=” . $_POST[‘article’];

mysql_query($sql,$conn)
or die(‘Could not publish article; ‘ . mysql_error());

}
redirect(‘pending.php’);
break;

case ‘Retract’:
if ($_POST[‘article’]) {
$sql = “UPDATE cms_articles “ .

“SET is_published=0,date_published=’’ “ .
“WHERE article_id=” . $_POST[‘article’];

mysql_query($sql,$conn)
or die(‘Could not retract article; ‘ . mysql_error());

}
redirect(‘pending.php’);

370

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 370

break;

case ‘Delete’:
if ($_POST[‘article’]) {
$sql = “DELETE FROM cms_articles “ .

“WHERE is_published=0 “ .
“AND “ . “article_id=” . $_POST[‘article’];

mysql_query($sql,$conn)
or die(‘Could not delete article; ‘ . mysql_error());

}
redirect(‘pending.php’);
break;

case ‘Submit Comment’:
if (isset($_POST[‘article’])

and $_POST[‘article’]
and isset($_POST[‘comment’])
and $_POST[‘comment’])

{
$sql = “INSERT INTO cms_comments “ .

“(article_id,comment_date,comment_user,comment) “ .
“VALUES (“ . $_POST[‘article’] . “,’” .
date(“Y-m-d H:i:s”,time()) .
“‘,” . $_SESSION[‘user_id’] .
“,’” . $_POST[‘comment’] . “‘);”;

mysql_query($sql,$conn)
or die(‘Could add comment; ‘ . mysql_error());

}
redirect(‘viewarticle.php?article=’ . $_POST[‘article’]);
break;

case ‘remove’:
if (isset($_GET[‘article’])

and isset($_SESSION[‘user_id’]))
{
$sql = “DELETE FROM cms_articles “ .

“WHERE article_id=” . $_GET[‘article’] .
“ AND author_id=” . $_SESSION[‘user_id’];

mysql_query($sql,$conn)
or die(‘Could not remove article; ‘ . mysql_error());

}
redirect(‘cpanel.php’);
break;

}
} else {
redirect(‘index.php’);

}
?>

9. Okay, time to enter the “real” pages. Let’s do these in order of largest files to smallest, so things
will go a little quicker at the end. Let’s start off with cpanel.php:

<?php
require_once ‘conn.php’;
require_once ‘header.php’;

371

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 371

$sql = “SELECT name,e-mail “ .
“FROM cms_users “ .
“WHERE user_id=” . $_SESSION[‘user_id’];

$result = mysql_query($sql,$conn)
or die(‘Could not look up user data; ‘ . mysql_error());

$user = mysql_fetch_array($result);
?>
<form method=”post” action=”transact-user.php”>

<p>Name:

<input type=”text” id=”name” name=”name”
value=”<?php echo htmlspecialchars($user[‘name’]); ?>” /></p>

<p>E-mail:

<input type=”text” id=”e-mail” name=”e-mail”
value=”<?php echo htmlspecialchars($user[‘e-mail’]); ?>” /></p>

<p><input type=”submit” class=”submit” name=”action”
value=”Change my info” /></p>

</form>

<h2>Pending Articles</h2>
<div class=”scroller”>
<table>

<?php

$sql = “SELECT article_id, title, date_submitted “ .
“FROM cms_articles “ .
“WHERE is_published=0 “ .
“AND author_id=” . $_SESSION[‘user_id’] . “ “ .
“ORDER BY date_submitted”;

$result = mysql_query($sql,$conn)
or die(‘Could not get list of pending articles; ‘ . mysql_error());

if (mysql_num_rows($result) == 0) {
echo “ No pending articles available”;

} else {
while ($row = mysql_fetch_array($result)) {
echo “<tr>\n”;
echo ‘<td><a href=”reviewarticle.php?article=’ .

$row[‘article_id’] . ‘“>’ . htmlspecialchars($row[‘title’]) .
“ (submitted “ .
date(“F j, Y”,strtotime($row[‘date_submitted’])) .
“)</td>\n”;

echo “</tr>\n”;
}

}
?>
</table>

</div>

<h2>Published Articles</h2>

372

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 372

<div class=”scroller”>
<table>

<?php

$sql = “SELECT article_id, title,date_published “ .
“FROM cms_articles “ .
“WHERE is_published=1 “ .
“AND author_id=” . $_SESSION[‘user_id’] . “ “ .
“ORDER BY date_submitted”;

$result = mysql_query($sql,$conn)
or die(‘Could not get list of pending articles; ‘ . mysql_error());

if (mysql_num_rows($result) == 0) {
echo “ No published articles available”;

} else {
while ($row = mysql_fetch_array($result)) {
echo “<tr>\n”;
echo ‘<td><a href=”viewarticle.php?article=’ .

$row[‘article_id’] . ‘“>’ . htmlspecialchars($row[‘title’]) .
“ (published “ .
date(“F j, Y”,strtotime($row[‘date_published’])) .
“)</td>\n”;

echo “</tr>\n”;
}

}
?>
</table>

</div>

<?php require_once ‘footer.php’; ?>

10. Create useraccount.php:

<?php
require_once ‘conn.php’;

$userid = ‘’;
$name = ‘’;
$e-mail = ‘’;
$password = ‘’;
$accesslvl = ‘’;
if (isset($_GET[‘userid’])) {
$sql = “SELECT * FROM cms_users WHERE user_id=” . $_GET[‘userid’];
$result = mysql_query($sql,$conn)
or die(‘Could not look up user data; ‘ . mysql_error());

$row = mysql_fetch_array($result);
$userid = $_GET[‘userid’];
$name = $row[‘name’];
$e-mail = $row[‘e-mail’];
$accesslvl = $row[‘access_lvl’];

}

require_once ‘header.php’;

373

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 373

echo “<form method=\”post\” action=\”transact-user.php\”>\n”;

if ($userid) {
echo “<h1>Modify Account</h1>\n”;

} else {
echo “<h1>Create Account</h1>\n”;

}
?>

<p>
Full name:

<input type=”text” class=”txtinput” name=”name” maxlength=”100”
value=”<?php echo htmlspecialchars($name); ?>” />

</p>
<p>
E-mail Address:

<input type=”text” class=”txtinput” name=”e-mail” maxlength=”255”
value=”<?php echo htmlspecialchars($e-mail); ?>” />

</p>
<?php

if (isset($_SESSION[‘access_lvl’])
and $_SESSION[‘access_lvl’] == 3)

{
echo “<fieldset>\n”;
echo “ <legend>Access Level</legend>\n”;

$sql = “SELECT * FROM cms_access_levels ORDER BY access_lvl DESC”;
$result = mysql_query($sql,$conn)
or die(‘Could not list access levels; ‘ . mysql_error());

while ($row = mysql_fetch_array($result)) {
echo ‘ <input type=”radio” class=”radio” id=”acl_’ .

$row[‘access_lvl’] . ‘“ name=”accesslvl” value=”’ .
$row[‘access_lvl’] . ‘“ ‘;

if ($row[‘access_lvl’] == $accesslvl) {
echo ‘checked=”checked” ‘;

}
echo ‘/>’ . $row[‘access_name’] . “
\n”;

}
?>
</fieldset>
<p>
<input type=”hidden” name=”userid” value=”<?php echo $userid; ?>” />
<input type=”submit” class=”submit” name=”action”
value=”Modify Account” />

</p>
<?php } else { ?>
<p>
Password:

<input type=”password” id=”passwd” name=”passwd” maxlength=”50” />

</p>
<p>

374

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 374

Password (again):

<input type=”password” id=”passwd2” name=”passwd2” maxlength=”50” />

</p>
<p>
<input type=”submit” class=”submit” name=”action”
value=”Create Account” />

</p>
<?php } ?>
</form>

<?php require_once ‘footer.php’; ?>

11. Create compose.php:

<?php

require_once ‘conn.php’;

$title = ‘’;
$body = ‘’;
$article = ‘’;
$authorid = ‘’;
if (isset($_GET[‘a’])

and $_GET[‘a’] == ‘edit’
and isset($_GET[‘article’])
and $_GET[‘article’]) {

$sql = “SELECT title,body,author_id FROM cms_articles WHERE article_id=” .
$_GET[‘article’];

$result = mysql_query($sql,$conn)
or die(‘Could not retrieve article data; ‘ . mysql_error());

$row = mysql_fetch_array($result);

$title = $row[‘title’];
$body = $row[‘body’];
$article = $_GET[‘article’];
$authorid = $row[‘author_id’];

}
require_once ‘header.php’;
?>

<form method=”post” action=”transact-article.php”>

<h2>Compose Article</h2>

<p>
Title:

<input type=”text” class=”title” name=”title” maxlength=”255”
value=”<?php echo htmlspecialchars($title); ?>” />

</p>
<p>
Body:

<textarea class=”body” name=”body” rows=”10” cols=”60”><?php

375

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 375

echo htmlspecialchars($body); ?></textarea>
</p>
<p>
<?php
echo ‘<input type=”hidden” name=”article” value=”’ .

$article . “\” />\n”;

if ($_SESSION[‘access_lvl’] < 2) {
echo ‘<input type=”hidden” name=”authorid” value=”’ .

$authorid . “\” />\n”;
}

if ($article) {
echo ‘<input type=”submit” class=”submit” name=”action” ‘ .

“value=\”Save Changes\” />\n”;
} else {
echo ‘<input type=”submit” class=”submit” name=”action” ‘ .

“value=\”Submit New Article\” />\n”;
}
?>
</p>
</form>

<?php require_once ‘footer.php’; ?>

12. Create reviewarticle.php:

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;
?>

<form method=”post” action=”transact-article.php”>

<h2>Article Review</h2>
<?php

outputStory($_GET[‘article’]);

$sql = “SELECT ar.*, usr.name, usr.access_lvl “ .
“FROM cms_articles ar INNER JOIN cms_users usr “ .
“ON ar.author_id = usr.user_id “ .
“WHERE article_id=” . $_GET[‘article’];

$result = mysql_query($sql,$conn)
or die(‘Could not retrieve article info; ‘ . mysql_error());

$row = mysql_fetch_array($result);

if ($row[‘date_published’] and $row[‘is_published’]) {
echo ‘<h4>Published: ‘ .

date(“l F j, Y H:i”,strtotime($row[‘date_published’])) .

376

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 376

“</h4>\n”;
}
echo “<p>
\n”;
if ($row[‘is_published’]) {
$buttonType = “Retract”;

} else {
$buttonType = “Publish”;

}

echo “<input type=’submit’ class=’submit’ “ .
“name=’action’ value=’Edit’ /> “;

if (($row[‘access_lvl’] > 1) or ($_SESSION[‘access_lvl’] > 1)) {
echo “<input type=’submit’ class=’submit’ “ .

“name=’action’ value=’$buttonType’ /> “;
}
echo “<input type=’submit’ class=’submit’ “ .

“name=’action’ value=’Delete’ /> “;
?>

<input type=”hidden” name=”article”
value=”<?php echo $_GET[‘article’] ?> “ />

</p>

</form>

<?php require_once ‘footer.php’; ?>

13. Create pending.php:

<?php
require_once ‘conn.php’;
require_once ‘header.php’;

$a_artTypes = array(
“Pending” => “submitted”,
“Published” => “published”

);

echo “<h2>Article Availability</h2>\n”;
$i=-1;
foreach ($a_artTypes as $k => $v) {
$i++;
echo “<h3>” . $k . “ Articles</h3>\n”;
echo “<p>\n”;
echo “ <div class=’scroller’>\n”;

$sql = “SELECT article_id, title, date_”.$v.
“ FROM cms_articles “ .
“WHERE is_published=” . $i .
“ ORDER BY title”;

$result = mysql_query($sql,$conn)
or die(‘Could not get list of pending articles; ‘ . mysql_error());

377

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 377

if (mysql_num_rows($result) == 0) {
echo “ No “ . $k . “ articles available”;

} else {
while ($row = mysql_fetch_array($result)) {
echo ‘ <a href=”reviewarticle.php?article=’ .

$row[‘article_id’] . ‘“>’ . htmlspecialchars($row[‘title’]) .
“ ($v “ .
date(“F j, Y”,strtotime($row[‘date_’.$v])) .
“)
\n”;

}
}
echo “ </div>\n”;
echo “</p>\n”;

}

require_once ‘footer.php’;
?>

14. Create admin.php:

<?php

require_once ‘conn.php’;
require_once ‘header.php’;

$a_users = array(1 => “Users”,”Moderators”,”Admins”);

function echoUserList($lvl) {
global $a_users;
$sql = “SELECT user_id, name, e-mail FROM cms_users “ .

“WHERE access_lvl = $lvl ORDER BY name”;

$result = mysql_query($sql) or die(mysql_error());

if (mysql_num_rows($result) == 0) {
echo “No “ . $a_users[$lvl] . “ created.”;

} else {
while ($row = mysql_fetch_array($result)) {
if ($row[‘user_id’] == $_SESSION[‘user_id’]) {
echo htmlspecialchars($row[‘name’]) . “
\n”;

} else {
echo ‘<a href=”useraccount.php?userid=’ . $row[‘user_id’] .

‘“ title=”’ . htmlspecialchars($row[‘e-mail’]) . ‘“>’ .
htmlspecialchars($row[‘name’]) . “
\n”;

}
}

}
}
?>
<h2>User Administration</h2>
<?php
for($i=1;$i<=3;$i++) {
echo “<h3>”. $a_users[$i] . “</h3>\n” .

378

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 378

“<div class=’scroller’>\n”;
echoUserList($i);
echo “\n</div>\n”;

}
?>

<?php require_once ‘footer.php’; ?>

15. Create comment.php:

<?php

require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

outputStory($_GET[‘article’]);

?>

<h1>Add a comment</h1>

<form method=”post” action=”transact-article.php”>

<p>
Comment:

<textarea id=”comment” name=”comment” rows=”10” cols=”60”></textarea>

</p>

<p>
<input type=”submit” class=”submit” name=”action”
value=”Submit Comment” />

<input type=”hidden” name=”article”
value=”<?php echo $_GET[‘article’]; ?>” />

</p>

</form>

<?php

showComments($_GET[‘article’],FALSE);

require_once ‘footer.php’;

?>

16. Create search.php:

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

$result = NULL;
if (isset($_GET[‘keywords’])) {

379

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 379

$sql = “SELECT article_id FROM cms_articles “ .
“WHERE MATCH (title,body) “ .
“AGAINST (‘“ . $_GET[‘keywords’] . “‘) “ .
“ORDER BY MATCH (title,body) “ .
“AGAINST (‘“ . $_GET[‘keywords’] . “‘) DESC”;

$result = mysql_query($sql,$conn)
or die(‘Could not perform search; ‘ . mysql_error());

}

echo “<h1>Search Results</h1>\n”;

if ($result and !mysql_num_rows($result)) {
echo “<p>No articles found that match the search terms.</p>\n”;

} else {
while ($row = mysql_fetch_array($result)) {
outputStory($row[‘article_id’],TRUE);

}
}

require_once ‘footer.php’;
?>

17. Create login.php:

<?php require_once ‘header.php’; ?>

<form method=”post” action=”transact-user.php”>

<h1>Member Login</h1>

<p>
E-mail Address:

<input type=”text” name=”e-mail” maxlength=”255” value=”” />

</p>
<p>
Password:

<input type=”password” name=”passwd” maxlength=”50” />

</p>
<p>
<input type=”submit” class=”submit” name=”action” value=”Login” />

</p>

<p>
Not a member yet? Create a new account!

</p>
<p>
Forgot your password?

</p>

</form>

<?php require_once ‘footer.php’; ?>

380

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 380

18. Create index.php:

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

$sql = “SELECT article_id FROM cms_articles WHERE is_published=1 “ .
“ORDER BY date_published DESC”;

$result = mysql_query($sql,$conn);

if (mysql_num_rows($result) == 0) {
echo “
\n”;
echo “ There are currently no articles to view.\n”;

} else {
while ($row = mysql_fetch_array($result)) {
outputStory($row[‘article_id’],TRUE);

}
}

require_once ‘footer.php’;
?>

19. Create forgotpass.php:

<?php require_once ‘header.php’; ?>

<form method=”post” action=”transact-user.php”>

<h1>E-mail Password Reminder</h1>

<p>
Forgot your password? Just enter your e-mail address, and we’ll e-mail
your password to you!

</p>

<p>
E-mail Address:

<input type=”text” id=”e-mail” name=”e-mail” />

</p>

<p>
<input type=”submit” class=”submit” name=”action” value=”Send my reminder!” />

</p>
</form>

<?php require_once ‘footer.php’; ?>

20. Create viewarticle.php:

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

381

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 381

outputStory($_GET[‘article’]);

showComments($_GET[‘article’],TRUE);

require_once ‘footer.php’;
?>

That last one was a doozy, huh?

Now that you have typed all of that in (except for those of you who downloaded it from the Web site),
we know there may be a few parts of the application where you thought “Huh? What in the world does
this do?” Wouldn’t it be cool if there was a section where we tell you how it works? All in good time.
Let’s put this application through its paces first!

1. If you have not already done so, load CMStables.php in your browser. If it runs with no errors,
you should see a screen similar to Figure 12-1. It will look a little different, of course, if you used
your own username, e-mail, and password values.

Figure 12-1

382

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 382

2. Once you have run the file, we recommend that you immediately remove it from your server.
You don’t want anyone getting hold of your password. We also recommend that you change
your password immediately.

3. Click the Login link on the page, or open login.php in your browser. Enter your e-mail
address and password and click the Login button (see Figure 12-2).

Figure 12-2

You should now see a simple screen similar to Figure 12-3. There is not much to see yet, because
you haven’t written any articles. You should, however, see many more menu options.

4. Click the Compose link to load compose.php (see Figure 12-4).

5. Enter a title and some text for the article. When you are done, click Submit New Article.

You will be taken back to the index page, but there will still be no article. The article you just
wrote is pending review.

383

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 383

Figure 12-3

Figure 12-4384

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 384

6. Click the Review link.

The Review page pending.php loads (see Figure 12-5) with a list of all pending and published
articles. Right now, there is only one pending article—the one you just wrote.

7. Click the article.

You will be taken to reviewarticle.php. It should look similar to Figure 12-6. You have the
option to edit, publish, or delete the article.

Figure 12-5

8. Click the Publish button. You will be taken back to pending.php, and the article will now be
listed under Published Articles.

9. Click the Articles link, and you will be taken back to the index page. This time, the article
should appear on the page (see Figure 12-7).

385

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 385

Figure 12-6

Figure 12-7

386

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 386

10. We’re going to skip the next two menu items (we’ll come back to them). For now, click the
Logout link.

11. Next, click Login, and click “Create a new account!” You should see a screen similar to
Figure 12-8.

Figure 12-8

12. Enter data into each field and click Create Account. For this example, we will enter the following:

❑ Full Name: George Smith

❑ E-mail Address: gsmith05523@hotmail.com

❑ Password: phprocks

❑ Password (again): phprocks

Once you create a new user, you will be automatically logged in as that user. You should notice
that you can see the article you recently created, but you cannot see the Review or Admin menu
items. Review is available to Moderators or Admins (levels 2 or 3) only, and Admin is available
to Admins only (level 3). Your initial account was created at level 3, but the account you just cre-
ated defaulted to level 1 (User).

387

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 387

13. Click Control Panel.

You should see a screen similar to the one shown in Figure 12-9. Here you can change your user
information (user name and e-mail), and see what articles have been written for the site. (At this
point, you have no articles pending or written.)

Figure 12-9

14. Go ahead and log out, and then log back in using your admin account. When you are logged in,
click the Admin link. You should see a screen similar to Figure 12-10.

You should see George Smith (or whatever name you used) under Users. You will notice your
Admin name under Admins, but it is not a link. You can alter your own account from your
Control Panel.

388

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 388

Figure 12-10

15. Click the user listed under Users.

You should see a page similar to that in Figure 12-11. Notice that you can change the user’s
name and password just as you can in the Control Panel. However, notice also the addition of
the Access Level option. You can set any user to be a User, Moderator, or Admin. User is the
default for new users.

And that is your new CMS application. Not too complicated, is it? There are a couple of other things you
can do (such as retracting a published article), but we’ll leave those to you to find. For now, it’s time to
look under the hood to see how this thing works!

389

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 389

Figure 12-11

How It Works
Nineteen files make up this CMS application. An additional file is used once to create the tables, making
20 files in all. That may seem like a lot to you, but the use of transaction pages and include files increases
the number substantially. If you did not have certain parts of the application broken out into separate
files, you would certainly have fewer files, but each file would be much larger. Our primary purpose in
separating out the application into so many files is to reduce code redundancy.

Connect to the Data Source
Your first step in creating this application is to connect to the database. Most of your pages will require
this connection, so putting it in a separate included file is the best solution. This file is conn.php:

define(‘SQL_HOST’,’yourhost’);
define(‘SQL_USER’,’joeuser’);
define(‘SQL_PASS’,’yourpassword’);
define(‘SQL_DB’,’yourdatabase’);

$conn = mysql_connect(SQL_HOST,SQL_USER,SQL_PASS)

390

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 390

or die(‘Could not connect to the database; ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn)
or die(‘Could not select database; ‘ . mysql_error());

The code in conn.php simply defines the constants, connects to the server, and then selects the
database to be used. If you are using more than one database, then you simply need to change the
mysql_select_db command to access the appropriate database before running any SQL commands.

Create the Database Tables
Once conn.php is created, you can create your database tables. Do this with CMStables.php.

First, connect to the database.

require_once ‘conn.php’;

Next, create the table needed for access levels. All of the fields, their datatypes, and other parameters are
defined in this SQL statement. We use IF NOT EXISTS so that the CREATE command does nothing if the
table already exists. If you wanted CMStables.php to always create a new, clean version of the app,
then you could remove the IF NOT EXISTS and run the SQL command DROP TABLE tablename before
re-creating the table.

$sql = <<<EOS
CREATE TABLE IF NOT EXISTS cms_access_levels (
access_lvl tinyint(4) NOT NULL auto_increment,
access_name varchar(50) NOT NULL default ‘’,
PRIMARY KEY (access_lvl)

)
EOS;
$result = mysql_query($sql) or die(mysql_error());

The next lines insert data into your newly created cms_access_levels table. These access levels are used
throughout the CMS application to determine what different users have access to.

$sql = “INSERT IGNORE INTO cms_access_levels VALUES (1,’User’)”;
$result = mysql_query($sql) or die(mysql_error());

We won’t include every SQL statement from CMStables.php. If you are knowledgeable enough to read
this book, then we think you can figure out the rest of the SQL commands. However, we are showing
you the following command to illustrate the use of keys.

$sql = <<<EOS
CREATE TABLE IF NOT EXISTS cms_articles (
article_id int(11) NOT NULL auto_increment,
author_id int(11) NOT NULL default ‘0’,
is_published tinyint(1) NOT NULL default ‘0’,
date_submitted datetime NOT NULL default ‘0000-00-00 00:00:00’,
date_published datetime NOT NULL default ‘0000-00-00 00:00:00’,
title varchar(255) NOT NULL default ‘’,
body mediumtext NOT NULL,
PRIMARY KEY (article_id),

391

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 391

KEY IdxArticle (author_id,date_submitted),
FULLTEXT KEY IdxText (title,body)

)
EOS;
$result = mysql_query($sql) or die(mysql_error());

The PRIMARY KEY, you may remember from Chapter 9, is what ensures that each row is unique because
it is the unique identifier for each row in the table.

The keyword KEY is similar to PRIMARY KEY, and in fact can be substituted for PRIMARY KEY in most
cases. In this particular case, we are using KEY as a synonym for INDEX, which allows subsequent SQL
statements to find data very quickly. Because we will be looking for articles by author and by date, those
are the fields used to create the index.

For more information on how MySQL uses indexes, visit
www.mysql.com/doc/en/MySQL_indexes.html.

We also allow users of the CMS application to search for articles based on text entered in a search string.
In order to perform such a search (which we allow for the title and body fields), we use the FULLTEXT
KEY keyword when creating our table. This is identical to using FULLTEXT INDEX.

When creating the cms_users table, we use the previous keywords to create both PRIMARY KEY to
uniquely identify table rows, and UNIQUE KEY to ensure that each user’s e-mail address is unique.

PRIMARY KEY (user_id),
UNIQUE KEY uniq_e-mail (e-mail)

After creating the cms_users table, we insert one record so that the administrator is able to log in with
Admin permissions. This allows you to immediately administer the site as needed. This data is echoed
to the screen to provide you with some feedback that everything has worked as you expected.

$sql = “INSERT IGNORE INTO cms_users VALUES (NULL, ‘$admine-mail’, ‘$adminpass’,
‘$adminname’, 3)”;
$result = mysql_query($sql) or die(mysql_error());

echo “<html><head><title>CMS Tables Created</title></head><body>”;
echo “CMS Tables created. Here is your initial login information:\n”;
echo “login: “ . $admine-mail . “\n”;
echo “password: “ . $adminpass . “\n”;
echo “Login to the site now.”;
echo “Login to the site now.”;

Create Reusable Functions
Many of the pages require functions that can be used over and over again. Because of this, we will
include these reusable functions in the outputfunctions.php file.

function trimBody($theText, $lmt=500, $s_chr=”\n”, $s_cnt=2) {

The function trimBody() will take a text input and return a shortened (trimmed) version for display on
a page. If an article is very long, you might want to show only the first couple of sentences, or only the
first paragraph. If the article is trimmed, you should end the trimmed text with ellipses (. . .).

392

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 392

The first parameter, $theText, is the text you want trimmed. The second parameter ($lmt) is the abso-
lute longest text string you want returned, expressed in number of characters. The default value, if none
is supplied, is 500 characters. The third parameter ($s_chr) is the “stop character.” We will trim the doc-
ument to this character. The default value is a newline (\n). The last parameter is $s_cnt, or “stop
count.” Given the stop character (in this case \n), we will trim after we reach the number designated by
$s_cnt. In this case we default to 2, so we will trim the text after the second newline character.

You must first initialize the variables. The variable $pos keeps track of the current position of the charac-
ter you are examining. The variable $trimmed tells you whether or not the text has been trimmed.

$pos = 0;
$trimmed = FALSE;

You then loop through the text $s_cnt times. If you find the character within the text on the last loop
through, then $trimmed will be true, and $theText will be trimmed to that character. If not, $trimmed
will be false, and $theText will contain the full text string. (This might happen if you were trimming
the string to the third newline and it were only two paragraphs long, for example.)

for ($i = 1; $i <= $s_cnt; $i++)
if ($tmp = strpos($theText,$s_chr,$pos)) {
$pos = $tmp;
$trimmed = TRUE;

} else {
$pos = strlen($theText) - 1;
$trimmed = FALSE;
break;

}
}
$theText = substr($theText,0,$pos);

If the returned string is now longer than our limit, you trim it to the exact length of the limit.

if (strlen($theText) > $lmt)
$theText = substr($theText,0,$lmt);

After doing this, you might have cut off a word. In the interest of keeping your trimmed text clean, you
trim back to the last space, and then set $trimmed = true.

$theText = substr($theText,0,strrpos($theText,’ ‘));
$trimmed = TRUE;

}

If you have trimmed the text at all, you add the ellipses, and return the trimmed text back to where the
function was called.

if ($trimmed) $theText .= ‘...’;
return $theText;

}

393

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 393

The trimBody function is quite flexible. You can trim text to 50 characters (by setting $s_chr = “xyz”
and $s_cnt = 999), or trim it to the first sentence (setting $s_chr = “.” and $s_cnt = 1). You can also
set the default values to anything you want.

Our next function, outputStory(), takes two arguments. The argument $article is the ID of the arti-
cle you want to display, and $only_snippet is either TRUE or FALSE to indicate whether you should
trim it using the trimBody() function you just created. You will not be returning a value to the calling
script. Instead, you send the results directly to the screen. Because of this, outputStory() should be
used in the location where you want the story echoed.

function outputStory($article, $only_snippet=FALSE) {

In order for the function to access the $conn variable, you have to declare it global. Otherwise, it will use
its own $conn variable, which currently does not contain anything. Essentially, you are saying “Use the
$conn variable that was declared outside of this function.” Remember that $conn is created in
conn.php, which is included at the top of outputfunctions.php.

global $conn;

If the article ID was passed as expected, then you run the rest of the function. The first step is to select
the article from the database, including all the author data for that article:

if ($article) {
$sql = “SELECT ar.*,usr.name “ .

“FROM cms_articles ar “ .
“LEFT OUTER JOIN cms_users usr “ .
“ON ar.author_id = usr.user_id “ .
“WHERE ar.article_id = “ . $article;

$result = mysql_query($sql,$conn);

The rest of the function is fairly straightforward. It combines the data retrieved from the database with
HTML to format it for the screen. There are a few things we want to point out, however.

First, you’ll notice that we use the trimBody() function we just wrote, but only if we passed TRUE in as
the second parameter of the outputStory() function. Second, we use the htmlspecialchars() PHP
function to convert any text in our article that might cause HTML problems (such as <, >, &, and so on)
to their entity equivalents (<, >, and &, respectively, and so on). Third, newline characters in
HTML are essentially ignored. In order for HTML to properly display text with newlines, you need to
insert
 for every newline in the text. PHP provides a neat function to do this: nl2br(), which we
use here:

if ($only_snippet) {
...
echo nl2br(htmlspecialchars(trimBody($row[‘body’])));
...

} else {
...
echo nl2br(htmlspecialchars($row[‘body’]));
...

}

394

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 394

The end result is that the article gets displayed on the page just as intended when it was entered, and is
trimmed if specified.

The last function in outputFunctions() is showComments(). You pass the article ID and a Boolean
value that determines whether or not to show a link to allow users to add their own comments:

function showComments($article,$showLink=TRUE) {

Declare $conn to be global, so you can access it within the function global $conn;.

You will need to know later whether or not this article has been published. So, you grab the value of the
field is_published from the article for use later:

$sql = “SELECT is_published “ .
“FROM cms_articles “ .
“WHERE article_id=” . $article;

$result = mysql_query($sql,$conn)
or die(‘Could not look up comments; ‘ . mysql_error());

$row = mysql_fetch_array($result);
$is_published = $row[‘is_published’];

Next, you grab all of the comments associated with this article, including the user’s name and e-mail
address for each comment:

$sql = “SELECT co.*,usr.name,usr.e-mail “ .
“FROM cms_comments co “ .
“LEFT OUTER JOIN cms_users usr “ .
“ON co.comment_user = usr.user_id “ .
“WHERE co.article_id=” . $article .
“ ORDER BY co.comment_date DESC”;

$result = mysql_query($sql,$conn)
or die(‘Could not look up comments; ‘ . mysql_error());

As with the outputStory() function, you just want to output out HTML whenever the
outputComments function is called. If you passed TRUE as the second parameter to this function, then
you put a header on the page that says “Comments,” along with a link for the user to add his or her own
comment (if this is a registered user and the article is published). If there are 0 comments, this is all the
user will see, and he or she will still be able to add a new comment.

if ($showLink) {
echo ‘<h4>’ . mysql_num_rows($result) . ‘Comments’;
if (isset($_SESSION[‘user_id’]) and $is_published) {
echo ‘ / <a href=”comment.php?article=’ . $_GET[‘article’] .

‘“>Add one’;
}
echo “</h4>\n”;

}

If there are comments, loop through each comment and display the comments below the article, with the
newest comments first.

395

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 395

if (mysql_num_rows($result)) {
echo “<div class=\”scroller\”>\n”;
while ($row = mysql_fetch_array($result)) {

You’ll notice the and tags, as well as <div> tags. These are not currently being used,
but they will allow you to use CSS (cascading style sheets) to change how your pages are displayed. We
may include a CSS file or two on the Web site to demonstrate this, but for now, describing CSS is beyond
the scope of this book.

echo “” .
htmlspecialchars($row[‘name’]) .
“ (“ .
date(“l F j, Y H:i”,strtotime($row[‘comment_date’])) .

“)\n”;
echo “<p class=’commentText’>\n” .

nl2br(htmlspecialchars($row[‘comment’])) .
“\n</p>\n”;

}

Again, notice the use of htmlspecialchars() and nl2br() in the previous code. Get used to using them;
they are very important for converting text entered in a text box into readable text on an HTML page.

The date function is quite powerful. It allows you to take the standard date value entered in a datetime
field in MySQL and format it in many ways. In this case, the datetime of 2003-09-19 17:39:24 will be dis-
played as Friday September 19, 2003 17:39. There are many options for displaying dates. For more infor-
mation about this, visit www.php.net/date.

The outputFunctions.php file is included on each page that needs one of its functions. If you have
any other functions that you might want to add to your application, simply add it to this file, and make
sure this file is included in the page.

Two additional files are included on every page that displays information on the Web: header.php and
footer.php. Let’s look at header.php now. (We won’t look at footer.php, which should be self-evident.

<?php session_start(); ?>

This is the very first line of our page, and a very important one. Login information is stored using
Sessions. Sessions allow you to store values to be used elsewhere on the site. This makes Sessions ideal
for storing login data. By using session_start() at the beginning of your page, you are telling the
application to allow you access to $_SESSION variables. Now you can set and retrieve session variables.

For a more detailed discussion of sessions, visit www.php.net/session.

Here’s our first example of session variables. Once session_start() has been initialized, the
variable $_SESSION[‘name’] should be available to you, as long as the user has logged in. So, if
isset($_SESSION[‘name’]) returns FALSE, you know the user is not logged in.

if (isset($_SESSION[‘name’])) {
echo ‘ <div id=”logowelcome”>’;
echo ‘ Currently logged in as: ‘.$_SESSION[‘name’];
echo ‘ </div>’;

}

396

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 396

The following is the search form, displayed on every page. We did not discuss this functionality earlier;
we hope you discovered this little gem in your explorations of the application. Now you get to see how
it works. Note that there really isn’t anything special going on here; it is a standard form that posts the
keywords field to search.php. If there are keywords in the URL, they will be prefilled in the keywords
field. We look at the search results page a little later.

<form method=”get” action=”search.php”>
<p class=’head’>Search</p>
<p>
<input id=”searchkeywords” type=”text” name=”keywords”

<?php
if (isset($_GET[‘keywords’])) {
echo ‘ value=”’ . htmlspecialchars($_GET[‘keywords’]) . ‘“ ‘;

}
?>

/>
<input id=”searchbutton” class=”submit” type=”submit”
value=”Search” />

</p>
</form>

In most cases, there are three values you save as session variables: the user’s name, login ID, and access
level. You use those values to determine what menu items to display. Here are the options:

❑ Article: All users

❑ Login: All users not logged in

❑ Compose: All logged in users

❑ Review: All logged in users with access level 2 or more

❑ Admin: All logged in users with access level 3 or more

❑ Control Panel: All logged in users

❑ Logout: All logged in users

echo ‘Articles’;
if (!isset($_SESSION[‘user_id’])) {
echo ‘ | Login’;

} else {
echo ‘ | Compose’;

if ($_SESSION[‘access_lvl’] > 1) {
echo ‘ | Review’;

}

if ($_SESSION[‘access_lvl’] > 2) {
echo ‘ | Admin’;

}
echo ‘ | Control Panel’;
echo ‘ | Logout’;

}

397

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 397

So, that’s header.php. It displays the title, login status, and appropriate menu items based on the user
level.

Next, let’s take a look at http.php, the last of our included files:

function redirect($url) {
if (!headers_sent()) {
header(‘Location: http://’ . $_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) . ‘/’ . $url);

} else {
die(‘Could not redirect; Headers already sent (output).’);

}
}

You may have noticed that this is another function, and wondered why we didn’t include it in the
outputFunctions.php file. We certainly could have, but we made the choice to separate them for two
reasons. First, outputFunctions.php is for functions that output data to be displayed on the screen,
either directly or indirectly (as with trimBody()). The http.php file is used for browser functions; in
this case, we have only one of those—redirection. Second, the redirection function and the output func-
tions are used at different times. By grouping functions with similar functionality, we minimize the size
of included files.

Transaction Pages
So now we come to the tasty, gooey center of our application: the transaction pages. Any time data is
posted from a form, it’s handled by either the transact-user.php or transact-article.php page.
We use two different files simply to make the code more manageable.

Let’s take a look at the transact-user.php file first.

The application needs to access the database, and to redirect users to various pages after completing
transactions. We take care of the former with conn.php, and the latter with http.php. Because transac-
tion pages don’t display anything on the screen, we don’t need the header.php, footer.php, or
outputFunctions.php files included.

require_once ‘conn.php’;
require_once ‘http.php’;

The $_REQUEST[‘action’] variable contains either the name of the button you clicked on the previous
page, or a GET request in the URL (such as ?action=delete). If $_REQUEST[‘action’] is empty, then
you don’t do any transactions, and simply redirect the user to the index.php page:

if (isset($_REQUEST[‘action’])) {.

You use switch() in what follows because of its flexibility. If you expand the functionality of this appli-
cation, you could end up adding many more “actions.” In this transact-user.php page, it is a simple
matter of adding a new case: condition. You could certainly use if . . . else statements instead of switch,
but in the long run they can be cumbersome to work with.

switch ($_REQUEST[‘action’]) {

398

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 398

The e-mail and password are what you use to log in. If both are not passed, the user will not be logged in.

case ‘Login’:
if (isset($_POST[‘e-mail’])

and isset($_POST[‘passwd’]))
{

This gets the user’s information. If a row is returned, it verifies that the login e-mail address and pass-
word supplied are correct.

$sql = “SELECT user_id,access_lvl,name “ .
“FROM cms_users “ .
“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘ “ .
“AND passwd=’” . $_POST[‘passwd’] . “‘“;

$result = mysql_query($sql,$conn)
or die(‘Could not lookup user information; ‘ . mysql_error());

if ($row = mysql_fetch_array($result)) {

Again, in order to retrieve or set session variables, you must first use the command session_start().
Once you do, you set three variables to be used throughout the application: user ID, access level, and
user name:

session_start();
$_SESSION[‘user_id’] = $row[‘user_id’];
$_SESSION[‘access_lvl’] = $row[‘access_lvl’];
$_SESSION[‘name’] = $row[‘name’];

}
}

Next, you redirect the user back to the home page (index.php). The break function is required at the
end of each case statement. Otherwise, the code in the next case runs as well, and you don’t want that
because it logs the user out!

redirect(‘index.php’);
break;

Logout is quite simple, really. If no session variables exist with the user ID, access level, and user name,
then the application knows you are not logged in. Therefore, you first use session_start() to tell
PHP you are accessing session variables. Then, you unset the session, which clears all the session vari-
ables, and finally you destroy the session, which destroys all of the data registered to a session. Both
session_unset() and session_destroy() are used to completely remove all login data.

case ‘Logout’:
session_start();
session_unset();
session_destroy();

redirect(‘index.php’);
break;

399

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 399

In order to create an account, all of the fields must be filled in, and the two password fields must match.

case ‘Create Account’:
if (isset($_POST[‘name’])

and isset($_POST[‘e-mail’])
and isset($_POST[‘accesslvl’])

and $_POST[‘passwd’] == $_POST[‘passwd2’]))
{

We insert the user’s information into the database... $sql = “INSERT INTO
cms_users (e-mail,name,passwd) “ .

“VALUES (‘“ . $_POST[‘e-mail’] . “‘,’” .
$_POST[‘name’] . “‘,’” . $_POST[‘passwd’] . “‘)”;

mysql_query($sql,$conn)
or die(‘Could not create user account; ‘ . mysql_error());

Then set the appropriate session variables. This has the effect of logging in the user after he or she
registers.

session_start();
$_SESSION[‘user_id’] = mysql_insert_id($conn);
$_SESSION[‘access_lvl’] = 1;
$_SESSION[‘name’] = $_POST[‘name’];

}
redirect(‘index.php’);
break;

When an account is modified, all of the fields must have data. As long as they do, the user’s account is
updated in the database, and the user is redirected to the admin.php page:

case ‘Modify Account’:
if (isset($_POST[‘name’])

and isset($_POST[‘e-mail’])
and isset($_POST[‘accesslvl’])
and isset($_POST[‘userid’]))

{
$sql = “UPDATE cms_users “ .

“SET e-mail=’” . $_POST[‘e-mail’] .
“‘, name=’” . $_POST[‘name’] .
“‘, access_lvl=” . $_POST[‘accesslvl’] . “ “ .
“ WHERE user_id=” . $_POST[‘userid’];

mysql_query($sql,$conn)
or die(‘Could not update user account; ‘ . mysql_error());

}
redirect(‘admin.php’);
break;

It’s time to revisit the mail() function we introduced in Chapter 10. This will be a simple e-mail, but
there is no reason you can’t take your wealth of knowledge from Chapter 10 and send an HTML-enabled
e-mail to your users. It’s not necessary, of course, but it’s your application. Do what you will!

400

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 400

case ‘Send my reminder!’:
if (isset($_POST[‘e-mail’])) {
$sql = “SELECT passwd FROM cms_users “ .

“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘“;

$result = mysql_query($sql,$conn)
or die(‘Could not look up password; ‘ . mysql_error());

If you find a record, you get it, create a subject and body for your e-mail message (including the long lost
password), and send it on its merry way.

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$subject = ‘Comic site password reminder’;
$body = “Just a reminder, your password for the “ .

“Comicbook appreciation site is: “ . $row[‘passwd’] .
“\n\nYou can use this to log in at http://” .
$_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) . ‘/’;

mail($_POST[‘e-mail’],$subject,$body)
or die(‘Could not send reminder e-mail.’);

}

We assume, of course, that the user will immediately open his or her e-mail to read the password. We
conveniently deposit users in the login page so they can enter their e-mail address and password.

}
redirect(‘login.php’);
break;

The following code may look very familiar. It is virtually identical to the previous Modify Account case,
except this time, the user is changing his or her own data. Because of this, the access level does not get
updated.

case ‘Change my info’:
session_start();

if (isset($_POST[‘name’])
and isset($_POST[‘e-mail’])
and isset($_SESSION[‘user_id’]))

{
$sql = “UPDATE cms_users “ .

“SET e-mail=’” . $_POST[‘e-mail’] .
“‘, name=’” . $_POST[‘name’] . “‘ “ .
“WHERE user_id=” . $_SESSION[‘user_id’];

mysql_query($sql,$conn)
or die(‘Could not update user account; ‘ . mysql_error());

}
redirect(‘cpanel.php’);
break;

401

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 401

The following is the end of your switch statement. It’s easy to forget to close it, something that is the
cause of much debugging grief. We are here to remind you to close your switch!

}

Remember the if statement at the beginning? If the $_REQUEST[‘action’] variable is not set, you sim-
ply redirect the user to index.php. What are they doing loading the transact-user.php file, anyway?

} else {
redirect(‘index.php’);

}

That wasn’t so bad, was it? It’s a lot of code, but much of it is fairly similar. Check some variables, run
some SQL code, redirect the user. That’s pretty much how most transactions work.

transact-article.php
Want to look at some more? Great! Let’s take a look at transact-article.php. This time, we’ll simply
point out some of the more interesting things we might not have covered yet, or things that bear repeating.

Yes, this bears repeating. You know what the following does, right? It registers the session variables that
invariably will need to be set in order to run some of these transactions. This gives you access to the data
for the currently logged-in user:

session_start();

The transact-article.php page requires connection to the database, and redirects users to various pages
using the redirect() function. The following two include files provide this functionality, respectively.

require_once ‘conn.php’;
require_once ‘http.php’;

You need to make sure that a button was pressed, or an action is specified in the URL (such as
?action=twiddleThumbs).

if (isset($_REQUEST[‘action’])) {

There are a lot of actions that can happen in this file. The switch() statement is a more elegant way of
choosing your transactions than if . . . else.

switch ($_REQUEST[‘action’]) {

You first ensure that the title and body were both entered and that the user is logged in (tested by the
presence of the user_id session variable).

case ‘Submit New Article’:
if (isset($_POST[‘title’])

and isset($_POST[‘body’])
and isset($_SESSION[‘user_id’]))

{

402

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 402

You insert the article into the database, including the user ID and the date. The datetime is formatted in
a standard MySQL datetime format that can be stored in a datetime column. When you retrieve that
datetime to be displayed on the Web, you can format it any way that you want. The standard datetime
format for September 21, 2003, 12:42 a.m. is 2003-09-21 00:42:00.

$sql = “INSERT INTO cms_articles “ .
“(title,body,author_id,date_submitted) “ .
“VALUES (‘“ . $_POST[‘title’] . “‘,’” . $_POST[‘body’] .
“‘,” . $_SESSION[‘user_id’] . “,’” .
date(“Y-m-d H:i:s”,time()) . “‘)”;

mysql_query($sql,$conn)
or die(‘Could not submit article; ‘ . mysql_error());

}
redirect(‘index.php’);
break;

The Edit case is simple. The compose.php page is set up to retrieve an article and preload it into the title
and body fields if the appropriate data is entered in the URL. You simply need to add a=edit and
article=xx to the URL and redirect the user to that URL.

case ‘Edit’:
redirect(‘compose.php?a=edit&article=’ . $_POST[‘article’]);
break;

Make sure the title and body fields have been filled in, and that the hidden field “article” contains a
value. If you were composing a new document, the hidden field would not contain anything, and you’d
know something was wrong. (You can’t use the Save Changes feature for a new document.)

case ‘Save Changes’:
if (isset($_POST[‘title’])

and isset($_POST[‘body’])
and isset($_POST[‘article’]))

{

Next you send the article to the database. If the hidden field authorid has a value, then a user is editing
her or his own document, and you must add the condition to match the author_id to the SQL statement.

$sql = “UPDATE cms_articles SET title=’” . $_POST[‘title’] .
“‘,body=’” . $_POST[‘body’] . “‘,date_submitted=’” .
date(“Y-m-d H:i:s”,time()) . “‘ WHERE article_id=” .
$_POST[‘article’];

if (isset($_POST[‘authorid’])) {
$sql .= “ AND author_id=” . $_POST[‘authorid’];

}
mysql_query($sql,$conn)
or die(‘Could not update article; ‘ . mysql_error());

}

403

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 403

You then redirect the user to either the control panel, if the user is editing his or her own document, or
the review page, if the user is a moderator or admin editing someone else’s document.

if (isset($_POST[‘authorid’])) {
redirect(‘cpanel.php’);

} else {
redirect(‘pending.php’);

}
break;

Next you make sure the article ID was passed. If it was, modify the article in the database to set the
is_published column to 1, and set the date_published datetime column to the current date and
time (formatted in MySQL datetime format).

case ‘Publish’:
if ($_POST[‘article’]) {
$sql = “UPDATE cms_articles “ .

“SET is_published=1,date_published=’” .
date(“Y-m-d H:i:s”,time()) . “‘ WHERE article_id=” .
$_POST[‘article’];

mysql_query($sql,$conn)
or die(‘Could not publish article; ‘ . mysql_error());

}
redirect(‘pending.php’);
break;

This next case is actually quite similar to the Publish case, only this time, after checking the article ID,
you set is_published to 0 and erase the date_published field. Retracting an article in this case sim-
ply returns it to its pre-published state, but you might think of better ways to retract an article. Perhaps
you could have separate columns for is_retracted and retract_date. There is no right or wrong
way to do it, and, of course, it depends on the needs of your own site.

case ‘Retract’:
if ($_POST[‘article’]) {
$sql = “UPDATE cms_articles SET is_published=0,date_published=’’
WHERE article_id=” . $_POST[‘article’];

mysql_query($sql,$conn)
or die(‘Could not retract article; ‘ . mysql_error());

}
redirect(‘pending.php’);
break;

Check to see that an article ID was passed, and simply delete the record. Don’t prompt the user with
“Are you sure?” here because that was already handled with a JavaScript prompt before we got to this
point.

case ‘Delete’:
if ($_POST[‘article’]) {
$sql = “DELETE FROM cms_articles WHERE is_published=0 AND “ .

404

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 404

“article_id=” . $_POST[‘article’];

mysql_query($sql,$conn)
or die(‘Could not delete article; ‘ . mysql_error());

}
redirect(‘pending.php’);
break;

If the article ID was passed, and the comment field is filled in, process this transaction.

case ‘Submit Comment’:
if (isset($_POST[‘article’])

and isset($_POST[‘comment’]))
{

Insert the article ID, the comment date (in MySQL datetime format), the user ID, and the actual comment
into the database. When this has been accomplished, redirect the user to the article so he or she can see
the newly saved comment.

$sql = “INSERT INTO cms_comments “ .
“(article_id,comment_date,comment_user,comment) “ .
“VALUES (“ . $_POST[‘article’] . “,’” .
date(“Y-m-d H:i:s”,time()) .
“‘,” . $_SESSION[‘user_id’] .
“,’” . $_POST[‘comment’] . “‘);”;

mysql_query($sql,$conn)
or die(‘Could add comment; ‘ . mysql_error());

}
redirect(‘viewarticle.php?article=’ . $_POST[‘article’]);
break;

This is a case where the action is passed in the URL (?action=remove&article=123). Verify that the
article ID was passed and that the user is logged in.

case ‘remove’:
if (isset($_GET[‘article’])

and isset($_SESSION[‘user_id’]))
{

We currently allow only users to delete their own articles. You might modify this transaction to allow
moderators and admins to delete any article, but for now only users can delete the articles they have
written.

$sql = “DELETE FROM cms_articles WHERE article_id=” .
$_GET[‘article’] . “ AND author_id=” .
$_SESSION[‘user_id’];

mysql_query($sql,$conn)
or die(‘Could not remove article; ‘ . mysql_error());

}
redirect(‘cpanel.php’);
break;

405

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 405

Once again, don’t forget to close your switch statement:

}

And again, if a user has somehow loaded this page without any posted variables, he or she is immedi-
ately redirected to the home page.

} else {
redirect(‘index.php’);

}

cpanel.php
Now let’s take a look at our first actual Web page, cpanel.php. The Control Panel page cpanel.php is
used to allow users to change their user names and e-mail addresses. They can also see all of the articles
they have written, categorized by Pending and Published articles.

As always, you need to connect to the database. And, as always, conn.php takes care of that. This time,
we are displaying a Web page. We load up header.php, which is our standard header for all Web dis-
play pages.

require_once ‘conn.php’;
require_once ‘header.php’;

We first go out to the database and get the user’s name and e-mail address.

$sql = “SELECT name,e-mail “ .
“FROM cms_users “ .
“WHERE user_id=” . $_SESSION[‘user_id’];

$result = mysql_query($sql,$conn)
or die(‘Could not look up user data; ‘ . mysql_error());

$user = mysql_fetch_array($result);

You will be entering and exiting PHP mode throughout this file and in the other Web pages. This gives
you great flexibility and makes the page a lot easier to read. The next line exits PHP code:

?>

The following form uses the post method. Notice the action. You already created that file. You know
that when a submit button is clicked on this page, transact-user.php loads, the appropriate code
runs, and the user is redirected to the control panel.

<form method=”post” action=”transact-user.php”>

Note the use of htmlspecialchars(). This prevents strange characters such as < or > from messing up
the page. These characters will be displayed using their entity equivalents (such as < and >).

<p>Name:

<input type=”text” id=”name” name=”name”
value=”<?php echo htmlspecialchars($user[‘name’]); ?>” /></p>

406

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 406

The rest of the form is standard HTML. Now you need to display Pending and Published articles. Time
to drop back into PHP:

<p>E-mail:

<input type=”text” id=”e-mail” name=”e-mail”
value=”<?php echo htmlspecialchars($user[‘e-mail’]); ?>” /></p>

<p><input type=”submit” class=”submit” name=”action”
value=”Change my info” /></p>

</form>

<h2>Pending Articles</h2>
<div class=”scroller”>
<table>

This code gets all pending articles written by this user. They are ordered by date_submitted, with the
oldest being first. Please note that if there are no pending articles, this will not return a MySQL error. You
will still get a result set, but there won’t be any rows. We handle that contingency next.

<?php
$sql = “SELECT article_id, title, date_submitted “ .

“FROM cms_articles “ .
“WHERE is_published=0 “ .
“AND author_id=” . $_SESSION[‘user_id’] . “ “ .
“ORDER BY date_submitted”;

$result = mysql_query($sql,$conn)
or die(‘Could not get list of pending articles; ‘ . mysql_error());

If there are no pending articles, we simply state so and move on. Otherwise...if
(mysql_num_rows($result) == 0) {
echo “ No pending articles available”;

} else {

You loop through each pending article and display the title (with a link to the article), along with the
date/time it was submitted.

while ($row = mysql_fetch_array($result)) {
echo “<tr>\n”;
echo ‘<td><a href=”reviewarticle.php?article=’ .

$row[‘article_id’] . ‘“>’ . htmlspecialchars($row[‘title’]) .
“ (submitted “ .
date(“F j, Y”,strtotime($row[‘date_submitted’])) .
“)</td>\n”;

echo “</tr>\n”;
}

}

407

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 407

Yada, yada, yada. Don’t you love knowing HTML?

Ah... more PHP!?>
</table>

</div>

<h2>Published Articles</h2>
<div class=”scroller”>
<table>

Okay, this next code is almost identical to the code used to display pending articles. This time, display
them using the date_published column.

<?php
$sql = “SELECT article_id, title,date_published “ .

“FROM cms_articles “ .
“WHERE is_published=1 “ .
“AND author_id=” . $_SESSION[‘user_id’] . “ “ .
“ORDER BY date_submitted”;

$result = mysql_query($sql,$conn)
or die(‘Could not get list of pending articles; ‘ . mysql_error());

if (mysql_num_rows($result) == 0) {
echo “ No published articles available”;

} else {
while ($row = mysql_fetch_array($result)) {
echo “<tr>\n”;
echo ‘<td><a href=”viewarticle.php?article=’ .

$row[‘article_id’] . ‘“>’ . htmlspecialchars($row[‘title’]) .
“ (published “ .
date(“F j, Y”,strtotime($row[‘date_published’])) .
“)</td>\n”;

echo “</tr>\n”;
}

}

footer.php
Then load the footer. It is only a few lines of HTML for now, but some day you will want to put a menu,
or perhaps a copyright line. The great thing is, even if your site uses 300 pages, you will have to add that
information in only one place: footer.php.

?>
</table>

</div>

<?php require_once ‘footer.php’; ?>

Now let’s take a look at the next Web display page, useraccount.php. First thing you’ll notice is our
old friend conn.php. But where is header.php? No worries—it will show up soon. As long as you
don’t echo anything to the page yet, you’re okay.

408

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 408

<?php
require_once ‘conn.php’;

You need to retrieve all of the data for this user. Set all the variables to empty to ensure the values you
retrieve are “fresh.” As long as the user is logged in, those variables will fill up with the appropriate
data. If there is no user logged in, this page will create a new user. Neato, huh?

$userid = ‘’;
$name = ‘’;
$e-mail = ‘’;
$password = ‘’;
$accesslvl = ‘’;
if (isset($_GET[‘userid’])) {
$sql = “SELECT * FROM cms_users WHERE user_id=” . $_GET[‘userid’];
$result = mysql_query($sql,$conn)
or die(‘Could not look up user data; ‘ . mysql_error());

$row = mysql_fetch_array($result);
$userid = $_GET[‘userid’];
$name = $row[‘name’];
$e-mail = $row[‘e-mail’];
$accesslvl = $row[‘access_lvl’];

}

Here’s the header! We told you not to worry.

require_once ‘header.php’;

What follows is no different from that last page we looked at, but we’re using PHP to echo it to the page.

echo “<form method=\”post\” action=\”transact-user.php\”>\n”;

You could have just as easily written this as:

?>
<form method=”post” action=”transact-user.php”>
<?php

If the user is logged in, then this page contains the user’s current data. Therefore, you need to modify his
account. Otherwise, it’s a new user, and you need to create an account. The title reflects this.

if ($userid) {
echo “<h1>Modify Account</h1>\n”;

} else {
echo “<h1>Create Account</h1>\n”;

}
?>

Here’s some more boring HTML. Once again, note the use of htmlspecialchars() to prevent weird
symbols from messing up the page.

409

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 409

<p>
Full name:

<input type=”text” class=”txtinput” name=”name” maxlength=”100”
value=”<?php echo htmlspecialchars($name); ?>” />

<p>
</p>
E-mail Address:

<input type=”text” class=”txtinput” name=”e-mail” maxlength=”255”
value=”<?php echo htmlspecialchars($e-mail); ?>” />

</p>

If the user has Admin access, do the following:

<?php
if (isset($_SESSION[‘access_lvl’])

and $_SESSION[‘access_lvl’] == 3)
{

While we do assume that most readers have a fundamental knowledge of HTML, many of you may not
be familiar with <fieldset> and <legend>. We simply suggest you enter them and see how they are
displayed on the page; using <fieldset> and <legend> is a great way to group many of your form
fields.

We recommend you visit www.w3.org/TR/REC-html40/interact/forms.html#h-17.10 for
more information.

echo “<fieldset>\n”;
echo “ <legend>Access Level</legend>\n”;

First, go get all of the access levels from the database:

$sql = “SELECT * FROM cms_access_levels ORDER BY access_lvl DESC”;
$result = mysql_query($sql,$conn)
or die(‘Could not list access levels; ‘ . mysql_error());

Then cycle through each one, displaying them as radio buttons on the page.

while ($row = mysql_fetch_array($result)) {
echo ‘ <input type=”radio” class=”radio” id=”acl_’ .

$row[‘access_lvl’] . ‘“ name=”accesslvl” value=”’ .
$row[‘access_lvl’] . ‘“ ‘;

if ($row[‘access_lvl’] == $accesslvl) {
echo ‘checked=”checked” ‘;

}
echo ‘/>’ . $row[‘access_name’] . “
\n”;

}

The next page requires the user ID. Because this is not entered in a form field, create a hidden field to
carry the data over to the transaction page.

410

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 410

?>
</fieldset>
<p>
<input type=”hidden” name=”userid” value=”<?php echo $userid; ?>” />
<input type=”submit” class=”submit” name=”action”
value=”Modify Account” />

</p>

A short but sweet PHP tag ends the first part of the if statement and adds an else clause. This is a very
flexible way of using if...else commands with standard HTML. Because you can enter and exit PHP
at any time, your pages are very flexible and easy to read.

The rest of this code is loaded if you are not an admin type.

<?php } else { ?>

If you are not an admin, you must be here to create a new account. Therefore, it asks you for your password:

<p>
Password:

<input type=”password” id=”passwd” name=”passwd” maxlength=”50” />

</p>
<p>
Password (again):

<input type=”password” id=”passwd2” name=”passwd2” maxlength=”50” />

</p>
<p>
<input type=”submit” class=”submit” name=”action”
value=”Create Account” />

</p>

Then comes the end of the if statement and the end of the form:

<?php } ?>
</form>

And there is your footer page again, closing things off neatly:

<?php require_once ‘footer.php’; ?>

compose.php
We’re almost there. Next, we tackle compose.php, the page where you create new articles. Instantiate
the variables you are going to be using:

<?php
require_once ‘conn.php’;

$title = ‘’;
$body = ‘’;
$article = ‘’;
$authorid = ‘’;

411

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 411

If you are editing an article, instead of composing a brand new one, you must go out to the database and
retrieve the article.

if (isset($_GET[‘a’])
and $_GET[‘a’] == ‘edit’
and isset($_GET[‘article’])) {

$sql = “SELECT title,body,author_id “ .
“FROM cms_articles WHERE article_id=” . $_GET[‘article’];

$result = mysql_query($sql,$conn)
or die(‘Could not retrieve article data; ‘ . mysql_error());

$row = mysql_fetch_array($result);

$title = $row[‘title’];
$body = $row[‘body’];
$article = $_GET[‘article’];
$authorid = $row[‘author_id’];

}

Load the prerequisite header.php:

require_once ‘header.php’;

What follows is more standard HTML stuff. You know what htmlspecialchars() does, don’t you? Of
course you do. If not, go back a page or two and review.

?>

<form method=”post” action=”transact-article.php”>

<h2>Compose Article</h2>

<p>
Title:

<input type=”text” class=”title” name=”title” maxlength=”255”
value=”<?php echo htmlspecialchars($title); ?>” />

</p>
<p>
Body:

<textarea class=”body” name=”body” rows=”10” cols=”60”><?php
echo htmlspecialchars($body); ?></textarea>

</p>
<p>

The article ID must be carried over to the transaction page if you are modifying an existing article. The
following hidden input field will do this for you.

<?php
echo ‘<input type=”hidden” name=”article” value=”’ .

$article . “\” />\n”;

412

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 412

You also need to pass the author ID if the original author is editing his or her own document.

if ($_SESSION[‘access_lvl’] < 2) {
echo ‘<input type=”hidden” name=”authorid” value=”’ .

$authorid . “\” />\n”;
}

If the article is being modified, display the Save Changes submit button. If it’s a new article, display the
Submit New Article button.

if ($article) {
echo ‘<input type=”submit” class=”submit” name=”action” ‘ .

“value=\”Save Changes\” />\n”;
} else {
echo ‘<input type=”submit” class=”submit” name=”action” ‘ .

“value=\”Submit New Article\” />\n”;
}

And so it ends, footer and all. Clean and simple.

?>
</p>
</form>
<?php require_once ‘footer.php’; ?>

On to reviewarticle.php. This time, you need to use one of the functions in outputfunctions.php,
so you include it at the top of your page.

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;
?>

First, you display the title of the page, and then use the outputStory() function to display the article
on the page.

<form method=”post” action=”transact-article.php”>

<h2>Article Review</h2>
<?php

outputStory($_GET[‘article’]);

It is important to note that we passed only one variable to the function outputStory(), even though
outputStory() takes two arguments. The second argument is $only_snippet, which defaults to FALSE.
Because we did not use the second parameter, PHP automatically uses its default value. If there were no
default value assigned, then attempting to call outputStory() with only one argument would result in a
PHP warning telling us that we are missing an argument. This allows for more flexible functions.

413

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 413

In this Web page, we want to display additional data about the document, such as when it was pub-
lished, and who wrote it. We used the previous SQL statement to retrieve this additional information.
Yes, outputStory() retrieves this data, too, but if you modified outputStory() so that articles did not
display their author or publish date, you would still want it displayed on this review page.

$sql = “SELECT ar.*, usr.name, usr.access_lvl “ .
“FROM cms_articles ar INNER JOIN cms_users usr “ .
“ON ar.author_id = usr.user_id “ .
“WHERE article_id=” . $_GET[‘article’];

$result = mysql_query($sql,$conn)
or die(‘Could not retrieve article info; ‘ . mysql_error());

$row = mysql_fetch_array($result);
if ($row[‘date_published’] and $row[‘is_published’]) {
echo ‘<h4>Published: ‘ .

date(“l F j, Y H:i”,strtotime($row[‘date_published’])) .
“</h4>\n”;

}

If the document is published, you have an option to retract the article. If it is still pending, then you can
publish it.

echo “<p>
\n”;
if ($row[‘is_published’]) {
$buttonType = “Retract”;

} else {
$buttonType = “Publish”;

}

Now add the edit button. This allows the user to edit the article:

echo “<input type=’submit’ class=’submit’ “ .
“name=’action’ value=’Edit’ /> “;

Add the Retract or Publish button, used to retract a published article, or publish a pending article. Only
moderators and admins are allowed to retract and publish articles.

if (($row[‘access_lvl’] > 1) or ($_SESSION[‘access_lvl’] > 1)) {
echo “<input type=’submit’ class=’submit’ “ .

“name=’action’ value=’$buttonType’ /> “;
}

Next insert the Delete button, used to remove articles. The Delete code in transact-article.php cur-
rently allows only pending articles to be deleted. (Here’s an exercise for you: Make this button show up
only if the document is pending. And we bet you thought your homework would come up only at the
end of the chapter, didn’t you?)

echo “<input type=’submit’ class=’submit’ “ .
“name=’action’ value=’Delete’ /> “;

?>

414

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 414

And they all lived happily ever after. The End.

Next comes pending.php:<input type=”hidden” name=”article”
value=”<?php echo $_GET[‘article’] ?> “ />

</p>

</form>

<?php require_once ‘footer.php’; ?>

Feeling a little déjà vu? Good.

<?php
require_once ‘conn.php’;
require_once ‘header.php’;

Oooh . . . an associative array. This is one of PHP’s advantages. Other server-side scripting languages
such as ASP/VBScript do not use associative arrays, and we think they are very useful little things.
What are you going to use this one for? Read on, dear reader, and we’ll show you.

$a_artTypes = array(
“Pending” => “submitted”,
“Published” => “published”

);

The following is where you use your associative array. You are displaying pending, or submitted, arti-
cles, and then displaying published ones. In the interests of conserving code (because we’re lazy, remem-
ber?), you loop through the array and substitute the appropriate values where necessary. The variable $k
holds the array key, and $v holds the array value. We also set $i to -1 because it will be incremented
immediately inside the loop:

echo “<h2>Article Availability</h2>\n”;
$i=-1;
foreach ($a_artTypes as $k => $v) {
...right here. $i++;

Here’s your first use of the array key. The first pass through, this will read “Pending Articles.” Next time
through, it will read “Published Articles.” Clever?

echo “<h3>” . $k . “ Articles</h3>\n”;

Notice that we are using $v in what follows to create the field date_submitted in the first loop, and
date_published in the second. We are also using $i to first compare is_published to 0, and then to 1
in the next loop.

echo “<p>\n”;
echo “ <div class=’scroller’>\n”;

$sql = “SELECT article_id, title, date_”.$v.
“ FROM cms_articles “ .
“WHERE is_published=” . $i .

415

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 415

“ ORDER BY title”;

$result = mysql_query($sql,$conn)
or die(‘Could not get list of pending articles; ‘ . mysql_error());

Again, the array key is used, if no articles are returned. Now you can see why we used an associative
array.

if (mysql_num_rows($result) == 0) {
echo “ No “ . $k . “ articles available”;

If rows are returned, you then loop through each article and display the title (linked to
reviewarticle.php) and the date it was either submitted (pass one) or published (pass two).

} else {
while ($row = mysql_fetch_array($result)) {
echo ‘ <a href=”reviewarticle.php?article=’ .

$row[‘article_id’] . ‘“>’ . htmlspecialchars($row[‘title’]) .
“ ($v “ .
date(“F j, Y”,strtotime($row[‘date_’.$v])) .
“)
\n”;

}

And so ends another exciting day in the CMS saga. Stay tuned while we look at our next file,
admin.php.

}
echo “ </div>\n”;
echo “</p>\n”;

}

require_once ‘footer.php’;
?>

Guess what? You guessed it. Our good friends conn.php and header.php are back. Okay, let’s
move on . . .

<?php
require_once ‘conn.php’;
require_once ‘header.php’;

Is this an associative array? Actually, it is a normal array, but it is not zero-based. The way PHP works
when creating arrays is ingenious. What this line tells PHP is “Create a normal array, but start the num-
ber index at 1.” We could have assigned indices to the other values as well, but this is not necessary. PHP
knows that “Moderators” has an index of 2, and “Admins” has an index of 3. Now how cool is that?

$a_users = array(1 => “Users”,”Moderators”,”Admins”);

Hey, a function. Shouldn’t this go in an include file, such as outputfunctions.php? Perhaps, and you
could certainly do that if you wanted to. However, this function is very specific to this file, so it really
doesn’t need to go in an include file. It’s up to you, really.

function echoUserList($lvl) {

416

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 416

In order to use the array we created earlier within this function, we must declare it global. Now the func-
tion can access the data in the array.

global $a_users;

This function will be called more than once. Each time, a different value will be contained in the $lvl
variable. The following SQL pulls the appropriate data according to the $lvl value:

$sql = “SELECT user_id, name, e-mail FROM cms_users “ .
“WHERE access_lvl = $lvl ORDER BY name”;

$result = mysql_query($sql) or die(mysql_error());

If no users are found in the database for this access level, we display a message explaining that those
users were not found. This is done by using the array we created earlier:

if (mysql_num_rows($result) == 0) {
echo “No “ . $a_users[$lvl] . “ created.”;

A user cannot modify his or her own record. Instead, his or her name is shown in plain text, with no link.

} else {
while ($row = mysql_fetch_array($result)) {
if ($row[‘user_id’] == $_SESSION[‘user_id’]) {
echo htmlspecialchars($row[‘name’]) . “
\n”;

Otherwise, the user’s name is displayed on the screen, as a link that loads useraccount.php.

} else {
echo ‘<a href=”useraccount.php?userid=’ . $row[‘user_id’] .

‘“ title=”’ . htmlspecialchars($row[‘e-mail’]) . ‘“>’ .
htmlspecialchars($row[‘name’]) . “
\n”;

}

Here’s the end of the function. Note that nothing has been output to the screen yet.

}
}

}

First you display the page title:

?>
<h2>User Administration</h2>

Then you loop through the code three times, running the function each time with a different level value:

<?php
for($i=1;$i<=3;$i++) {
echo “<h3>”. $a_users[$i] . “</h3>\n” .
“<div class=’scroller’>\n”;
echoUserList($i);
echo “\n</div>\n”;

}
?>

417

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 417

And then you’re done.

<?php require_once ‘footer.php’; ?>

comment.php
The next page is comment.php. Include the necessary files:

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

Then display the appropriate article at the top of the page:

outputStory($_GET[‘article’]);

Then add the page title:

?>
<h1>Add a comment</h1>

A simple text area is used to enter a new comment:

<form method=”post” action=”transact-article.php”>

<p>
Comment:

<textarea id=”comment” name=”comment” rows=”10” cols=”60”></textarea>

</p>

The next bit deals with the submit button and a hidden field for the article ID. This is needed to send the
article ID to the next page:

<p>
<input type=”submit” class=”submit” name=”action”
value=”Submit Comment” />

<input type=”hidden” name=”article”
value=”<?php echo $_GET[‘article’]; ?>” />

</p>

Display all the current comments for this article on this page:

</form>

<?php

showComments($_GET[‘article’],FALSE);

And that’s it! They’re getting easier, aren’t they? Stay with us—only a few more short ones.

418

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 418

search.php
Next, begin search.php.

require_once ‘footer.php’;
?>

Include the necessary files:

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

As long as you passed keywords, you do a search. In the following SQL statement, you’ll notice the
MATCH and AGAINST keywords. This is the syntax used to do a text search in those fields. They must be
full-text indexed fields in order to perform this search. Visit www.mysql.com/doc/en/Fulltext_
Search.html for more information on full-text indexed fields.

$result = NULL;
if (isset($_GET[‘keywords’])) {
$sql = “SELECT article_id FROM cms_articles “ .

“WHERE MATCH (title,body) “ .
“AGAINST (‘“ . $_GET[‘keywords’] . “‘) “ .
“ORDER BY MATCH (title,body) “ .
“AGAINST (‘“ . $_GET[‘keywords’] . “‘) DESC”;

$result = mysql_query($sql,$conn)
or die(‘Could not perform search; ‘ . mysql_error());

}

If you didn’t find a match, say so:

echo “<h1>Search Results</h1>\n”;

if ($result and !mysql_num_rows($result)) {
echo “<p>No articles found that match the search terms.</p>\n”;

Otherwise, loop through the results and display them as snippets on the screen:

} else {
while ($row = mysql_fetch_array($result)) {
outputStory($row[‘article_id’],TRUE);

}
}

Let’s move on to index.php:

require_once ‘footer.php’;
?>

419

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 419

Include the standard files:

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

Retrieve all published articles, with the most recent articles listed first:

$sql = “SELECT article_id FROM cms_articles WHERE is_published=1 “ .
“ORDER BY date_published DESC”;

$result = mysql_query($sql,$conn);

If no articles are published, let the user know. This is optional, of course. If this were part of a larger page,
such as a portal application, then you might simply want to put something else in place of the article list.

if (mysql_num_rows($result) == 0) {
echo “
\n”;
echo “ There are currently no articles to view.\n”;

Go through each article ID retrieved, and display the articles (trimmed) on the page:

} else {
while ($row = mysql_fetch_array($result)) {
outputStory($row[‘article_id’],TRUE);

}
}

Then you can tidy up afterwards:

require_once ‘footer.php’;
?>

forgotpass.php and viewarticle.php
The next page, forgotpass.php, is another simple form with a header and footer, and HTML. It’s used
simply to send an e-mail to the user to remind him or her of a password.

The last page, viewarticle.php, is very short, yet it illustrates the nature of included files and
functions wonderfully.

As you can see, there is no content displayed directly with viewarticle. It simply includes the
necessary files and uses two functions to display the article and all of the comments.

<?php
require_once ‘conn.php’;
require_once ‘outputfunctions.php’;
require_once ‘header.php’;

outputStory($_GET[‘article’]);

420

Chapter 12

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 420

showComments($_GET[‘article’],TRUE);

require_once ‘footer.php’;
?>

You may notice that we don’t worry about the situation in which an article is not passed. As it stands, if
you load viewarticle.php without the “article” parameter in the URL, you will simply get a page
that consists of the site title, search, and a menu (all included in header.php). The rest will be blank. If
that’s the desired result, then that’s fine. You may decide to redirect the user back to the home page if
$_GET[‘article’] is empty. If you do, don’t forget to include http.php and use redirect() before
header.php.

You may have noticed that we left out two pages, login.php and forgotpass.php. They are important
pages, of course, but are mostly simple HTML. The includes at the top and bottom for header.php and
footer.php are the only PHP. We’re sure you can figure out how those two pages work.

Summary
Well, if you didn’t have writer’s cramp before, you probably do now. We hope this application has given
you some insight into the separation of content and design. Because of the way the application was
designed, you can easily modify the look and feel of the application by either directly altering your
header and footer files, or using a CSS file to set up different styles. This won’t matter to your users, who
will still be able to enter articles without ever having to worry about what the article will look like on the
Web when it’s published.

We also hope that you understand the importance of updating your site often enough to draw users
back again and again. By adding an application like this to your site, and allowing users to add content
for you, you create a dynamically changing site with fresh information. Just think about all the ways you
could implement such a design:

❑ Creating a message board. (We examine this in more detail in Chapter 15.)

❑ Adding a daily comic. Perhaps you have an artist who can draw you a comic every day. You
could create an application that allows him or her to upload comic strips, and allows users to
comment on them. You can see an example of this online at www.userfriendly.org.

❑ Compiling photo journals. A while back, there was a project in which photographers went all
over the world, and in a 24-hour period, they took their pictures and uploaded the digital
images, and people in the central office typed up descriptions and allowed people to view them
online. It was a very ambitious project and a perfect example of a CMS application.

The bottom line is that if you have content that you want to be able to update on a regular basis, you
definitely want to implement a CMS application. And now, you have the basic tools to build one on
your own!

Perhaps you should send your users an e-mail to tell them of your improved functionality. We’ll do that
in Chapter 13.

421

Building a Content Management System

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 421

17 557440 Ch12.qxd 2/6/04 9:17 AM Page 422

13
Mailing Lists

Ah, yes. The mailing list. Two simple, innocent words that never meant anyone any harm. That is,
until a few years ago, when someone decided to put the two together, and junk mail was born. Oh
sure, mailing lists are used for more than junk mail. After all, how else are you going to receive your
Quilting Monthly magazine unless your name and address are on a list? What does this have to do
with PHP? In the world of e-mail and your incredible new Web site, it is a perfect way for you to
communicate with all of your users! You might need to let every user know that your site has moved
to a new address. Maybe you want to send out a monthly newsletter. Whatever the reason, you will
occasionally need to send e-mails to many people, and you will need a relatively easy way to do so.

Specifically, we are going to discuss the following:

❑ Administering a mailing list

❑ Creating a mailing list

❑ Spam

❑ Opt-in and opt-out

So, are you ready to learn how to spam your Web site users? We hope not, because that is not what
we are going to do. Yes, we are going to use mailing lists. And yes, we are going to send out
“mass” e-mails. However, we are going to be responsible, and send e-mails only to those people
who have agreed to be recipients. Right? Let’s get started.

First Things First
Before you actually create the mailing list, you must have something that you intend to send to
your recipients. The train of thought usually goes like this: You decide that you have some informa-
tion you want to share with your users. This can be a newsletter, information about the next comic
convention, or Web site updates they may want to know about. You format the information you
wish to share, using plain text or HTML. You try to figure out how you are going to e-mail this
information to every member of your Web site. If you can figure out how to send it, you hope that
your users will be able to read and appreciate what you sent with their many types of e-mail clients.

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 423

What Do You Want to Send Today?
The first question is what you will send. You may already have some ideas. Maybe not. Suffice it to say
there are many different reasons to send out bulk messages. Here are a few:

❑ Web site notifications: These are important tidbits of information about your Web site. You will
want to let your users know you’ve improved the level of security for online transactions on
your site, for example.

❑ Newsletters: If you had a family Web site, for example, and wanted to let your whole family
know about the new addition to your family, you could send them a newsletter.

❑ Important announcements: “Our site will be down for 5 days. Sorry for the inconvenience.
We’ll let you know when it is back up.” (Oooh . . . an opportunity for two mailings!)

❑ Advertising: Perhaps you’ve partnered with an online comic book store to offer deals on rare
comics to your members, for example.

We are going to send out two different e-mails: Web site change notifications and a newsletter. The for-
mer will be sent to all members of the Web site. The latter will be sent to those who subscribe to the
newsletter only.

We are going to use HTML in our mass e-mail, of course. Because Chapter 10 taught you how to send
HTML in an e-mail, this should pose no problem at all. You can also e-mail links to an online version of
the HTML you are sending, so that those with text e-mail clients can see your hard work, as well.

Coding the Application
The first thing you’re going to do is to create the administration page, where you can add and remove
mailing lists. There are a few scripts to tackle, but because they all rely on each other to work, you need
to enter them all now. Hey . . . you’re the one who wanted to write some code. Let’s get cracking!

Try It Out Mailing List Administration
First, you’re going to create the file that will hold the server, username, password, and database values:

1. Open your favorite text editor, and enter the following code, making sure you use the proper
values for your server:

<?php

define(‘SQL_HOST’,’yourhost’);
define(‘SQL_USER’,’joeuser’);
define(‘SQL_PASS’,’yourpass’);
define(‘SQL_DB’,’yourdatabase’);
define(‘ADMIN_E-MAIL’, ‘your@e-mailaddress.com’);

?>

2. Save the file as config.php.

424

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 424

3. Now you’re going to create the tables. You can create them with your MySQL tool (such as
PHPMyAdmin), or you can simply enter the following code, save it as sql.php on your server,
and load it in your browser:

<?php
require(‘config.php’);

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

$sql = “CREATE DATABASE IF NOT EXISTS” . SQL_DB . “;”;

$res = mysql_query($sql) or die(mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql1 = <<<EOS
CREATE TABLE IF NOT EXISTS ml_lists (
ml_id int(11) NOT NULL auto_increment,
listname varchar(255) NOT NULL default ‘’,
PRIMARY KEY (ml_id)

) TYPE=MyISAM;
EOS;

$sql2 = <<<EOS
CREATE TABLE IF NOT EXISTS ml_subscriptions (
ml_id int(11) NOT NULL default ‘0’,
user_id int(11) NOT NULL default ‘0’,
pending tinyint(1) NOT NULL default ‘1’,
PRIMARY KEY (ml_id,user_id)

) TYPE=MyISAM;
EOS;

$sql3 = <<<EOS
CREATE TABLE IF NOT EXISTS ml_users (
user_id int(11) NOT NULL auto_increment,
firstname varchar(255) default ‘’,
lastname varchar(255) default ‘’,
e-mail varchar(255) NOT NULL default ‘’,
PRIMARY KEY (user_id)

) TYPE=MyISAM;
EOS;

$res = mysql_query($sql1) or die(mysql_error());
$res = mysql_query($sql2) or die(mysql_error());
$res = mysql_query($sql3) or die(mysql_error());
echo “Done.”;
?>

4. Next, you will create the admin page, where the administrator (that’s you!) can create, delete,
and rename mailing lists. Create the following code, and save it as admin.php:

<?php
require(‘config.php’);

425

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 425

?>

<html>
<head>
<title>Mailing List Administration</title>
</head>
<body>

<form method=”post” action=”admin_transact.php”>

<p>
Add Mailing List:

<input type=”text” name=”listname” maxlength=”255” />
<input type=”submit” name=”action” value=”Add New Mailing List” />

</p>

<p>
Delete Mailing List:

<select name=”ml_id”>

<?php

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql = “SELECT * FROM ml_lists ORDER BY listname;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

while ($row = mysql_fetch_array($result))
{
echo “ <option value=\”” . $row[‘ml_id’] . “\”>” . $row[‘listname’]

. “</option>\n”;
}

?>
</select>
<input type=”submit” name=”action” value=”Delete Mailing List” />

</p>

</form>

<p>
Send a quick message to users

</p>

</body>
</html>

5. The administrator needs the ability to send e-mails to the members of various mailing lists.
Otherwise, what was the point of creating the mailing lists in the first place? Okay, you know
the routine: Enter the following code, and save it as quickmsg.php:

426

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 426

<?php
require(‘config.php’);
?>

<html>
<head>
<title>Quick Message</title>
</head>
<body>

<form method=”post” action=”admin_transact.php”>

<p>
Choose Mailing List:

<select name=”ml_id”>
<option value=”all”>All</option>

<?php

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql = “SELECT * FROM ml_lists ORDER BY listname;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

while ($row = mysql_fetch_array($result))
{
echo “ <option value=\”” . $row[‘ml_id’] . “\”>” . $row[‘listname’]

. “</option>\n”;
}

?>
</select>

</p>

<p>Compose Message:</p>

<p>
Subject:

<input type=”text” name=”subject” />

</p>

<p>
Message:

<textarea name=”msg” rows=”10” cols=”60”></textarea>

</p>

<p>
<input type=”submit” name=”action” value=”Send Message” />

</p>

</form>

<p>

427

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 427

Back to mailing list administration
</p>

</body>
</html>

6. Okay, one more script. When the administrator clicks a button, you need to have a page that
handles the transactions. Enter the following, and save it as admin_transact.php:

<?php
require(‘config.php’);

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

if (isset($_POST[‘action’]))
{
switch ($_POST[‘action’])
{
case ‘Add New Mailing List’:
$sql = “INSERT INTO ml_lists (listname) VALUES (‘“ .

$_POST[‘listname’] . “‘);”;
mysql_query($sql)
or die(‘Could not add mailing list. ‘ . mysql_error());

break;

case ‘Delete Mailing List’:
$sql = “DELETE FROM ml_lists WHERE ml_id=” . $_POST[‘ml_id’];
mysql_query($sql)
or die(‘Could not delete mailing list. ‘ . mysql_error());

$sql = “DELETE FROM ml_subscriptions WHERE ml_id=” .
$_POST[‘ml_id’];

mysql_query($sql)
or die(‘Could not delete mailing list subscriptions. ‘ .
mysql_error());

break;

case ‘Send Message’:
if ((isset($_POST[‘msg’])) and (isset($_POST[‘ml_id’])))
{
if (is_numeric($_POST[‘ml_id’])) {
$sql = “SELECT listname FROM ml_lists WHERE ml_id=’” .

$_POST[‘ml_id’] . “‘“;
$result = mysql_query($sql,$conn)
or die(mysql_error());

$row = mysql_fetch_array($result);
$listname = $row[‘listname’];

} else {
$listname = “Master”;

}

$sql = “SELECT DISTINCT usr.e-mail, usr.firstname, usr.user_id “.
“FROM ml_users usr “ .

428

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 428

“INNER JOIN ml_subscriptions mls “ .
“ON usr.user_id = mls.user_id “ .
“WHERE mls.pending=0”;

if ($_POST[‘ml_id’] != ‘all’)
{
$sql .= “ AND mls.ml_id=” . $_POST[‘ml_id’];

}

$result = mysql_query($sql) or die(‘Could not get list of
e-mail addresses. ‘ . mysql_error());

$headers = “From: “ . ADMIN_E-MAIL . “\r\n”;
while ($row = mysql_fetch_array($result))
{
if (is_numeric($_POST[‘ml_id’])) {
$ft = “ You are receiving this message as a member of the “;
$ft .= $listname . “\n mailing list. If you have received”;
$ft .= “this e-mail in error, or would like to\n remove your”;
$ft .= “name from this mailing list, please visit the”;
$ft .= “following URL:\n”;
$ft .= “ http://” . $_SERVER[‘HTTP_HOST’] .

dirname($_SERVER[‘PHP_SELF’]) . “/remove.php?u=” .
$row[‘user_id’] . “&ml=” . $_POST[‘ml_id’];

} else {
$ft = “ You are receiving this e-mail because you subscribed”;
$ft .= “ to one or more\n mailing lists. Visit the following”;
$ft .= “ URL to change your subscriptions:\n”;
$ft .= “ http://” . $_SERVER[‘HTTP_HOST’] .

dirname($_SERVER[‘PHP_SELF’]) . “/user.php?u=” .
$row[‘user_id’];

}
$msg = stripslashes($_POST[‘msg’]) . “\n\n”;
$msg .= “———————\n”;
$msg .= $ft;

mail($row[‘e-mail’],
stripslashes($_POST[‘subject’]),
$msg,$headers) or die(‘Could not send e-mail.’);

}
}
break;

}
}

header(‘Location: admin.php’);

?>

That’s it for now. You still have the user functions to worry about, but you’ll tackle those in a bit. For
now, let’s load a few of these pages in your browser to see them in action; then we’ll figure out how they
work.

429

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 429

The first page of the mailing list application we want to take a look at is the Mailing List Administrator
page. Load admin.php in your browser. As you can see in Figure 13-1, you can create a new mailing list,
delete an existing mailing list, or send a quick message to users. Feel free to create a couple of new mail-
ing lists. Go crazy, have fun, get wacky. Good. Let’s move on.

Figure 13-1

Click the link at the bottom of the Mailing List Administrator page, “Send a quick message to users.” A
new page appears where you can compose a new message and send it to either a single mailing list, or all
users (see Figure 13-2). If you just created these pages, you don’t have any users yet. You can compose a
message, but it won’t go to anyone. You’ll need to create the user pages first, which you’ll do shortly.

How It Works
You first file, config.php, contains just five lines:

define(‘SQL_HOST’,’yourhost’);
define(‘SQL_USER’,’joeuser’);
define(‘SQL_PASS’,’yourpass’);
define(‘SQL_DB’,’yourdatabase’);
define(‘ADMIN_E-MAIL’, ‘your@e-mailaddress.com’);

These constants are created separately so that in the event that you make a change such as moving the
application to another server, or changing the password, it can be done in only one location. If this data
were in each file, any change would require modification of several files.

430

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 430

Figure 13-2

Include config.php in each file that requires access to MySQL like so:

require(‘config.php’);

You use require() instead of include() because if the file is not loaded, you want to halt loading of
the page. Another option would be to use include(), and then immediately test for the existence of one
of the constants. If it does not exist, you could then redirect the user to another page, which makes for a
more user-friendly experience.

As you can see here, the constants from config.php are used to make your connection:

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

$sql = “CREATE DATABASE IF NOT EXISTS” . SQL_DB . “;”;

$res = mysql_query($sql) or die(mysql_error());

mysql_select_db(SQL_DB,$conn);

431

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 431

Take notice of the CREATE DATABASE statement. There are a couple of things you should be aware of
about creating databases. If you already have a database (one that you created in another chapter, or if
your site is already using a database), it’s better to keep your mailing list tables in that database. You
don’t need extra databases because if your Web site spans multiple databases, you will need to create
multiple connections to those databases, and that is extra overhead that is just not necessary.

In addition, if there are any relationships between your tables from this application and tables from
other apps, they need to be in the same database. For example, if you have a user table that stores your
registered users for all applications, all of the applications that rely on that user table should reside in the
same database.

If you do need to create a new database, the CREATE DATABASE command may still not work if your site
is hosted by an Internet service provider (ISP). Some ISPs don’t allow programmed creation of
databases. If this is the case, you may need to go through your ISP to create the database (through
PHPMyAdmin, for example) and run sql.php. Just be sure to put the proper database name in the
code. See Chapter 9 for more information about creating databases.

This SQL is used to create the tables in your database:

$sql1 = <<<EOS
CREATE TABLE IF NOT EXISTS ml_lists (
ml_id int(11) NOT NULL auto_increment,
listname varchar(255) NOT NULL default ‘’,
PRIMARY KEY (ml_id)

) TYPE=MyISAM;
EOS;

$sql2 = <<<EOS
CREATE TABLE IF NOT EXISTS ml_subscriptions (
ml_id int(11) NOT NULL default ‘0’,
user_id int(11) NOT NULL default ‘0’,
pending tinyint(1) NOT NULL default ‘1’,
PRIMARY KEY (ml_id,user_id)

) TYPE=MyISAM;
EOS;

$sql3 = <<<EOS
CREATE TABLE IF NOT EXISTS ml_users (
user_id int(11) NOT NULL auto_increment,
firstname varchar(255) default ‘’,
lastname varchar(255) default ‘’,
e-mail varchar(255) NOT NULL default ‘’,
PRIMARY KEY (user_id)

) TYPE=MyISAM;
EOS;

Note there are three tables: ml_lists, ml_users, and ml_subscriptions. The ml_lists table contains two
columns: the unique ID (ml_id) and the name of the mailing list (listname). The ml_users table contains
four columns: the unique id (user_id), first and last name (firstname, lastname), and e-mail address
(e-mail).

432

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 432

The ml_subscriptions table is where most of the “work” is done when it comes to mailing lists. It con-
tains three columns: ml_id, user_id, and pending. The combination of ml_id and user_id must be
unique. (You don’t want to have the same user subscribed to the same mailing list more than once,
right?). The pending column is used to determine whether or not a user has confirmed his or her sub-
scription. We discuss the use of the pending column later in this chapter.

The following lines simply run the SQL queries to create the tables. As long as all three tables are created
(or already exist), you will see “Done” echoed to the screen. Otherwise, you will see an error message.

$res = mysql_query($sql1) or die(mysql_error());
$res = mysql_query($sql2) or die(mysql_error());
$res = mysql_query($sql3) or die(mysql_error());
echo “Done.”;

Next, let’s take a look at admin.php:

require(‘config.php’);

Now you should see why we put the connection values in a separate file. By doing this, all you need is a
single line to include the constants, and you can use them in this page.

Let’s pause here for a moment and talk about form submittal. A common practice is to post a form back
to itself, and you certainly could have done that here. When your page contains data that needs to be
inserted into a database, however, you need to think twice about a self-posting form. If the user were to
refresh or reload the page, all of your database functions would run again, and that could be disastrous.
You would end up with duplicate data, or delete records you didn’t mean to delete.

Obviously, you don’t want anything like that to happen, so in order to minimize the probability, you
post to a separate form called admin_transact.php. This page handles all of the necessary database
transactions, and then redirects back to the page from which you came. If the user reloads the page at
that point, no harm will come to your database.

<form method=”post” action=”admin_transact.php”>

You might notice that all of your buttons have the same name, “action,” each with a different value.
When posting the form, you will be accessing the $_POST[‘action’] variable to see which button was
pressed, and perform the appropriate actions. This allows you to use one script for multiple transactions,
rather than having to create a page with multiple forms, each posting to a different transaction page.

<input type=”submit” name=”action” value=”Add New Mailing List” />

Now you get all of the mailing lists available and wrap them in option tags so that they will appear on
your page in a drop-down select box.

<select name=”ml_id”>
<?php

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)

433

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 433

or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

$sql = “SELECT * FROM ml_lists ORDER BY listname;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

while ($row = mysql_fetch_array($result))
{
echo “ <option value=\”” . $row[‘ml_id’] . “\”>” .

$row[‘listname’] . “</option>\n”;
}

?>
</select>

This is the link to the e-mail portion of the admin’s functions, which is pretty self-explanatory:

Send a quick message to users

You should be able to figure out quickmsg.php fairly easily. Most of it is HTML, and the PHP code is
practically identical to the code used to build the select in admin.php. Feel free to cannibalize your own
code as often as you need.

Finally, we come to the real workhorse of the Mailing List Administrator application, admin_transact
.php. This page is the one to which you post your forms, and it will process that information, update the
database tables, and send out e-mails as required. Let’s take a look under the hood:

require(‘config.php’);

Remember seeing the preceding line in admin.php? Having your connection data in one file and includ-
ing it in each page makes your code much more efficient. Of course, you already knew that. Let’s move
on to create the connection to the database, and select it so that you can work with it:

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

Did the user click an “action” button?

if (isset($_POST[‘action’]))
{

Depending on which button was clicked, you’re going to perform one of three actions: create a new
mailing list, delete an old mailing list, or send a message to the users subscribing to a mailing list:

switch ($_POST[‘action’])
{

Not only must you delete the mailing list, like this:

434

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 434

case ‘Add New Mailing List’:
$sql = “INSERT INTO ml_lists (listname) VALUES (‘“ .

$_POST[‘listname’] . “‘);”;
mysql_query($sql)
or die(‘Could not add mailing list. ‘ . mysql_error());

break;

case ‘Delete Mailing List’:
mysql_query(“DELETE FROM ml_lists WHERE ml_id=” . $_POST[‘ml_id’])
or die(‘Could not delete mailing list. ‘ . mysql_error());

if anyone was subscribed to that mailing list, you must delete those subscriptions, too:

$sql = “DELETE FROM ml_subscriptions WHERE ml_id=” .
$_POST[‘ml_id’];

mysql_query($sql)
or die(‘Could not delete mailing list subscriptions. ‘ .
mysql_error());

break;

When you send a message, you want to let the user know which mailing list you are referring to. If the
mailing list ID (ml_id) is “all” instead of a number, you will want to reflect that as well:

case ‘Send Message’:
if ((isset($_POST[‘msg’])) and (isset($_POST[‘ml_id’])))
{
if (is_numeric($_POST[‘ml_id’])) {
$sql = “SELECT listname FROM ml_lists WHERE ml_id=’” .

$_POST[‘ml_id’] . “‘“;
$result = mysql_query($sql, $conn)
or die(mysql_error());

$row = mysql_fetch_array($result);
$listname = $row[‘listname’];

} else {
$listname = “Master”;

}

What follows is a more complicated SQL statement than you’ve written thus far, but not too difficult.
What’s happening here is that you are grabbing the e-mails, first names, and user id’s from the ml_users
table where the mailing list id (ml_id) matches their user id in the ml_subscriptions table. This is done
by using the INNER JOIN command in SQL. You also must not send any e-mails or newsletters to those
that are awaiting subscription confirmation, so select only those where pending = 0, or false. If pend-
ing = 1 (true), then that row is ignored.

$sql = “SELECT DISTINCT usr.e-mail, usr.firstname, usr.user_id” .
“FROM ml_users usr “ .
“INNER JOIN ml_subscriptions mls “ .
“ON usr.user_id = mls.user_id “ .
“WHERE mls.pending=0”;

435

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 435

If the administrator did not choose “all” in the select list, you must limit your selection to the specific
users that are subscribed to the mailing list the administrator selected. You do this by tacking on the AND
condition:

if ($_POST[‘ml_id’] != ‘all’)
{
$sql .= “ AND mls.ml_id=” . $_POST[‘ml_id’];

}

Now execute the previous SQL statement, and return the results:

$result = mysql_query($sql) or die(‘Could not get list of
e-mail addresses. ‘ . mysql_error());

You may remember the next step from Chapter 10. This is how you add the From: header to an e-mail. It
is fairly self-explanatory:

$headers = “From: “ . ADMIN_E-MAIL . “\r\n”;

The following pretty piece of work is nothing more than a way to build up a custom message, depend-
ing on whether the administrator is sending the e-mail to all mailing lists, or to a specific one:

while ($row = mysql_fetch_array($result))
{
if (is_numeric($_POST[‘ml_id’])) {
$ft = “ You are receiving this message as a member of the “;
$ft .= $listname . “\n mailing list. If you have received”;
$ft .= “this e-mail in error, or would like to\n remove your”;
$ft .= “name from this mailing list, please visit the”;
$ft .= “following URL:\n”;
$ft .= “ http://” . $_SERVER[‘HTTP_HOST’] .

dirname($_SERVER[‘PHP_SELF’]) . “/remove.php?u=” .
$row[‘user_id’] . “&ml=” . $_POST[‘ml_id’];

} else {
$ft = “ You are receiving this e-mail because you subscribed”;
$ft .= “ to one or more\n mailing lists. Visit the following”;
$ft .= “ URL to change your subscriptions:\n”;
$ft .= “ http://” . $_SERVER[‘HTTP_HOST’] .

dirname($_SERVER[‘PHP_SELF’]) . “/user.php?u=” .
$row[‘user_id’];

}

Wrap the message entered on the quickmsg.php form inside some extra disclaimer text before you send
it off to the mail() function:

$msg = stripslashes($_POST[‘msg’]) . “\n\n”;
$msg .= “--------------\n”;
$msg .= $ft;

mail($row[‘e-mail’],
stripslashes($_POST[‘subject’]),
$msg,$headers) or die(‘Could not send e-mail.’);

}

436

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 436

And away it goes, before you loop back to the top of your while loop and do it again with the next user.
Notice that you are looping through each e-mail address you have, and sending an e-mail to each one
using the mail() command. It is important to note that the page will not finish loading until it has sent
every e-mail. This works fine if you have a few e-mail addresses (a hundred or less). It has the added
benefit of allowing you (with slight modifications to the code) to personalize each e-mail with the per-
son’s first name (“Dear Billy-Bob,”).

If you need to send to more people and don’t want to deal with the long wait time, we recommend
putting all of your e-mail addresses in the BCC: field of the mail, using headers (as discussed in Chapter
10). You can’t personalize the e-mail, but the page will load much faster.

Of course, some day your site will be extremely popular, and you might have thousands of e-mails to
send. At that point, it might be time to start looking at a professional mailing list management applica-
tion. That, however, is beyond the scope of this book.

After the page is done with its transactions, redirect the user to the admin.php page. Most of the time,
this happens so quickly that you don’t notice the redirection at all.

header(‘Location: admin.php’);

Sign Me Up!
Now it’s time to look at the other half of the application, the Mailing List Signup form. This is the page
you send your users to that enables them to sign up for any of the mailing lists that you have created.
This application consists of user.php, user_transact.php, thanks.php, and remove.php. As
always, you’ll also be using the config.php file that you already created.

On the surface, when you view the page from the Web, it looks like a simple application. However,
there’s a lot going on inside. So let’s open it up and see what’s under the hood!

Try It Out Mailing List Signup
The first page you are going to create is the actual signup form:

1. Enter the following code in your favorite PHP editor and save it as user.php:

<?php
require(‘config.php’);
?>

<html>
<head>
<title>Mailing List Signup</title>
</head>
<body>

<form method=”post” action=”user_transact.php”>

<p>
Sign up for Mailing List:

437

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 437

</p>

<?php

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

if (isset($_GET[‘u’]))
{
$uid = $_GET[‘u’];
$sql = “SELECT * FROM ml_users WHERE user_id = ‘$uid’;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$e-mail = $row[‘e-mail’];

} else {
$e-mail = “”;

}
}
?>

<p>
E-mail Address:

<input type=”text” name=”e-mail” size=”40” value=”<?php echo

$e-mail;?>”/>
</p>

<p>
If you aren’t currently a member, please provide
your name:

First Name:

<input type=”text” name=”firstname” />

Last Name:

<input type=”text” name=”lastname” />

</p>

<p>
Select the mailing lists you want to receive:

<select name=”ml_id”>

<?php
$result = mysql_query(“SELECT * FROM ml_lists ORDER BY listname;”)
or die(‘Invalid query: ‘ . mysql_error());

while ($row = mysql_fetch_array($result))
{
echo “ <option value=\”” . $row[‘ml_id’] . “\”>” .

$row[‘listname’] . “</option>\n”;
}

?>

438

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 438

</select>
</p>

<p>
<input type=”submit” name=”action”

value=”Subscribe” />
</p>

</form>

</body>
</html>

2. Enter the transaction page by entering the following code in your PHP editor and saving it as
user_transact.php:

<?php
require(‘config.php’);

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

if (isset($_REQUEST[‘action’]))
{
$headers = “From: “ . ADMIN_E-MAIL . “\r\n”;
switch ($_REQUEST[‘action’])
{
case ‘Remove’:
$sql = “SELECT user_id FROM ml_users “ .

“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘;”;
$result = mysql_query($sql,$conn);

if (mysql_num_rows($result))
{
$row = mysql_fetch_array($result);
$user_id = $row[‘user_id’];
$url = “http://” . $_SERVER[‘HTTP_HOST’] .

dirname($_SERVER[‘PHP_SELF’]) .
“/remove.php?u=” . $user_id .
“&ml=” . $_POST[‘ml_id’];

header(“Location: $url”);
exit();

}
$redirect = ‘user.php’;
break;

case ‘Subscribe’:
$sql = “SELECT user_id FROM ml_users “ .

“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘;”;
$result = mysql_query($sql,$conn);

if (!mysql_num_rows($result))
{

439

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 439

$sql = “INSERT INTO ml_users “ .
“(firstname,lastname,e-mail) “.
“VALUES (‘“ . $_POST[‘firstname’] . “‘,” .
“‘“ . $_POST[‘lastname’] . “‘,” .
“‘“ . $_POST[‘e-mail’] . “‘);”;

$result = mysql_query($sql, $conn);
$user_id = mysql_insert_id($conn);

}
else
{
$row = mysql_fetch_array($result);
$user_id = $row[‘user_id’];

}

$sql = “INSERT INTO ml_subscriptions (user_id,ml_id) “ .
“VALUES (‘“ . $user_id . “‘,’” . $_POST[‘ml_id’] . “‘)”;

mysql_query($sql,$conn);

$sql = “SELECT listname FROM ml_lists “ .
“WHERE ml_id=” . $_POST[‘ml_id’];

$result = mysql_query($sql,$conn);
$row = mysql_fetch_array($result);
$listname = $row[‘listname’];

$url = “http://” . $_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) .
“/user_transact.php?u=” . $user_id .
“&ml=” . $_POST[‘ml_id’] . “&action=confirm”;

$subject = ‘Mailing list confirmation’;
$body = “Hello “ . $_POST[‘firstname’] . “\n” .

“Our records indicate that you have subscribed to the “ .
$listname . “ mailing list.\n\n” .
“If you did not subscribe, please accept our apologies. “ .
“You will not be subscribed if you do not visit the “ .
“confirmation URL.\n\n” .
“If you subscribed, please confirm this by visiting the “ .
“following URL:\n” . $url;

mail($_POST[‘e-mail’],$subject,$body,$headers);

$redirect = “thanks.php?u=” . $user_id . “&ml=” .
$_POST[‘ml_id’] . “&t=s”;

break;

case ‘confirm’:

if (isset($_GET[‘u’]) & isset($_GET[‘ml’]))
{
$sql = “UPDATE ml_subscriptions SET pending=0 “ .

“WHERE user_id=” . $_GET[‘u’] .
“ AND ml_id=” . $_GET[‘ml’];

mysql_query($sql, $conn);

$sql = “SELECT listname FROM ml_lists “ .

440

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 440

“WHERE ml_id=” . $_GET[‘ml’];
$result = mysql_query($sql,$conn);

$row = mysql_fetch_array($result);
$listname = $row[‘listname’];

$sql = “SELECT * FROM ml_users “ .
“WHERE user_id=’” . $_GET[‘u’] . “‘;”;

$result = mysql_query($sql,$conn);
$row = mysql_fetch_array($result);
$firstname = $row[‘firstname’];
$e-mail = $row[‘e-mail’];

$url = “http://” . $_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) .
“/remove.php?u=” . $_GET[‘u’] .
“&ml=” . $_GET[‘ml’];

// Send out confirmed e-mail
$subject = ‘Mailing List Subscription Confirmed’;
$body = “Hello “ . $firstname . “,\n” .

“Thank you for subscribing to the “ .
$listname . “ mailing list. Welcome!\n\n” .
“If you did not subscribe, please accept our apologies.\n”.
“You can remove this subscription immediately by “.
“visiting the following URL:\n” . $url;

mail($e-mail,$subject,$body,$headers);

$redirect = “thanks.php?u=” . $_GET[‘u’] . “&ml=” .
$_GET[‘ml’] . “&t=s”;

} else {
$redirect = ‘user.php’;

}
break;

default:
$redirect = ‘user.php’;

}
}

header(‘Location: ‘ . $redirect);

?>

3. You may have noticed when entering the last bit of code that you are redirecting your users to a
page called thanks.php. It would probably be a good idea to create that page now by entering
the following code and saving it as thanks.php:

<?php
require(‘config.php’);
?>

<html>
<head>

441

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 441

<title>Thank You</title>
</head>
<body>

<?php
$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

if (isset($_GET[‘u’]))
{
$uid = $_GET[‘u’];
$sql = “SELECT * FROM ml_users WHERE user_id = ‘$uid’;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$msg = “<h2>Thank You, “ . $row[‘firstname’] . “</h2>

”;
$e-mail = $row[‘e-mail’];

} else {
die(“No match for user id “ . $uid);

}
}

if (isset($_GET[‘ml’]))
{
$ml_id = $_GET[‘ml’];
$sql = “SELECT * FROM ml_lists WHERE ml_id = ‘“ . $ml_id . “‘;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$msg .= “Thank you for subscribing to the <i>” .

$row[‘listname’] . “</i> mailing list.
”;
} else {
die (“Could not find Mailing List $ml_id”);

}
} else {
die (“Mailing List id missing.”);

}

if (!isset($_GET[‘t’])) die(“Missing Type”);
switch ($_GET[‘t’])
{
case ‘c’:
$msg .= “A confirmation request has been sent “ .

“to $e-mail.

”;
break;

case ‘s’:
$msg .= “A subscription notification has been “ .

“sent to you at $e-mail.

”;
}
$msg .= “” .

“Return to Mailing List Signup page”;

442

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 442

echo $msg;
?>

</body>
</html>

4. One more file to go, and it’s a short one. The e-mail that you send has a link on it allowing your
users to remove themselves from the mailing list, if they desire. Enter that file now, and save it
as remove.php:

<?php
require(‘config.php’);

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

if ((isset($_GET[‘u’])) and (isset($_GET[‘ml’])))
{
$sql = “DELETE FROM ml_subscriptions “ .

“WHERE user_id=” . $_GET[‘u’] .
“ AND ml_id=” . $_GET[‘ml’];

$result = mysql_query($sql,$conn);
} else {
die(“Incorrect parameters passed for deletion”);

}

if ($result) {
$msg = “<h2>Removal Successful</h2>”;

} else {
$msg = “<h2>Removal Failed</h2>”;

}

$ml_id = $_GET[‘ml’];
$sql = “SELECT * FROM ml_lists WHERE ml_id = ‘“ . $ml_id . “‘;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$msg .= “You have been removed from the <i>” .

$row[‘listname’] . “</i> mailing list.
”;
} else {
$msg .= “Sorry, could not find Mailing List id#{$ml_id}”);

}

$msg .= “<a href=’user.php?u=” . $_GET[‘u’] .
“‘>Return to Mailing List Signup page”;

echo $msg;
?>

Excellent job! Now it’s time to test your code and figure out how it works. Follow these steps:

443

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 443

1. Open your browser and open user.php. You should see a form that looks very much like the
one in Figure 13-3.

Figure 13-3

2. Enter your e-mail address and your first and last name, choose a mailing list to subscribe to, and
click Subscribe.

You should see a Thank You screen (shown in Figure 13-4) and receive a confirmation e-mail at
the e-mail address you entered.

3. Open the confirmation e-mail. There will be a link at the bottom (or a nonlinked URL if you are
using a text e-mail client).

4. Click the link, and it takes you back to the Thank You page, this time thanking you for confirm-
ing your subscription.

You will get another e-mail informing you about your subscription, with a link that allows you to
remove yourself from the mailing list. Don’t click that link just yet. First you’re going to send an e-mail
to the mailing list you just subscribed to:

1. Open admin.php, and then click the link at the bottom, “Send a quick message to users.”

2. In the Quick Message page, choose the mailing list that you just subscribed to in the previous
steps, and enter a subject. Then type a quick message.

444

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 444

Figure 13-4

3. Click Send Message.

4. Open your e-mail client again, and read the message you should have received. At the bottom
of this e-mail is a link you can click to remove yourself from the mailing list.

5. Now, click the link.

You should see the Removal page (see Figure 13-5), with a message of success. If you send
another message to that mailing list, the message should not be sent to your e-mail address.

Figure 13-5

445

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 445

How It Works
By now, you know how config.php works. You know why we use it. We won’t insult your intelligence
by explaining again how it’s important to use this file to hold your MySQL connection info and pass-
word. We are also going to skip over parts of the code that we’ve touched on before. We certainly don’t
want to bore you!

Let’s take a look at user.php instead, shall we?

user.php
Typically, user.php loads empty, without any extra data. Occasionally, you may return to this page from
elsewhere, and will have the user id of the person loading the page. In this case, you tack on ?u=x to the
end of the URL (where x is the user id, such as 3). This bit of code detects the presence of that value:

if (isset($_GET[‘u’]))
{

and then puts it into a variable:

$uid = $_GET[‘u’];

and finally looks up the user’s e-mail address:

$sql = “SELECT * FROM ml_users WHERE user_id = ‘$uid’;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

If you find a row, grab the e-mail address and stick it into a variable:

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$e-mail = $row[‘e-mail’];

} else {
$e-mail = “”;

}

Then use that e-mail address as the default value for the e-mail field on the form. (How clever is that?)

E-mail Address:

<input type=”text” name=”e-mail” size=”40” value=”<?php echo

$e-mail;?>”/>

The following code is very similar to the code used on the admin.php page. It loops through the existing
mailing lists in the database and formats them on the page as options for the select field.

<select name=”ml_id”>

<?php
$result = mysql_query(“SELECT * FROM ml_lists ORDER BY listname;”)
or die(‘Invalid query: ‘ . mysql_error());

while ($row = mysql_fetch_array($result))

446

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 446

{
echo “ <option value=\”” . $row[‘ml_id’] . “\”>” .

$row[‘listname’] . “</option>\n”;
}

?>
</select>

The rest of user.php is boring HTML. Let’s take a look at the meat and potatoes of the user side of
things next.

user_transact.php
This is where the action happens, for the most part. Let’s take a look, shall we?

First, make the connection to the server, and select the database:

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

You will be building the e-mail message later. The parameter $headers will be the fourth parameter of
the mail() function, and will insert a From address in the e-mail.

$headers = “From: “ . ADMIN_E-MAIL . “\r\n”;

For more information about headers, see Chapter 10. When loading user_transact.php, you either
clicked a button named ‘action’ (POST), or action is in the URL as ?action=xyz (GET). Because it
can come across as a POST or a GET, you use $_REQUEST to grab the value. The variable $_REQUEST is
your “catch-all” predefined variable, which contains an associative array of all $_GET, $_POST, and
$_COOKIE variables.

if (isset($_REQUEST[‘action’]))
{

Current accepted values for ‘action’ are ‘Remove,’ ‘Subscribe,’ and ‘confirm.’ switch
($_REQUEST[‘action’])

{

If ‘action’ = ‘Remove’, you look up the user id in the ml_users database. If you find a user_id, you
pass that id on to remove.php, along with the mailing list id. Your job is done, so you redirect the user
to remove.php.

case ‘Remove’:
$sql = “SELECT user_id FROM ml_users “ .

“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘;”;
$result = mysql_query($sql,$conn);

if (mysql_num_rows($result))

447

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 447

{
$row = mysql_fetch_array($result);
$user_id = $row[‘user_id’];
$url = “http://” . $_SERVER[‘HTTP_HOST’] .

dirname($_SERVER[‘PHP_SELF’]) .
“/remove.php?u=” . $user_id .
“&ml=” . $_POST[‘ml_id’];

header(“Location: $url”);
exit();

}
$redirect = ‘user.php’;
break;

Note the exit() function immediately following header(). This is important, so the rest of the page is
not loaded. The end of each case statement contains a break so that the rest of the case statements are not
executed.

If the user clicks the Subscribe button, a number of things have to happen. First, you must look up the
e-mail address that was provided to see if the user already exists:

case ‘Subscribe’:
$sql = “SELECT user_id FROM ml_users “ .

“WHERE e-mail=’” . $_POST[‘e-mail’] . “‘;”;
$result = mysql_query($sql,$conn);

If the user does not exist (no rows were returned from your query), you will insert a new record in the
ml_users table. MySQL automatically assigns a user id.

if (!mysql_num_rows($result))
{
$sql = “INSERT INTO ml_users “ .

“(firstname,lastname,e-mail) “.
“VALUES (‘“ . $_POST[‘firstname’] . “‘,” .
“‘“ . $_POST[‘lastname’] . “‘,” .
“‘“ . $_POST[‘e-mail’] . “‘);”;

$result = mysql_query($sql, $conn);

To retrieve that user id, use the PHP function mysql_insert_id. The variable $conn is optional, but it’s
usually a good idea to include it. If you omit it, it will automatically use the last open connection. The
mysql_insert_id function will return a valid value only if the last SQL statement run resulted in a col-
umn being automatically incremented. In this case that did happen—the column is user_id, which is the
value you need for the next part of our code.

$user_id = mysql_insert_id($conn);
}

If the e-mail address was found in the database, you simply grab the user id from the record that was
returned. Either way, you now have a $user_id. You also have a mailing list id, retrieved from
$_POST[‘ml_id’]. That’s all you need to create a subscription record.

448

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 448

else
{
$row = mysql_fetch_array($result);
$user_id = $row[‘user_id’];

}

You may recall that the ml_subscriptions table contains three columns: user_id, ml_id, and pending. The
first two values you have. The last one, pending, should be set to 1 until the user confirms the subscrip-
tion. You initially set up the table to set pending to 1 as a default, so that column is automatically taken
care of. So you now have all the data you need to create a subscription, and just like that, you insert the
appropriate data into the subscriptions table.

$sql = “INSERT INTO ml_subscriptions (user_id,ml_id) “ .
“VALUES (‘“ . $user_id . “‘,’” . $_POST[‘ml_id’] . “‘)”;

mysql_query($sql,$conn);

Now all that is left to do is to notify the user. You do this in two ways: with a Thank You Web page that
confirms that the subscription was processed, and with an e-mail to request confirmation because you
don’t want people to be able to sign other people up for mail. It’s not a foolproof security measure, but it
will stop most abuse.

You’ll send the e-mail, and then redirect the user to the Thank You page. The first thing you do is get the
name of the mailing list, using the mailing list id. That’s because you want to tell the user in the e-mail
which mailing list he or she subscribed to, and it wouldn’t be too helpful to say it was mailing list #42!

$sql = “SELECT listname FROM ml_lists “ .
“WHERE ml_id=” . $_POST[‘ml_id’];

$result = mysql_query($sql,$conn);
$row = mysql_fetch_array($result);
$listname = $row[‘listname’];

Next, you build up the URL that will be at the bottom of the e-mail message. This URL directs the user
back to this same page (user_transact.php), this time with an ‘action’ of ‘confirm’ (the third
“action” choice, which we’ll look at shortly).

$url = “http://” . $_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) .
“/user_transact.php?u=” . $user_id .
“&ml=” . $_POST[‘ml_id’] . “&action=confirm”;

Then you build the subject and body of the message, concatenating the URL to the bottom, and send it
off with the mail() command:

$subject = ‘Mailing list confirmation’;
$body = “Hello “ . $_POST[‘firstname’] . “\n” .

“Our records indicate that you have subscribed to the “ .
$listname . “ mailing list.\n\n” .
“If you did not subscribe, please accept our apologies. “ .
“You will not be subscribed if you do not visit the “ .
“confirmation URL.\n\n” .

449

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 449

“If you subscribed, please confirm this by visiting the “ .
“following URL:\n” . $url;

mail($_POST[‘e-mail’],$subject,$body,$headers);

Once the mail has been sent, all that is left to do is send the user to the Thank You page. We will look at
the Thank You page shortly.

$redirect = “thanks.php?u=” . $user_id . “&ml=” .
$_POST[‘ml_id’] . “&t=s”;

break;

When the user receives the confirmation e-mail, he or she clicks the link at the bottom, which loads
user_transact.php again, this time with action=confirm. When confirming, you simply need to do
one thing—change the pending flag for the appropriate subscription to 0. Once that is done, redirect the
user to the Thank You page for confirmation, and send another e-mail informing the user of his or her
new subscription. You will also provide an easy means of removal in the e-mail.

The first thing to do is make sure the user id and mailing list id were passed to the function. If not, you
simply redirect the user to user.php.

case ‘confirm’:

if (isset($_GET[‘u’]) & isset($_GET[‘ml’]))
{

...

} else {
$redirect = ‘user.php’;

}

Next, find the subscription that matches the user id and mailing list id and update the pending column
to 0. Remember that the user_id and ml_id columns combined make up a primary key, so there can be
just one record for each set of possible values.

$sql = “UPDATE ml_subscriptions SET pending=0 “ .
“WHERE user_id=” . $_GET[‘u’] .
“ AND ml_id=” . $_GET[‘ml’];

mysql_query($sql, $conn);

Look familiar? It should—we are grabbing the mailing list name based on the mailing list id, just as we
did for the Subscribe case. Looks like this is a prime candidate for a function:

$sql = “SELECT listname FROM ml_lists “ .
“WHERE ml_id=” . $_GET[‘ml’];

$result = mysql_query($sql,$conn);

$row = mysql_fetch_array($result);
$listname = $row[‘listname’];

450

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 450

Now you need to retrieve the user’s e-mail address based on his or her user id, so you can send him or
her an e-mail. This should also look familiar:

$sql = “SELECT * FROM ml_users “ .
“WHERE user_id=’” . $_GET[‘u’] . “‘;”;

$result = mysql_query($sql,$conn);
$row = mysql_fetch_array($result);
$firstname = $row[‘firstname’];
$e-mail = $row[‘e-mail’];

The body of this message is a little different. You are building the subject and body parameters for the
mail() function and sending the mail to your user. Now you just need to send it on her way.

$url = “http://” . $_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) .
“/remove.php?u=” . $_GET[‘u’] .
“&ml=” . $_GET[‘ml’];

$subject = ‘Mailing List Subscription Confirmed’;
$body = “Hello “ . $firstname . “,\n” .

“Thank you for subscribing to the “ .
$listname . “ mailing list. Welcome!\n\n” .
“If you did not subscribe, please accept our apologies.\n”.
“You can remove this subscription immediately by “.
“visiting the following URL:\n” . $url;

mail($e-mail,$subject,$body,$headers);

Off your user goes, to the Thank You page:

$redirect = “thanks.php?u=” . $_GET[‘u’] . “&ml=” .
$_GET[‘ml’] . “&t=s”;

Finally, if ‘action’ somehow is set to something other than Remove, Subscribe, or confirm, you will
need to redirect the user somewhere else—in this case, user.php. The final line handles the redirection:

default:

$redirect = ‘user.php’;
}

}

header(‘Location: ‘ . $redirect);

The user_transact.php page is not terribly complicated. However, when you have a single page per-
forming multiple tasks, you need to be careful that all situations are handled correctly.

thanks.php
Next let’s look at the code in thanks.php. Most of it is familiar code that you have used elsewhere. You
should have no problem breezing through this one:

451

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 451

Connect to the database:

$conn = mysql_connect(SQL_HOST, SQL_USER, SQL_PASS)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn);

Get user info based on the user id. If you find it, display the title “Thank You,” followed by the user’s
first name. Also grab the user’s e-mail address. You’ll use it later.

if (isset($_GET[‘u’]))
{
$uid = $_GET[‘u’];
$sql = “SELECT * FROM ml_users WHERE user_id = ‘$uid’;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$msg = “<h2>Thank You, “ . $row[‘firstname’] . “</h2>

”;
$e-mail = $row[‘e-mail’];

} else {
die(“No match for user id “ . $uid);

}
}

Next, you get the listname, based on the mailing list id. If you find it, you build the message to include
“Thanks for subscribing.” Once you get past this point, you know you have the user id and mailing list id.

if (isset($_GET[‘ml’]))
{
$ml_id = $_GET[‘ml’];
$sql = “SELECT * FROM ml_lists WHERE ml_id = ‘“ . $ml_id . “‘;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$msg .= “Thank you for subscribing to the <i>” .

$row[‘listname’] . “</i> mailing list.
”;
} else {
die (“Could not find Mailing List $ml_id”);

}
} else {
die (“Mailing List id missing.”);

}

Now all you have to do is determine the type of message you’re displaying.

if (!isset($_GET[‘t’])) die(“Missing Type”);

It is crucial that the type be set. If not, stop processing this page. You don’t know what to thank the user for.

452

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 452

Then comes the custom part of the message. Currently, there are two types of Thank You messages:
“A confirmation request has been sent to . . .”, and “A subscription notification has been sent . . .”

switch ($_GET[‘t’])
{
case ‘c’:
$msg .= “A confirmation request has been sent “ .

“to $e-mail.

”;
break;

case ‘s’:
$msg .= “A subscription notification has been “ .

“sent to you at $e-mail.

”;
}

Finally, you finish the page by putting a link back to user.php, and displaying the page.

$msg .= “” .
“Return to Mailing List Signup page”;

echo $msg;

remove.php
There are two ways for a user to remove him or herself from a mailing list. The first way is for the user
to go to user.php, enter the e-mail address, choose the mailing list, and click the Remove button. The
second way is via a link that you conveniently include at the end of e-mails that are sent to the mailing
list recipients.

The remove.php page requires two parameters, user ID and mailing list ID. You are removing a database
record from the ml_subscriptions table, and you will recall that those two values are what make each
record unique. You can easily get that data from the e-mail link; it’s embedded as part of the URL.

However, the user.php form forces you to take one extra step. You get the mailing list id from the mail-
ing list choice, but you have only an e-mail address for the user. Therefore, you will need to do a lookup
with that e-mail address. As you’ll no doubt recall, the Remove button on user.php loads the user_
transact.php page, and when the ‘action’ is Remove, you do a lookup for user_id based on the
e-mail address, and build the URL for remove.php. You then redirect the user to remove.php with the
correct parameters. Time for remove.php to do its job!

You can’t just assume that remove.php received the appropriate variables. You test to ensure they are
set and run the DELETE query.

if ((isset($_GET[‘u’])) and (isset($_GET[‘ml’])))
{
$sql = “DELETE FROM ml_subscriptions “ .

“WHERE user_id=” . $_GET[‘u’] .
“ AND ml_id=” . $_GET[‘ml’];

$result = mysql_query($sql,$conn);
} else {
die(“Incorrect parameters passed for deletion”);

}

453

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 453

That was easy, but there are a couple of things you still need to do, like build the page! Don’t quit on us
now. Of course, first, you must make sure the deletion worked. Announce the results in big letters!

if ($result) {
$msg = “<h2>Removal Successful</h2>”;

} else {
$msg = “<h2>Removal Failed</h2>”;

}

Using the mailing list id, you do a lookup for the name of the mailing list and build the page’s message:

$ml_id = $_GET[‘ml’];
$sql = “SELECT * FROM ml_lists WHERE ml_id = ‘“ . $ml_id . “‘;”;
$result = mysql_query($sql)
or die(‘Invalid query: ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);
$msg .= “You have been removed from the <i>” .

$row[‘listname’] . “</i> mailing list.
”;
} else {
$msg .= “Sorry, could not find Mailing List id#{$ml_id}”);

}

Finally, you add a link back to user.php at the bottom of the page and echo it to the screen.

$msg .= “<a href=’user.php?u=” . $_GET[‘u’] .
“‘>Return to Mailing List Signup page”;

echo $msg;

Mailing List Ethics
There are a couple of ethical issues you should know about when dealing with the world of mailing lists,
namely spam and opt-in/opt-out. This section represents our personal soap box for airing our opinions
about them.

A Word About Spam (and SPAM)
With the advent of the computer, mailing lists have been brought to a whole new level. Now you can be
(and no doubt are) told on a daily basis that Candy really wants you to visit her Web site, and that a little
blue pill will solve all of your personal problems. Yes, occasionally an e-mail sits in your Inbox inform-
ing you of new job postings, new posts on PHPBuilder.com, or tour dates for Jimmy Buffett. But we
think you know what mailing lists are primarily used for: spam!

For those of you just crawling out of a suspended animation chamber, spam is a term used to describe a
“shotgun” approach to advertising. You simply send your e-mail advertisement to as many people as
you possibly can, in the hopes that a certain small percentage of them will actually respond. The term

454

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 454

“spam” was given to this practice in honor of the famous Monty Python sketch in which restaurant
patrons choose their meal from a menu in which every dish contains SPAM. (Back in the 1930s, the won-
derful people at Hormel blessed us with a delicious luncheon meat called Spiced Ham. A contest and a
$100 prize later, it was renamed “SPAM.” The rest is history. Really—visit their Web site, www.spam.com,
to learn more.)

In the Monty Python sketch, a group of Vikings drowns out the sketch with choruses of “Spam, spam,
spam, spam . . .” Although it is a very funny sketch, e-mail spam does not seem to elicit the same
response.

What is our point? SPAM is a luncheon meat. You spell it in all capital letters, and you enjoy it on your
sandwiches. Spam is another name for UCE, or unsolicited commercial e-mail. It is spelled in all lower-
case, and we shun it.

The bottom line: Don’t use mailing lists to send spam. Your mother would be very disappointed.

Opt-In vs. Opt-Out
You may have heard these terms before. What do they mean? To most of your users, probably not much.
They simply answer the questions on your registration, read the fine print (as all users do, of course),
and click the Submit button.

However, you aren’t a user any more. At least, not on your own site. You are the administrator. You need
to understand the difference between opt-in and opt-out because it may mean the difference between
annoyance and acceptance for your users.

Opt-in and opt-out are fancy ways of saying “What is the default choice for our users?” Opt-in means
the user is not currently scheduled to receive that newsletter, but he or she may opt to subscribe.
Obviously, opt-out is the opposite—your user will automatically receive notifications unless he or she
opts to remove him- or herself from that mailing list.

Why the difference? As the administrator, you may sometimes have to walk a fine line between satisfying
your advertisers (the ones giving you money to keep your site alive) and your users (the ones visiting your
site, keeping your advertisers happy by driving up the number of hits). If an advertiser pays you enough,
you might agree to automatically send advertisements from that company unless the user explicitly
chooses not to receive them (opt-out).

However, you might have a newsletter you send once per week that contains, for example, details of
comic conventions throughout the country (or even the world). Not all visitors to your site will be inter-
ested in that, but if any are, they can subscribe to the newsletter so they will always be notified (opt-in).

As we mentioned, you walk a fine line when choosing between the two. Because this is a new Web site
for you, the decision might not be that difficult. But as your site grows, interest increases, and companies
want to advertise with you, you’ll need to make these important decisions. For now, we suggest you
make all mailing lists opt-in, with the exception of important site announcements.

455

Mailing Lists

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 455

Summary
You have just created a nice, relatively simple maillist subscription application. You have the ability to
create new mailing lists, delete old ones, and send e-mails to multiple recipients. Users can subscribe
and unsubscribe to any mailing lists, and you added a step for confirmation to help stamp out abuse.

We hope you come away from this chapter with an understanding of the difference between good, infor-
mative mass e-mails and spam.

Mailing lists are good. Spam is bad. Any questions? Good. Next let’s take a look at how to sell your
SPAM collection on your Web site.

456

Chapter 13

18 557440 Ch13.qxd 2/6/04 9:17 AM Page 456

14
Online Selling: A Quick

Way to E-Commerce

Some of us cringe when we hear the word “e-commerce” and the phrase “selling over the
Internet.” Perhaps we’ve had a bad experience ourselves, or the thought of opening an online store
is just too overwhelming. Even though this is the part of the book that all geeks out there probably
dread reading, we’re here to show you that e-commerce is really not so bad, and that pretty much
anyone can do it.

However, just because anyone can do it doesn’t mean it’s always done the right way. Done the
wrong way, your site can look downright cheesy, but done the right way, your site can look profes-
sional and inviting, and become an excellent resource for your visitors and potential customers.
There are definite, if unwritten, guidelines for selling things over the Web and we want to make
sure you do things the right way.

Selling things from your Web site can not only make you some extra cash; it can enhance your
relationship with your Web site visitors (if e-commerce is not your site’s primary function). In the
case of our comic book fan site, offering pertinent items can make your site more interactive and
interesting and bring visitors back again to see what new items you have for sale. True comic book
fans will appreciate the niche of items you are providing, especially if some of the items are unique
or hard to come by.

In this chapter, we discuss:

❑ Creating a simple shopping cart script

❑ Other ideas to improve your script

❑ E-commerce basics

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 457

Adding E-Commerce to the
Comic Book Fan Site

It’s time to show you how you can easily incorporate an e-commerce section on our Comic Book
Appreciation fan site. You will need a few things to get started:

❑ Something to sell

❑ Some mechanism for your customers to pick what they want to buy

❑ Some way for your customers to pay for what they want to buy

❑ Some process to get the merchandise to your customers

Let’s break it down (break dancing gear optional) and talk about each of these things individually.
The first two we can help you with; the second two are really outside the scope of this book, beyond a
general discussion.

Something to Sell
Before you can sell something, you have to have something to sell. Duh. Next topic. No, seriously, retail-
ers spend millions researching what will sell and what won’t, what the hottest trends are, and what the
latest technology has to offer. All that being said, your ideas for products will probably come from one or
more of the following categories:

❑ Your own knowledge: You will most likely know what your customers want based on your
inherent knowledge of the focus of your Web site. For example, if you have a site for collectors
of old tractors, you probably know what products would appeal to your typical customer
because you are the typical customer.

❑ Something you yourself couldn’t easily find: You also may have been looking for a specific
product or group of products, only to find that they do not exist on one particular site until you
create it and pull them all together. (For example, www.giftsforengineers.com was created
to be a compilation of products that appeal to engineers.)

❑ Your own inventions: Another item you might sell from your site is a new invention or design
you have created from your little old brain. Many budding artists and inventors sell their stuff
on the Web, where they can reach a multitude of potential buyers.

❑ Promotion of your site: Many other Web sites offer promotional items for sale that tout the URL
of their site. This acts as a “win-win” for both parties; the customers can proclaim their support
for a cool site and the site makes a few bucks and gets its name out there for all to see.

So whether you’re reinventing the wheel, selling specific types of wheels, taking a bunch of wheels and
putting them together, or selling wheels with your name on them, you must create a product base, and it
may not be as easy as it looks.

458

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 458

For our CBA site, we will be selling items from a few different categories. To spice things up a bit, we
decided it would be great to have some fun with this:

❑ T-shirts, bumper stickers, and coffee mugs with the CBA logo, from the promotional category

❑ Superhero suits customizable with color schemes and monogrammed torso letters

❑ Two different types of grappling hooks for all our superheroes’ needs

We will be expanding on these products later and adding them to our product catalog (that is, the
products table in our database).

A Shopping Cart
Now that we know what we are going to sell, we have to have some way for our customers to choose
the specific products they want to buy; this involves a shopping cart. You can hook yourself up with
ready-made shopping cart software, or you can use a cart straight from a programming script, such as
PHP (or CGI, or whatever). Because we’re on this topic, we may as well get a little crazy and talk a little
bit about the pros and cons of each.

Shopping Cart Software
There are numerous shopping cart software programs that can easily hook your customers up and make
it easy for them to pick what they want. While these programs can be expensive, they can also take care
of things such as security, complex product option selection, maintaining customer information, and
keeping track of previously placed orders.

An example of shopping cart software is Cart32. Available at www.cart32.com, this is a widely used
shopping cart program that provides numerous configuration options for a Webmaster. Features include
Web-based administration of your cart and pending/sent orders, the ability to use your own database or
theirs to store product and customer information, automatic credit card processing and e-mail confirma-
tions, complex product options and discount structures, online tracking through the major shipping carri-
ers for your customers to track their orders, inventory management, and customization of the look of your
cart. The costs are $29.95 to set up and $29.95 per month if you have Cart32 host the cart portion of your
site for you. Many Web hosting companies have chosen Cart32 for the cart they offer to their customers.

These types of software programs are popular because they enable you to get your store up and running
with relative ease and because they take care of the security issues for you.

Your Own Cart Software Code
Remember that whenever you depend on someone else to supply a portion of your site, you are at the
mercy of their servers and their software. If they are hosting your shopping cart for you, when their site
is down, so is yours. If their servers catch a virus, it affects you and your customers, too. Plus, there may
be a function you need that they don’t offer, or the cost may be prohibitive for your newly created site.
Whatever the reason, some of you may want to code your own script, and for those of you brave enough
to tread these waters, let’s go!

459

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 459

We’ll start with a very simple shopping cart system that will consist of several files:

❑ create.php: Creates the main database and the necessary tables.

❑ createtemp.php: Creates a temporary table to store shopping cart information before the
customer actually checks out.

❑ products.php: Populates the database with product information.

❑ cbashop.php: Acts as the home page for our little store and lists our available products.

❑ getprod.php: Retrieves detailed information about a single product.

❑ add.php: Adds a product to our shopping cart.

❑ cart.php: Displays the contents of our shopping cart.

❑ change.php: Allows us to change the quantity of an item in our shopping cart.

❑ delete.php: Deletes an item from the shopping cart.

❑ checkout.php: The first step in the checkout process; this is where the customer enters billing
and shipping information.

❑ checkout2.php: The second step in the checkout process; this is where customers verify the
accuracy of their orders and make any last-minute changes.

❑ checkout3.php: The final step of the checkout process, where the customer actually sends the
order to us, and receives an order number and confirmation. The information is put into the
database and deleted from the temporary table, a customer number is assigned (if it’s a new
customer), and an order number is assigned, as well. E-mail confirmations are sent to the
customer and to us.

Try It Out Defining the Database and Tables
1. Open your text editor and type the following code:

<?php
//connect to the database - either include a connection variable file or
//type the following lines:
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//Create the ecommerce database
if (mysql_create_db(“ecommerce”)) {

echo “Woo hoo! Database created!”;
}
else echo “Sorry, try creating the database again.”;
mysql_select_db (“ecommerce”);

//Define the product table
$query = “CREATE TABLE products (

prodnum CHAR(5) NOT NULL,
name VARCHAR(20) NOT NULL,
proddesc TEXT NOT NULL,
price DEC (6,2) NOT NULL,
dateadded DATE NOT NULL,

460

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 460

PRIMARY KEY(prodnum))”;

$product = mysql_query($query)
or die(mysql_error());

//Define the customer table
$query2 = “CREATE TABLE customers (

custnum INT(6) NOT NULL AUTO_INCREMENT,
firstname VARCHAR (15) NOT NULL,
lastname VARCHAR (50) NOT NULL,
add1 VARCHAR (50) NOT NULL,
add2 VARCHAR (50),
city VARCHAR (50) NOT NULL,
state CHAR (2) NOT NULL,
zip CHAR (5) NOT NULL,
phone CHAR (12) NOT NULL,
fax CHAR (12),
email VARCHAR (50) NOT NULL,
PRIMARY KEY (custnum))”;

$customers = mysql_query($query2)
or die(mysql_error());

//Define the general order table
$query3 = “CREATE TABLE ordermain (

ordernum INT(6) NOT NULL AUTO_INCREMENT,
orderdate DATE NOT NULL,
custnum INT(6) NOT NULL,
subtotal DEC (7,2) NOT NULL,
shipping DEC (6,2),
tax DEC(6,2),
total DEC(7,2) NOT NULL,
shipfirst VARCHAR(15) NOT NULL,
shiplast VARCHAR(50) NOT NULL,
shipcompany VARCHAR (50),
shipadd1 VARCHAR (50) NOT NULL,
shipadd2 VARCHAR(50),
shipcity VARCHAR(50) NOT NULL,
shipstate CHAR(2) NOT NULL,
shipzip CHAR(5) NOT NULL,
shipphone CHAR(12) NOT NULL,
shipemail VARCHAR(50),
PRIMARY KEY(ordernum)) “;

$ordermain = mysql_query($query3)
or die(mysql_error());

//Define the order details table
$query4 = “CREATE TABLE orderdet (

ordernum INT (6) NOT NULL,
qty INT(3) NOT NULL,
prodnum CHAR(5) NOT NULL,
KEY(ordernum))”;

$orderdet = mysql_query($query4)

461

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 461

or die(mysql_error());

?>

2. Save this as create.php.

3. Run the file from your browser.

How It Works
You can see that several things are accomplished in this script. We now have a new database called
“ecommerce” with four tables in it. The first table is named products and contains the list of products
available.

Fieldname Type Description of What It Stores

prodnum CHAR(5) The individual product number assigned to each product.

name VARCHAR(20) A brief title for the product, such as “CBA Logo T-shirt.”

proddesc TEXT A longer description we can use on the individual page for that
product. May contain HTML code.

price DEC(6,2) Price of the product up to 999.99.

dateadded DATE Date the product was added to the site.

The next table is named customers and contains the list of customers and their information.

Fieldname Type Description of What It Stores

custnum INT(6) The individual customer number assigned to each customer.
This will auto increment.

firstname VARCHAR(15) Customer’s first name.

lastname VARCHAR(50) Customer’s last name.

add1 VARCHAR(50) Customer’s address: line 1.

add2 VARCHAR(50) Customer’s address: line 2 (can be null).

city VARCHAR(50) Customer’s city.

state CHAR(2) Customer’s state.

zip CHAR(5) Customer’s zip code.

phone CHAR(12) Customer’s phone number (in xxx-xxx-xxxx format).

fax CHAR(12) Customer’s fax number (same format as phone number, can
be null).

email VARCHAR(50) Customer’s e-mail address.

462

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 462

The next table you create is called ordermain and contains the main order information.

Fieldname Type Description of What It Stores

ordernum INT(6) The individual number assigned to each order. This will auto-
increment and is the primary key.

orderdate DATE Date the order was placed.

custnum INT(6) Number of the customer who placed the order.

subtotal DEC(7,2) Subtotal of the order before tax and shipping, up to 9999.99.

shipping DEC(6,2) Shipping costs for the order, up to 999.99.

tax DEC(6,2) Tax on the order, up to 999.99.

total DEC(7,2) Total of the order, up to 9999.99.

shipfirst VARCHAR(15) First name of the shipping contact for this order.

shiplast VARCHAR(50) Last name of the shipping contact.

shipadd1 VARCHAR(50) Shipping contact’s address: line 1.

shipadd2 VARCHAR(50) Shipping contact’s address: line 2 (can be null).

shipcity VARCHAR(50) Shipping contact’s city.

shipstate CHAR(2) Shipping contact’s state.

shipzip CHAR(5) Shipping contact’s zip code.

shipphone CHAR(12) Shipping contact’s phone number (in xxx-xxx-xxxx format).

shipemail VARCHAR(50) Shipping contact’s e-mail address.

The fourth and final table is named orderdet and contains a detailed list of the products in each order.

Fieldname Type Description of What It Stores

ordernum INT(6) The order number (note this is designated a “key” and not
“primary key.”

qty INT (3) How many of the item the customer wants.

productnum CHAR(5) The product associated with this order.

We now have a mechanism set up so that we can store all our products, all our customers, and all the
information associated with the orders they place.

Try It Out Adding Your Products
Now let’s begin by filling the products database:

463

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 463

1. Open your text editor and type the following program:

<?php
//connect to the database - either include a connection variable file or
//type the following lines:
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);

$query = “INSERT INTO products VALUES (
‘00001’, ‘CBA Logo T-shirt’,
‘This T-shirt will show off your CBA connection.
Our t-shirts are high quality and 100% preshrunk cotton.’,
17.95, ‘2003-08-01’),
(‘00002’,’CBA Bumper Sticker’,
‘Let the world know you are a proud supporter of the
CBA Web site with this colorful bumper sticker.’,
5.95, ‘2003-08-01’),
(‘00003’, ‘CBA Coffee Mug’,
‘With the CBA logo looking back at you over your
morning cup of coffee, you\’re sure to have a great
start to your day. Our mugs are microwave and dishwasher
safe.’,
8.95, ‘2003-08-01’),
(‘00004’, ‘Superhero Body Suit’,
‘We have a complete selection of colors and sizes for you
to choose from. This body suit is sleek, stylish, and
won\’t hinder your crime-fighting or evil scheming abilities.
We also offer your choice in monogrammed letter applique.’,
99.95, ‘2003-08-01’),
(‘00005’, ‘Small Grappling Hook’,
‘This specialized hook will get you out of the tightest
places. Specially designed for portability and stealth,
please be aware that this hook does come with a weight limit.’,
139.95, ‘2003-08-01’),
(‘00006’, ‘Large Grappling Hook’,
‘For all your heavy-duty building-to-building swinging needs,
this large version of our grappling hook will safely transport
you throughout the city. Please be advised however that at
50 pounds, this is hardly the hook to use if you\’re a lightweight.’,
199.95, ‘2003-08-01’)”;

$result = mysql_query($query)
or die(mysql_error());

echo “Products added successfully!”;

?>

2. Save it as products.php.

3. Open the file in your browser.

464

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 464

How It Works
We started our script with a connection to the MySQL server; then we made sure our database was the
“active” one.

We then inserted each of our products into the products table, while keeping the values in the same
order as we used when creating the table:

❑ prodnum

❑ name

❑ proddesc

❑ price

❑ dateadded

You’ll notice that although we assigned sequential numbers to our products, we are not using the
auto-increment feature, because in the real world, you may wish to assign product numbers based on
category, distributor/manufacturer, or other numbering scheme; these product IDs may include letters
and numbers.

Because we had no errors and our query didn’t die, we should have seen the “Products added success-
fully” statement, and our products should now be in the database.

If you don’t have faith and believe that they’re really in there, you can reaffirm your query with this
small test program (save this as producttest.php and run it from your browser):

<?php
//connect to the database - either include a connection variable file or
//type the following lines:
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
$query = “SELECT * FROM products”;
$results = mysql_query($query)

or die(mysql_error());

?>
<HTML>
<HEAD>
<TITLE>Product List</TITLE>
</HEAD>
<BODY>
<table>

<tr>
<td width=’10%’>Product Number</td>
<td width=’20%’>Name</td>
<td width=’50%’>Description</td>
<td width=’10%’>Price</td>
<td width=’10%’>Date Added</td>
</tr>
<tr>

465

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 465

<?php
while ($row = mysql_fetch_array($results)) {

extract ($row);
echo “<td width=’10%’>”;
echo $prodnum;
echo “</td><td width=’20%’>”;
echo $name;
echo “</td><td width=’50%’>”;
echo $proddesc;
echo “</td><td width=’10%’>”;
echo $price;
echo “</td><td width=’10%’>”;
echo $dateadded;
echo “</td></tr>”;
}

?>

</table>
</BODY>
</HTML>

This program asks MySQL to give you all the products from the products table and populate an HTML
table with the results. Each row is created while the rows are still being fetched. When it’s complete, you
should see the screen depicted in Figure 14-1.

Figure 14-1

466

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 466

Now that we have everything ready to go, let’s write the code that shows us more information about a
specific product.

Try It Out Creating the Store Home Page
Open your text editor and save the following as cbashop.php. This will act as our e-commerce home
page and will list all the available products we have for sale. Unfortunately, we can’t give you the
images through this book, but you can download them from our source Web site, www.wrox.com.

<?php
//connect to the database - either include a connection variable file or
//type the following lines:
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
$query = “SELECT * FROM products”;
$results = mysql_query($query)

or die(mysql_error());

?>
<HTML>
<HEAD>
<TITLE>Comic Book Appreciation Site Product List</TITLE>
</HEAD>
<BODY>
<div align=’center’>
Thanks for visiting our site! Please see our list of awesome
products below, and click on the link for more information:

<table width=’300’>

<tr>
<?php

// Show only Name, Price and Image
while ($row = mysql_fetch_array($results)) {

extract ($row);
echo “<td>”;
echo “”;
echo “THUMBNAIL
IMAGE</td>”;
echo “<td>”;
echo “”;
echo $name;
echo “</td>”;
echo “<td>”;
echo “”;
echo $price;
echo “</td></tr>”;
}

?>

</table>
</div>

</BODY>
</HTML>

467

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 467

Your screen should now look like that shown in Figure 14-2.

Figure 14-2

How It Works
First, we connected to the database just like we do every time. You might consider putting this info in an
include file for simplicity’s sake. Then we listed our intro information, “welcome to our site,” blah blah
blah—you know the routine. We’ve tried to keep it simple here, but in the real world this would look a
lot fancier.

Then we got to the meat of the page, the actual products. We had our table populate a new row so long
as there were results still being retrieved from the database with our while statements. When the query
was finished getting results, we ended the table.

We also included a link to each of our products from either the picture of the item, the name of the item,
or the price of the item. You can see an example in these lines:

echo “”;
echo “THUMBNAIL
IMAGE</td>”;

468

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 468

The URL then becomes http://localhost/getprod.php?prodid=0001, or something similar,
depending on what product the user clicks. The program inserts the product ID number and sends it to
the server so that the appropriate data can be retrieved.

Try It Out Viewing the Products
You are now going to create the page that displays the details of each product. You know the drill. . . .
When you’re done entering this in your text editor, save this file as getprod.php.

<?php
session_start();
//connect to the database - either include a connection variable file or
//type the following lines:
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
$prodid=$_REQUEST[‘prodid’];
$query = “SELECT * FROM products WHERE prodnum=’$prodid’”;
$results = mysql_query($query)

or die(mysql_error());
$row = mysql_fetch_array($results);
extract ($row);
?>
<HTML>
<HEAD>
<TITLE><?php echo $name ?></TITLE>
</HEAD>
<BODY>
<div align=’center’>
<table width=’500’ cellpadding = ‘5’>

<tr>
<?php

echo “<td>IMAGE</td>”;
echo “<td>”;
echo “”;
echo $name;
echo “
”;
echo $proddesc;
echo “
”;
echo “Product Number: “;
echo $prodnum;
echo “
Price: “;
echo $price;
echo “</td>”;

?>
</tr>

<tr>
<td>

</td>
<td><form method=”POST” action=”add.php”>

Quantity:
<input type=”text” name=”qty” size=”2”>

469

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 469

<input type=”hidden” name=”prodnum” value=”<?php echo $prodnum ?>”>
<input type=”submit” name=”Submit” value=”Add to cart”>
</form>

<form method = “POST” action=”cart.php”>
<input type=”submit” name=”Submit” value=”View cart”>

</form>
</td>
</tr>

</table>
Go back to the main page
</div>
</BODY>
</HTML>

We chose to click the Superhero Body Suit, so our screen looks like that shown in Figure 14-3 (again, the
images would be shown in place of the “IMAGE” marker there).

Figure 14-3

470

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 470

How It Works
First, we start a session for the customer. Then we again connect to the database. From there we have the
following:

$prodid=$_REQUEST[‘prodid’];
$query = “SELECT * FROM products WHERE prodnum=’$prodid’”;
$results = mysql_query($query)

or die(mysql_error());
$row = mysql_fetch_array($results);
extract ($row);

In this block of code, we first take prodid, which came from the URL, and rename it so we can easily
use it in our MySQL queries. In the next line, we query the products table for the appropriate product
ID. We then run the query and extract the results so we can use them.

In the next several lines, we build a table and display the information straight from the database. Then
we have the following:

<td><form method = “POST” action=”add.php”>
Quantity:

<input type=”text” name=”qty” size=”2”>
<input type=”hidden” name=”prodnum” value=”<?php echo $prodnum ?>”>

<input type=”submit” name=”Submit” value=”Add to cart”>
</form>

Here we have created a form that calls to action the add.php file (which we’ll create in a moment) and
passes the only real variables we care about: the product number (prodnum) and the quantity (qty).

The following gives the customer the option of viewing the current contents of the shopping cart. You
can also supply this in the form of a link, but we chose to offer it as a button in this case.

<form method = “POST” action=”cart.php”>
<input type=”submit” name=”Submit” value=”View cart”>

</form>
</td>

We also gave our customers the option to return to the main page.

Try It Out Creating a Table for the Shopping Cart
Create a temporary table to store the items in the customer’s cart before he or she checks out.

This file will be called createtemp.php:

<?php
//connect to the database - either include a connection variable file or
//type the following lines:
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

471

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 471

die (“Hey loser, check your server connection.”);

mysql_select_db (“ecommerce”);

//Define the temp table
$query = “CREATE TABLE carttemp(

hidden INT(10) NOT NULL AUTO_INCREMENT,
sess CHAR(50) NOT NULL,
prodnum CHAR(5) NOT NULL,
quan INT(3) NOT NULL,
PRIMARY KEY (hidden),
KEY(sess))”;

$temp = mysql_query($query)
or die(mysql_error());

?>

How It Works
Hey, guess what? You’re right: We had to connect to the database again.

Then we created a temporary table that will “hold” the items while the customer continues browsing and
before they actually check out. We didn’t want to populate the other tables with this information yet because
our customers may decide not to go through with the order and we would have assigned them order num-
bers for orders that are never sent. This can really mess up your accounting and tracking systems.

To keep each entry separate, we create a hidden field that will simply act as a primary key and allow us
to later delete only one row from our shopping cart. The sess field is used to temporarily store our ses-
sion ID (which is assigned by the browser) to allow us to link the information from this particular shop-
ping session, and keep it all together.

Try It Out Adding Products to the Cart
Now create the add.php file that will allow us to add products to our cart:

<?php
session_id();
session_start();
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
$qty =$_POST[‘qty’];
$prodnum = $_POST[‘prodnum’];
$sess =session_id();

$query = “INSERT INTO carttemp (sess, quan, prodnum)
VALUES (‘$sess’,’$qty’,’$prodnum’)”;

$results = mysql_query($query)
or die(mysql_error());

include(“cart.php”);
?>

472

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 472

How It Works
We must call the session_id() function before the session_start() function so session_id()
value doesn’t get overwritten and the current session ID is maintained. The session_id() function
simply returns the current session ID (assigned by the browser) and lets us use its value later on in the
script (which, conveniently enough, we did, through our $sess variable).

We again rename our POST variables for simplicity’s sake in our queries and then run our insert query
to put the information we have collected in the temporary table.

The next to last line is where we include our shopping cart, so the customer can see that, yes, the prod-
uct was successfully added into the cart, and he or she can view all the products in there.

Try It Out Viewing the Shopping Cart
Now let’s create the actual shopping cart, cart.php:

<?php
session_id();
session_start();
//connect to the database
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
?>
<HTML>
<HEAD>
<TITLE>Here is Your Shopping Cart!</TITLE>
</HEAD>
<BODY>
<div align=”center”>
You currently have

<?php
$sessid = session_id();

//display number of products in cart
$query = “SELECT * from carttemp WHERE sess = ‘$sessid’”;
$results = mysql_query($query)

or die (mysql_query());
$rows = mysql_num_rows($results);
echo $rows;

?>

product(s) in your cart.

<table border=”1” align=”center” cellpadding=”5”>
<tr>

<td>Quantity</td>
<td>Item Image</td>
<td>Item Name</td>
<td>Price Each</td>
<td>Extended Price</td>

473

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 473

<td></td>
<td></td>

<tr>
<?php

while ($row = mysql_fetch_array($results)) {
extract ($row);
$prod = “SELECT * FROM products WHERE prodnum =
‘$prodnum’”;
$prod2 = mysql_query($prod);
$prod3 = mysql_fetch_array($prod2);
extract ($prod3);
echo “<td><form method = ‘POST’ action=’change.php’>

<input type=’hidden’ name=’prodnum’
value=’$prodnum’>

<input type=’hidden’ name=’sessid’
value=’$sessid’>

<input type=’hidden’ name=’hidden’
value=’$hidden’>

<input type=’text’ name=’qty’ size=’2’
value=’$quan’>”;

echo “</td>”;
echo “<td>”;
echo “<a href = ‘getprod.php?prodid=” .

$prodnum .”’>”;
echo “THUMBNAIL
IMAGE</td>”;
echo “<td>”;
echo “<a href = ‘getprod.php?prodid=” .

$prodnum .”’>”;
echo $name;
echo “</td>”;
echo “<td align=’right’>”;
echo $price;
echo “</td>”;
echo “<td align=’right’>”;

//get extended price
$extprice = number_format($price * $quan, 2);
echo $extprice;
echo “</td>”;
echo “<td>”;
echo “<input type=’submit’ name=’Submit’

value=’Change Qty’>
</form></td>”;

echo “<td>”;
echo “<form method = ‘POST’ action=’delete.php’>

<input type=’hidden’ name=’prodnum’
value=’$prodnum’>

<input type=’hidden’ name=’qty’ value=’$quan’>
<input type=’hidden’ name=’hidden’

value=’$hidden’>
<input type=’hidden’ name=’sessid’

value=’$sessid’>”;
echo “<input type=’submit’ name=’Submit’

value=’Delete Item’>
</form></td>”;

echo “</tr>”;

474

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 474

//add extended price to total
$total = $extprice + $total;

}
?>
<tr>
<td colspan=’4’ align=’right’>Your total before shipping is:</td>
<td align=’right’> <?php echo number_format($total, 2) ?></td>
<td></td>
<td></td>
</tr>
</table>
<form method=”POST” action=”checkout.php”>
<input type=’submit’ name=’Submit’ value=’Proceed to Checkout’>
</form>
Go back to the main page
</div>
</BODY>
</HTML>

We decided that we would need only one Superhero Body Suit, so we added one to our cart. Our screen
now looks like that in Figure 14-4.

Figure 14-4

475

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 475

How It Works
Now, looking at our code, you can see the following:

<div align=”center”>
You currently have

<?php
$sessid = session_id();

//display number of products in cart
$query = “SELECT * from carttemp WHERE sess = ‘$sessid’”;
$results = mysql_query($query)

or die (mysql_query());
$rows = mysql_num_rows($results);
echo $rows;

?>

product(s) in your cart.

We want to display the total number of items in our cart, so we start in HTML and we flip over to PHP
where we query our temporary table to see what is in there for the current session. We get the total number
of rows and that tells us how many entries are in our cart. Of course, this doesn’t check for duplicates—it’s
only a start. We then flip back over to HTML to finish our sentence, and the result is:

You currently have 1 product(s) in your cart.

We then populate our table much in the same way we did in cbashop.php, except this time we’re
pulling the information from our temporary table. Because we also wanted to provide a link to the prod-
uct detail page for each product (in case our customers forgot what they ordered), we had to also grab
info from our products table.

We then come to these lines:

//get extended price
$extprice = number_format($price * $quan, 2);
echo $extprice;

This is where we show our customers the extended price for each item based on how many they are
ordering.

Likewise, we keep a tally of their order with these lines:

//add extended price to total
$total = $extprice + $total;

We also allow them to change the quantities or delete an item altogether, with two more files,
change.php and delete.php, respectively. We use these files as “actions” in our HTML forms, and
pass the variables as needed, as in these lines:

echo “<input type=’submit’ name=’Submit’
value=’Change Qty’>

</form></td>”;

476

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 476

echo “<td>”;
echo “<form method = ‘POST’ action=’delete.php’>

<input type=’hidden’ name=’prodnum’
value=’$prodnum’>

<input type=’hidden’ name=’qty’ value=’$quan’>
<input type=’hidden’ name=’hidden’

value=’$hidden’>
<input type=’hidden’ name=’sessid’

value=’$sessid’>”;
echo “<input type=’submit’ name=’Submit’

value=’Delete Item’>
</form></td>”;

We then give customers the option of proceeding to the checkout or going back to the main page for
more shopping with these lines:

<form method=”POST” action=”checkout.php”>
<input type=’submit’ name=’Submit’ value=’Proceed to Checkout’>
</form>
Go back to the main page

Try It Out Changing Items in the Cart
Let’s go ahead and type change.php:

<?php
session_id();
session_start();
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
$qty =$_POST[‘qty’];
$hidden = $_POST[‘hidden’];
$sess = $_POST[‘sessid’];

$query = “UPDATE carttemp
SET quan = ‘$qty’
WHERE hidden = ‘$hidden’”;

$results = mysql_query($query)
or die(mysql_error());

echo “Quantity Updated.
 “;
include(“cart.php”);
?>

And delete.php:

<?php
session_id();
session_start();
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
$qty =$_POST[‘qty’];

477

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 477

$hidden = $_POST[‘hidden’];
$sess = $_POST[‘sessid’];

$query = “DELETE FROM carttemp WHERE hidden = ‘$hidden’”;
$results = mysql_query($query)

or die(mysql_error());

echo “<div align=’center’>
Item Deleted.

</div> “;

include(“cart.php”);
?>

How It Works
Our change.php file updates the quantity of whatever line item is clicked with these lines:

$query = “UPDATE carttemp
SET quan = ‘$qty’

WHERE hidden = ‘$hidden’”;

Likewise, with the delete.php file, the items are deleted with this line:

$query = “DELETE FROM carttemp WHERE hidden = ‘$hidden’”;

In each of the files, we then display the cart once again so that our customers can see what their cart cur-
rently contains.

Try It Out Checking Out: Step One
Now let’s create the checkout.php file, the first of three checkout files. This is one hefty file, so get your
typing fingers ready:

<?php
session_id();
session_start();
?>
<HTML>
<HEAD>
<TITLE>Step 1 of 3 - Billing and Shipping Information</TITLE>
</HEAD>
<BODY>
Order Checkout

Step 1 - Please Enter Billing and Shipping Information

Step 2 - Please Verify Accuracy of Order Information and Send Order

Step 3 - Order Confirmation and Receipt

<form method=”post” action=”checkout2.php”>

<table width=”300” border=”1” align=”left”>
<tr>

<td colspan=”2” bgcolor=”#0000FF”>
<div align=”center”>Billing Information

</div>

478

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 478

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>First Name</div>

</td>
<td width=”50%”>

<input type=”text” name=”firstname” maxlength=”15”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Last Name</div>

</td>
<td width=”50%”>

<input type=”text” name=”lastname” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”add1” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address 2</div>

</td>
<td width=”50%”>

<input type=”text” name=”add2” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>City</div>

</td>
<td width=”50%”>

<input type=”text” name=”city” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>State</div>

</td>
<td width=”50%”>

<input type=”text” name=”state” size=”2” maxlength=”2”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Zip</div>

</td>
<td width=”50%”>

479

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 479

<input type=”text” name=”zip” maxlength=”5” size=”5”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Phone Number</div>

</td>
<td width=”50%”>

<input type=”text” name=”phone” size=”12” maxlength=”12”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Fax Number</div>

</td>
<td width=”50%”>

<input type=”text” name=”fax” maxlength=”12” size=”12”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>E-Mail Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”email” maxlength=”50”>
</td>

</tr>
</table>
<table width=”300” border=”1”>

<tr bgcolor=”#990000”>
<td colspan=”2”>

<div align=”center”>Shipping Information
</div>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Shipping Info same as Billing</div>

</td>
<td width=”50%”>

<input type=”checkbox” name=”same”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>First Name</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipfirst” maxlength=”15”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Last Name</div>

480

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 480

</td>
<td width=”50%”>

<input type=”text” name=”shiplast” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipadd1” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address 2</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipadd2” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>City</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipcity” maxlength=”50”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>State</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipstate” size=”2” maxlength=”2”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Zip</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipzip” maxlength=”5” size=”5”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Phone Number</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipphone” size=”12” maxlength=”12”>
</td>

</tr>
<tr>

481

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 481

<td width=”50%”>
<div align=”right”>E-Mail Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipemail” maxlength=”50”>
</td>

</tr>
</table>
<p>

<input type=”submit” name=”Submit” value=”Proceed to Next Step —>”>
</p>
</form>

</BODY>
</HTML>

Figure 14-5 shows what our screen looks like when we make the choice to check out after putting one
Superhero Body Suit in our cart.

Figure 14-5

482

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 482

How It Works
The following is the step that asks for our customer’s billing and shipping information. We start with a
little intro, and we let the customer know what step he or she is currently on. Then we set up the form
that will collect all the information and submit it to the next page of the checkout process:

<form method=”post” action=”checkout2.php”>

The rest is pretty much no-brainer type stuff, just getting the variables and passing them along to
checkout2.php.

Try It Out Checking Out: Step Two
Let’s complete checkout2.php so customers can verify that all the information is accurate, and to give
customers a chance to make any last minute changes.

<?php
session_id();
session_start();
//connect to the database
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
if ($_POST[‘same’] == ‘on’) {

$_POST[‘shipfirst’] = $_POST[‘firstname’];
$_POST[‘shiplast’] = $_POST[‘lastname’];
$_POST[‘shipadd1’] = $_POST[‘add1’];
$_POST[‘shipadd2’] = $_POST[‘add2’];
$_POST[‘shipcity’] = $_POST[‘city’];
$_POST[‘shipstate’] = $_POST[‘state’];
$_POST[‘shipzip’] = $_POST[‘zip’];
$_POST[‘shipphone’] = $_POST[‘phone’];
$_POST[‘shipemail’] = $_POST[‘email’];
}

?>
<HTML>
<HEAD>
<TITLE>Step 2 of 3 - Verify Order Accuracy</TITLE>
</HEAD>
<BODY>
Step 1 - Please Enter Billing and Shipping Information

Step 2 - Please Verify Accuracy and Make Any Necessary

Changes

Step 3 - Order Confirmation and Receipt

<form method=”post” action=”checkout3.php”>
<table width=”300” border=”1” align=”left”>

<tr>
<td colspan=”2” bgcolor=”#0000FF”>

<div align=”center”>Billing
Information
</div>

483

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 483

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>First Name</div>

</td>
<td width=”50%”>

<input type=”text” name=”firstname” maxlength=”15”
value=”<?php echo $_POST[‘firstname’]?> “>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Last Name</div>

</td>
<td width=”50%”>

<input type=”text” name=”lastname” maxlength=”50”
value=”<?php echo $_POST[‘lastname’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”add1” maxlength=”50”
value=”<?php echo $_POST[‘add1’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address 2</div>

</td>
<td width=”50%”>

<input type=”text” name=”add2” maxlength=”50”
value=”<?php echo $_POST[‘add2’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>City</div>

</td>
<td width=”50%”>

<input type=”text” name=”city” maxlength=”50”
value=”<?php echo $_POST[‘city’]?> “>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>State</div>

</td>
<td width=”50%”>

<input type=”text” name=”state” size=”2” maxlength=”2”

484

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 484

value=”<?php echo $_POST[‘state’]?>”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Zip</div>

</td>
<td width=”50%”>

<input type=”text” name=”zip” maxlength=”5” size=”5”
value=”<?php echo $_POST[‘zip’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Phone Number</div>

</td>
<td width=”50%”>

<input type=”text” name=”phone” size=”12” maxlength=”12”
value=”<?php echo $_POST[‘phone’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Fax Number</div>

</td>
<td width=”50%”>

<input type=”text” name=”fax” maxlength=”12” size=”12”
value=”<?php echo $_POST[‘fax’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>E-Mail Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”email” maxlength=”50”
value=”<?php echo $_POST[‘email’]?>”>

</td>
</tr>

</table>
<table width=”300” border=”1”>

<tr bgcolor=”#990000”>
<td colspan=”2”>

<div align=”center”>Shipping
Information

</div>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Shipping Info same as Billing</div>

</td>
<td width=”50%”>

485

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 485

<input type=”checkbox” name=”same”></td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>First Name</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipfirst” maxlength=”15”
value=”<?php echo $_POST[‘shipfirst’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Last Name</div>

</td>
<td width=”50%”>

<input type=”text” name=”shiplast” maxlength=”50”
value=”<?php echo $_POST[‘shiplast’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipadd1” maxlength=”50”
value=”<?php echo $_POST[‘shipadd1’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Billing Address 2</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipadd2” maxlength=”50”
value=”<?php echo $_POST[‘shipadd2’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>City</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipcity” maxlength=”50”
value=”<?php echo $_POST[‘shipcity’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>State</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipstate” size=”2” maxlength=”2”

486

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 486

value=”<?php echo $_POST[‘shipstate’]?>”>
</td>

</tr>
<tr>

<td width=”50%”>
<div align=”right”>Zip</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipzip” maxlength=”5” size=”5”
value=”<?php echo $_POST[‘shipzip’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>Phone Number</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipphone” size=”12” maxlength=”12”
value=”<?php echo $_POST[‘shipphone’]?>”>

</td>
</tr>
<tr>

<td width=”50%”>
<div align=”right”>E-Mail Address</div>

</td>
<td width=”50%”>

<input type=”text” name=”shipemail” maxlength=”50”
value=”<?php echo $_POST[‘shipemail’]?>”>

</td>
</tr>

</table>

<table border=”1” align=”left” cellpadding=”5”>
<tr>

<td>Quantity</td>
<td>Item Image</td>
<td>Item Name</td>
<td>Price Each</td>
<td>Extended Price</td>
<td></td>
<td></td>

</tr>
<tr>
<?php
$sessid = session_id();
$query = “SELECT * FROM carttemp WHERE sess = ‘$sessid’”;

$results = mysql_query($query)
or die (mysql_query());
while ($row = mysql_fetch_array($results)) {

extract ($row);
$prod = “SELECT * FROM products WHERE

prodnum = ‘$prodnum’”;
$prod2 = mysql_query($prod);

487

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 487

$prod3 = mysql_fetch_array($prod2);
extract ($prod3);
echo “<td>”;
echo $quan;
echo “</td>”;
echo “<td>”;
echo “<a href = ‘getprod.php?prodid=” .

$prodnum .”’>”;
echo “THUMBNAIL
IMAGE</td>”;
echo “<td>”;
echo “<a href = ‘getprod.php?prodid=” .

$prodnum .”’>”;
echo $name;
echo “</td>”;
echo “<td align=’right’>”;
echo $price;
echo “</td>”;
echo “<td align=’right’>”;

//get extended price
$extprice = number_format($price * $quan, 2);
echo $extprice;
echo “</td>”;
echo “<td>”;
echo “Make Changes to Cart”;
echo “</td>”;
echo “</tr>”;

//add extended price to total
$total = $extprice + $total;

}
?>
<tr>
<td colspan=’4’ align=’right’>Your total before shipping is:</td>
<td align=’right’> <?php echo number_format($total, 2) ?></td>
<td></td>
<td></td>
</tr>
</table>
<input type=”hidden” name=”total” value=”<?php echo $total?>”>

<p>
<input type=”submit” name=”Submit” value=”Send Order —>”>

</p>
</form>

</BODY>
</HTML>

If you entered the information in checkout.php, your screen should look like that in Figure 14-6.

488

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 488

Figure 14-6

How It Works
In the code, you see the standard connection lines and our session lines. Then we check to see if the
billing info is the same as the shipping info, and, if so, we populate the shipping table with the billing
information, as follows:

if ($_POST[‘same’] == ‘on’) {
$_POST[‘shipfirst’] = $_POST[‘firstname’];
$_POST[‘shiplast’] = $_POST[‘lastname’];
$_POST[‘shipadd1’] = $_POST[‘add1’];
$_POST[‘shipadd2’] = $_POST[‘add2’];
$_POST[‘shipcity’] = $_POST[‘city’];
$_POST[‘shipstate’] = $_POST[‘state’];
$_POST[‘shipzip’] = $_POST[‘zip’];
$_POST[‘shipphone’] = $_POST[‘phone’];
$_POST[‘shipemail’] = $_POST[‘email’];
}

489

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 489

The rest of the script is pretty similar to previous pages. We show the billing and shipping information
as we did in checkout1.php and we show our cart contents as we did in cart.php. We decided in this
case to keep our shopping cart changes in the cart.php file itself, so we provided a link to cart.php.

Just another point worth mentioning: We passed the $total variable in a hidden field instead of retabu-
lating it in the next page; we needed to access it early on in the code. This just makes life a lot easier.

We also set our form action to be checkout3.php, where it all happens.

Try It Out Checking Out: Step Three
For our final file, we want to complete checkout3.php. Numerous things will be going on in this file,
and we’ll talk about them in a minute.

<?php
session_id();
session_start();
//connect to the database - either include a connection variable file or
//type the following lines:
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);
mysql_select_db (“ecommerce”);
//Let’s make the variables easy to access in our queries
$firstname = $_POST[‘firstname’];
$lastname = $_POST[‘lastname’];
$firstname = $_POST[‘firstname’];
$add1 = $_POST[‘add1’];
$add2 = $_POST[‘add2’];
$city = $_POST[‘city’];
$state = $_POST[‘state’];
$zip = $_POST[‘zip’];
$phone = $_POST[‘phone’];
$fax = $_POST[‘fax’];
$email = $_POST[‘email’];
$shipfirst = $_POST[‘shipfirst’];
$shiplast = $_POST[‘shiplast’];
$shipadd1 = $_POST[‘shipadd1’];
$shipadd2 = $_POST[‘shipadd2’];
$shipcity = $_POST[‘shipcity’];
$shipstate = $_POST[‘shipstate’];
$shipzip = $_POST[‘shipzip’];
$shipstate = $_POST[‘shipstate’];
$shipphone = $_POST[‘shipphone’];
$shipemail = $_POST[‘shipemail’];
$total = $_POST[‘total’];
$sessid = session_id();
$today = date(“Y-m-d”);
//1) Assign Customer Number to new Customer, or find existing customer number

$query = “SELECT * FROM customers WHERE
(firstname = ‘$firstname’ AND
lastname = ‘$lastname’ AND
add1 = ‘$add1’ AND
add2 = ‘$add2’ AND

490

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 490

city = ‘$city’)”;
$results = mysql_query($query)

or (mysql_error());
$rows = mysql_num_rows($results);

if ($rows < 1) {
//assign new custnum
$query2 = “INSERT INTO customers (
firstname, lastname, add1, add2, city, state, zip, phone, fax, email)
VALUES (

‘$firstname’,
‘$lastname’,
‘$add1’,
‘$add2’,
‘$city’,
‘$state’,
‘$zip’,
‘$phone’,
‘$fax’,
‘$email’)”;
$insert = mysql_query($query2)

or (mysql_error());
$custid = mysql_insert_id();

}
//If custid exists, we want to make it equal to custnum
if($custid) $custnum = $custid;

//2) Insert Info into ordermain
//determine shipping costs based on order total (25% of total)
$shipping = $total * 0.25;

$query3 = “INSERT INTO ordermain (orderdate, custnum, subtotal,
shipping, shipfirst, shiplast, shipadd1, shipadd2,

shipcity, shipstate, shipzip, shipphone, shipemail)
VALUES (
‘$today’,
‘$custnum’,
‘$total’,
‘$shipping’
‘$shipfirst’,
‘$shiplast’,
‘$shipadd1’,
‘$shipadd2’,
‘$shipcity’,
‘$shipstate’,
‘$shipzip’,
‘$shipphone’,
‘$shipemail’)”;

$insert2 = mysql_query($query3)
or (mysql_error());

$orderid = mysql_insert_id();

//3) Insert Info into orderdet
//find the correct cart information being temporarily stored
$query = “SELECT * from carttemp WHERE sess=’$sessid’”;

491

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 491

$results = mysql_query($query)
or (mysql_error());

//put the data into the database one row at a time
while ($row = mysql_fetch_array($results)) {

extract ($row);
$query4 = “INSERT INTO orderdet (ordernum, qty, prodnum)

VALUES (
‘$orderid’,
‘$quan’,
‘$prodnum’)”;

$insert4 = mysql_query($query4)
or (mysql_error());

}

//4)delete from temporary table
$query=”DELETE FROM carttemp WHERE sess=’$sessid’”;
$delete = mysql_query($query);

//5)email confirmations to us and to the customer
/* recipients */
$to = “<” . $email .”>”;

/* subject */
$subject = “Order Confirmation”;

/* message */
/* top of message */
$message = “

<html>
<head>
<title>Order Confirmation</title>
</head>
<body>

Here is a recap of your order:

Order date:”;

$message .= $today;
$message .= “

Order Number: “;

$message .= $orderid;
$message .= “

<table width=’50%’ border=’0’>
<tr>

<td>
<p>Bill to:
”;

$message .= $firstname;
$message .= “ “;
$message .= $lastname;
$message .= “
”;
$message .= $add1;
$message .= “
”;
if ($add2) $message .= $add2 . “
”;

492

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 492

$message .= $city . “, “ . $state . “ “ . $zip;
$message .= “</p></td>

<td>
<p>Ship to:
”;

$message .= $shipfirst . “ “ . $shiplast;
$message .= “
”;
$message .= $shipadd1 . “
”;
if ($shipadd2) $message .= $shipadd2 . “
”;
$message .= $shipcity . “, “ . $shipstate . “ “ . $shipzip;
$message .= “</p>

</td>
</tr>

</table>
<hr noshade width=’250px’ align=’left’>

<table cellpadding=’5’>
<tr>”;

//grab the contents of the order and insert them
//into the message field

$query = “SELECT * from orderdet WHERE ordernum = ‘$orderid’”;
$results = mysql_query($query)

or die (mysql_query());
while ($row = mysql_fetch_array($results)) {

extract ($row);
$prod = “SELECT * FROM products

WHERE prodnum = ‘$prodnum’”;
$prod2 = mysql_query($prod);
$prod3 = mysql_fetch_array($prod2);
extract ($prod3);
$message .= “<td>”;
$message .= $quan;
$message .= “</td>”;
$message .=”<td>”;
$message .= $name;
$message .= “</td>”;
$message .= “<td align=’right’>”;
$message .= $price;
$message .= “</td>”;
$message .= “<td align=’right’>”;

//get extended price
$extprice = number_format($price * $quan, 2);
$message .= $extprice;
$message .= “</td>”;
$message .= “</tr>”;
}

$message .= “<tr>
<td colspan=’3’ align=’right’>

Your total before shipping is:
</td>
<td align=’right’>”;

$message .= number_format($total, 2);
$message .= “

493

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 493

</td>
</tr>
<tr>
<td colspan=’3’ align=’right’>

Shipping Costs:
</td>
<td align=’right’>”;

$message .= number_format($shipping, 2);
$message .= “

</td>
</tr>

<tr>
<td colspan=’3’ align=’right’>
Your final total is:

</td>
<td align=’right’> “;

$message .= number_format(($total + $shipping), 2);
$message .= “

</td>
</tr>

</table>
</body>
</html>”;

/* headers */
$headers = “MIME-Version: 1.0\r\n”;
$headers .= “Content-type: text/html; charset=iso-8859-1\r\n”;
$headers .= “From: <storeemail@email.com>\r\n”;
$headers .= “Cc: <storeemail@email.com>\r\n”;
$headers .= “X-Mailer: PHP / “.phpversion().”\r\n”;

/* mail it */
mail ($to, $subject, $message, $headers);

//6)show them their order & give them an order number
?>
<HTML>
<HEAD>
<TITLE>Thank you for your order!</TITLE>
</HEAD>
<BODY>
Step 1 - Please Enter Billing and Shipping Information

Step 2 - Please Verify Accuracy and Make Any Necessary Changes

Step 3 - Order Confirmation and Receipt

Thank you for your order!

Your order number is <?php echo $orderid ?>. Please print this page or retain
this number for your records.

Here is a recap of your order:

Order date: <?php echo $today ?>

<table width=”50%” border=”0”>

494

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 494

<tr>
<td>

<p>Bill to:

<?php echo $firstname . “ “ . $lastname ?>

<?php echo $add1 ?>

<?php if ($add2) echo $add2 . “
”?>
<?php echo $city . “, “ . $state . “ “ . $zip ?> </p>

</td>
<td>

<p>Ship to:

<?php echo $shipfirst . “ “ . $shiplast ?>

<?php echo $shipadd1 ?>

<?php if ($shipadd2) echo $shipadd2 . “
”?>
<?php echo $shipcity . “, “ . $shipstate . “ “ . $shipzip ?> </p>

</td>
</tr>

</table>
<hr noshade width=’250px’ align=’left’>
<table cellpadding=”5”>

<tr>
<?php
$query = “SELECT * from orderdet WHERE ordernum = ‘$orderid’”;

$results = mysql_query($query)
or die (mysql_query());
while ($row = mysql_fetch_array($results)) {

extract ($row);
$prod = “SELECT * FROM products WHERE prodnum = ‘$prodnum’”;
$prod2 = mysql_query($prod);
$prod3 = mysql_fetch_array($prod2);
extract ($prod3);
echo “<td>”;
echo $quan;
echo “</td>”;
echo “<td>”;
echo $name;
echo “</td>”;
echo “<td align=’right’>”;
echo $price;
echo “</td>”;
echo “<td align=’right’>”;

//get extended price
$extprice = number_format($price * $quan, 2);
echo $extprice;
echo “</td>”;
echo “</tr>”;
}

?>
<tr>
<td colspan=’3’ align=’right’>
Your total before shipping is:
</td>
<td align=’right’>

<?php echo number_format($total, 2) ?>
</td>
</tr>

495

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 495

<tr>
<td colspan=’3’ align=’right’>
Shipping Costs:
</td>
<td align=’right’>

<?php echo number_format($shipping, 2) ?>
</td>
</tr>
<tr>
<td colspan=’3’ align=’right’>
Your final total is:
</td>
<td align=’right’>

<?php echo number_format(($total + $shipping), 2) ?>
</td>
</tr>
</table>
</BODY>
</HTML>

See Figure 14-7 for a copy of the confirmation of our order.

Figure 14-7

496

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 496

How It Works
Of course, there are comments throughout the code, but here is a rundown of what this script
accomplishes.

❑ Before we can enter anything else, we have to determine whether or not our customer is new or
returning. If he or she is a returning customer, we want to keep the existing customer number,
and if new, he or she will be assigned the next customer number in line. Of course, this is not a
fail-safe plan: We check for the same first name, last name, two lines of address, and city. A
returning customer would just have to abbreviate something differently to be considered “new.”
We talk more about this later in this chapter.

We use the PHP function mysql_insert_id() to get the auto-increment value that was just
added into the database. This helps us make sure we are keeping all the information from the
same order together.

❑ Once we have the customer information entered in the database, we can then enter the order-
specific information. This includes the date and order number, as well as the shipping informa-
tion associated with this order. We also tabulated the shipping costs as a percentage of total cost
of the order (25 percent), but obviously you can set your shipping costs to be whatever you like.

❑ We can then enter the order detail information with all the specific items that have been placed
in the shopping cart.

❑ We then delete the temporary information, as we don’t need it anymore.

❑ We also send a confirmation e-mail to our customer, and one to ourselves to let us know an
order was placed.

❑ We display the order confirmation on the page to let the customer know immediately that the
order was received and to give him or her an order number.

This is the end of our simple shopping cart script.

E-Commerce, Any Way You Slice It
As we briefly mentioned before, you can integrate e-commerce into your site the right way and you
can do it the wrong way. To prevent yourself from looking like a complete idiot and virtually ensuring
e-commerce failure, we highly recommend doing things the right way. Good word-of-mouth travels
slowly, but we all know how quickly bad word-of-mouth spreads. Also, with so many millions of Web
sites out there competing for attention, we want to elevate yours above the rest.

This may sound harsh, but here are some things to remember about some of the more challenging
characteristics of your potential customers:

❑ Your customers are impatient. They don’t want to have to wait for your pages to load or for
answers to their questions. They are busy people, just like you, and if they don’t find what they
need right away, they’re outta there and on to something else.

❑ Your customers are distrustful. Who wants their personal information strewn about all over the
Web? You certainly don’t, and they don’t either. They don’t want their credit card number to be
used by every geek in your office, and they don’t want to give you tons of money and never see
the product they purchased. They don’t want to order from you one week and have you go
bankrupt the next.

497

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 497

❑ Your customers want a lot for a little. In this age of Web site competition, where people can
compare prices with a few mouse clicks, they are striving to get the best deal they can. They
want to make sure they are getting the best deal, but they also appreciate the value-added ser-
vices of a high-quality Web site.

❑ Your customers are generally lazy. They don’t want to have to put any effort into trying to find
the right product on your site or figuring out what you’re trying to say or what your policies
are. They don’t want to work at trying to get the checkout process to work, and they don’t want
to have to filter through pages and pages of text to glean information.

❑ Your customers aren’t very forgiving. You basically have one chance to make a good first
impression on your customers. Nothing can eliminate a sale (and future sales for that matter)
faster than a bad experience. Whether it is something minor such as spelling mistakes and bro-
ken images on your site or something major such as selling faulty merchandise, your customers
are likely to remember something bad a lot longer than something good. They will also be more
likely to share a bad experience more quickly than they will a good one.

❑ Your customers may not be as technically savvy as you are. Yes, there are actually people out
there who still use dial-up with 56K. There are people out there who still use 14" monitors and
there are people out there who have never made an online purchase in their lives. Remember
these people and don’t leave them behind totally when designing your site. If you do, you are
alienating a huge percentage of the population.

Don’t worry: Satisfying e-commerce customers is not hard, but a little effort can really go a long way.
We’ve included some general guidelines to follow. After reading them, you may think, “Well, duh, no
kidding,” but you’d be surprised at how many big, well-known companies don’t follow them.

Information Is Everything
Your customers have to get as much information as possible about your product because they can’t actu-
ally see, feel, touch, and smell what you have to offer. Your site is your window to your customers, and
they have to depend on what you’re telling them to make their purchasing decision. Whatever blanks
you leave in your product description, policies, company history, or checkout process will have to be
filled in by the customer’s imagination. While that may be good in certain circumstances, you do not
want your customers to make incorrect assumptions that leave them dissatisfied after the fact, or for
their uncertainty to prevent the sale altogether.

Besides textual information, graphics are a very important part of the sale. There is a fine balance
between adding too many graphics to your site, which causes your potential patrons to wait longer than
they need to, and providing enough high-quality pictures so they can actually see what they’re getting.

Importance of Trust
Let’s talk for a minute about trust over the Web. We all know that most of the proclaimed 14-year-old
females in those online chat rooms are really 40-year-old fat guys sitting in their living rooms. Things are
not always as they seem in the online world, and because of that, as an e-commerce retailer, you are at a
disadvantage over those with a physical storefront and salespeople. And then there’s the old saying
“caveat emptor” (“buyer beware”) that goes along with any purchase/sales transaction. “Trust” must be
established and it certainly is an uphill battle. If you’re an established business already, and you have

498

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 498

spent years building product or brand name recognition, don’t think that switching to e-commerce will
be so easy. Yes, if your business has an established reputation you may have an easier time than some
unknown entity, like “Joe’s House of Beauty,” but people still want to know what they’re getting and be
assured that they’re not going to get ripped off.

Privacy Policy
Users want to know that their personal information will not be sold and they won’t end up on 47 spam
e-mail lists. They also want to make sure they won’t be on an annoying telemarketing phone list or
receive junk snail mail. The only way they can be assured this won’t happen is if you provide a clear,
concise privacy policy in an easy-to-find place on your site.

Return Policy
Returns are a sometimes overlooked part of a company’s e-commerce venture. There have to be
processes in place for accepting returns, shipping out replacement merchandise, or issuing credits in
exchange. Your users will need to know where you stand on returns, what your requirements are for
accepting them and how they will be handled once they reach your warehouse (or basement).

If you are a relatively (or completely) unknown entity, you may want to consider providing a 100 percent
money back guarantee or something similar to try and build trust with your potential customers. You
may get burned once or twice on this and it may require more work from you, but overall it can be a
very beneficial asset to you, especially if your customers are riding the fence on a potential purchase.

Whatever you decide, you should think long and hard about how you want to handle returned mer-
chandise, and then make sure your customers understand your decisions in order to avoid misunder-
standings later on.

Warm Bodies
Who doesn’t love a nice, warm body? In this age of technology, sometimes it’s nice just to talk to an actual
living, breathing person who can help you answer a question or find what you are looking for. If you can
manage this in your e-commerce business, it is another great feature that will undoubtedly pay for itself
in those “on the fence” purchasing decisions. You can provide personal customer service in a few ways:

❑ Give your customers a phone number (preferably toll-free) where they can have access to your
customer service staff, or just you, if you’re a one-man show.

❑ Offer online customer service chat for your customers, where you can address customer ques-
tions or concerns without having to pay someone to wait for the phone to ring.

❑ Provide a customer service e-mail address for questions and problems. Although this isn’t the
optimal solution, as many people don’t want to wait for answers to their questions, at least this
gives customers an outlet to vent their frustrations and then move on to something else. It also
gives you a chance to prepare a proper reply and respond accordingly.

Professional Look
When designing your site, you want to make sure it doesn’t look “homemade” and that it appears as
professional as possible. Professional equals credible in the minds of your customers, and it helps to
build that elusive trusting relationship.

499

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 499

Here are some ways to improve the look of your site:

❑ Spend some time viewing other e-commerce sites. What do you personally like about them?
What don’t you like? By emulating the big guys, you can look big, too.

❑ Invest in a few Web site design books or do some online research. Numerous articles and books
have been written on the topic, and you may as well not re-invent the wheel.

❑ If you use a template of some sort, please, please, please do us a favor and make sure you
remove all generic instances. We’ve seen sites with a title bar that reads “Insert Description
Here.” This is not a good look, trust us.

❑ Spell check your document. Spell checkers are available in nearly all text editors, so spelling
mistakes are pretty much unacceptable and can really undermine your professional look.

Secure Credit Card Processing
Nothing will make your customers feel better than knowing their credit card information is safe and
won’t get stolen along the way. Make sure you are using a secure encryption method to transfer sensitive
information, such as SSL, and make sure your customers understand how safe their information is. It’s a
good idea to not get too technical; just explain the security process in layman’s terms.

If it’s possible, it’s a good idea to have a third party (such as Verisign) verify that your site is secure and
prominently display its seal somewhere on your site.

Easy Navigation
You want to make sure your customers are able to move around your site and find what they need.
Remember the rule from earlier in this section: They do not want to work too hard, or they will lose
interest and go somewhere else.

Common Links
Make sure you have clear links to every area of your site, and put the common links near the top where
they can be seen easily. Common links include a customer’s shopping cart, customer service, or user
login.

Search Function
You should give your customers a way to easily find what they’re looking for. An accurate and quick
search engine is essential to accomplish this. There are many ways to add this feature to your site, either
through coding it by hand in PHP or hooking up with third-party software. Another way to improve your
search engine is to make sure you include misspellings and not-so-common terms to give your customers
the best results possible.

Typical Design
It’s been long enough now that most people are accustomed to seeing navigation links either at the top
or to the left side of a page. By keeping with this general scheme, you can ensure that your customers
will know where to look to find what they need.

500

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 500

Competitive Pricing
If you are selling items that are available from other sources, it’s important to remember that your store
can easily be compared with numerous other stores selling the same thing. If your prices are way out of
line, your customers will get a good chuckle and then promptly click back to their Google search. Do
your research, and make sure you are in line with similar products being sold on the Web. Not all cus-
tomers base their decision solely on price, but they definitely don’t want to be taken for a ride, unless
you have a Lamborghini Diablo, and that’s a different story.

Appropriate Merchandise
There are only a handful of stores on the Web that can get away with carrying a wide range of unrelated
products, and, no offense, but chances are, you aren’t one of them. Be sure you are carrying items that
are related to your overall site and to each other, or you will confuse your customers and detract from
your look and focus.

Timely Delivery
In this world of “overnight this” and “immediately download that,” it is no longer acceptable to ask for
six to eight weeks to deliver your merchandise to your customers. The only exception is if you are creat-
ing something custom made or if your customers are preordering something that hasn’t been officially
released yet. The typical lead time for standard products to ship to a customer is roughly two to three
business days. If you can do better than that, your customers will be happy, and if not, you need to
make sure your customer realizes it will take longer and give an explanation.

It is also important to provide numerous shipping options to your customers and let them decide how
quickly they need your products and how much they are willing to spend to get them faster.

Communication
Because you are isolated from your customers, communication is essential to building strong relation-
ships. Your customers want to know that you received their order, when the order is ready to ship, and
when it ships. They appreciate getting a tracking number so they can see where their package is every
step of the way. Some companies even track each outgoing package and let their customers know when
they think the package has been delivered, in case there are any misunderstandings. All of this can be
communicated via e-mail. Your customers will definitely appreciate being kept in the loop, and knowing
that their order has not been lost somewhere along the order fulfillment and delivery chain.

Customer Feedback
The online world presents an interesting dilemma for e-commerce retailers in that you must operate
your store in a bubble. You can’t tell what your customers are thinking or how they react to your site.
You know you’re relatively successful at something only if you have sales and relatively unsuccessful if
you don’t. Figuring out which of our rules you’re breaking can be a tricky endeavor. That’s when your
customer feedback can make or break you.

501

Online Selling: A Quick Way to E-Commerce

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 501

You always want to give your customers an outlet to express their concerns or problems, and it can give
you a warm fuzzy feeling to get some positive feedback once in a while. To encourage your customers to
provide you with feedback you should do two things:

❑ Give them an incentive to complete a survey, or provide some sort of feedback. Free shipping, a
discount on their next order, or a free gift of some sort are some good possibilities.

❑ Make it easy for your customers to complete a survey, but make sure it provides you with valu-
able feedback. Don’t just ask for their comments; ask them to rate certain areas of your site.
Also, don’t give them 100 questions, but a maximum of 15–20. After that, people lose interest
and their special gift isn’t worth it.

By sticking to the preceding guidelines and advice, you will increase the quality and quantity of your
customer feedback and increase your ability to tap into one of your most valuable resources.

Summary
Now that you have the know-how to add e-commerce to your site, you should feel comfortable making
your site as competitive and professional as any other site out there. You should be able to set up a sim-
ple shopping cart, and, with time, you will be able to continue to add features to really enhance your
cart and your site in general. E-commerce concepts aren’t difficult to comprehend, and by following the
simple guidelines we’ve outlined, you will be well on your way. Although e-commerce retailers don’t
typically enjoy overnight success, adding e-commerce to your site can really augment what you’re cur-
rently doing and may grow to something big over time.

Exercises
We know we’re not perfect, so before you start naming all the things we didn’t accomplish in our shop-
ping cart scripts, we’ll save you the trouble and list them for you. As a matter of fact, we did these things
on purpose because we wanted to give you some homework.

Anyway, here are the things you can work on, and hints are in Appendix A in case you need to cheat:

❑ Allow for options. You may have noticed that we didn’t let our customers pick the size of their
T-shirt or size and color of the Superhero Body Suit. Alter the codes to allow for these options.

❑ Allow for payment. Because of copyright issues, we weren’t able to actually hook you up with
Paypal or one of the other payment processors available. Decide how you want to accept pay-
ment, and then alter the code accordingly.

❑ Allow for tax. Many states require that you charge sales tax on the orders shipped to the state
where you have a physical presence, and some states require sales tax on all online orders. Set
your code to check for customers in your own state and add the appropriate sales tax to those
orders only.

❑ Check for mistakes. We have not included any mechanism to check for required fields, or for
mismatched types (such as a bogus e-mail address). Add these checks in your code.

❑ Allow for registering, login, and order tracking. Some customers like to check the status of
their orders.

502

Chapter 14

19 557440 Ch14.qxd 2/6/04 9:17 AM Page 502

15
Creating a Bulletin Board

System

People don’t like to be alone because we are social animals. Throughout our brief history as civi-
lized human beings, we have consistently maintained some sort of connection to other people,
whether it be the family unit, clans, chess clubs, or AA meetings.

With the advent of the computer, many geeks found themselves shut in a room for long periods,
becoming the modern equivalent of the social outcast. (How many of us have joked about not
knowing what the sun looks like?)

Enter Dennis C. Hayes, Ward Christensen, and Randy Seuss, three very smart men who together
made it possible for you to communicate with other computer geeks without ever having to look
at their faces.

History of the Computer Bulletin Board
D. C. Hayes is the inventor of the modem; indeed, one brand of modems was named for him. He
is the father of PC-to-PC communication and is at the top of the list of people responsible for the
807 America Online disks you received in the mail last year.

Ward Christensen is the creator of Xmodem, a program that allowed users to send and receive
files. It was the precursor to many file transfer programs, including FTP, which we still use today.

In February 1978, Christensen teamed up with Randy Seuss to create the first program that
allowed users to communicate with one another over a modem. They called it a bulletin board
system because it emulated the bulletin board they used at their local computer club. (Yes, they
were serious geeks!) They named the board Chicago Bulletin Board System (CBBS).

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 503

Bulletin boards began cropping up all over the country and were soon very popular places to communicate
with other people. Suddenly, geeks were no longer pariahs, but could actually interact with others. Sure,
non-BBS users still saw them as outcasts, but what did they know? They were just common civilians,
unwise to the ways of computers.

The only problem was that you had to dial in to the specific BBS you wanted to connect to. There was no
network of computers that enabled you to jump from BBS to BBS. Over time, communication speed has
increased to the point where modems are no longer the preferred connection device. With the arrival of
the Internet, people had a place to connect one time, and could “surf” from site to site. BBS’s began to
go the way of the dinosaur.

Fortunately, BBS’s didn’t become extinct. They still exist today, but they have evolved. These days, a BBS
is simply a Web site that does what the BBS of old did—it allows users to log in and communicate with
others about a common interest. If you want to talk to other people about your collection of Barbie doll
shoes, chances are there is a BBS out there for it.

Many BBS’s refer to themselves as forums. By definition, a forum is a gathering place where people can
meet and discuss different topics. That is a very apt definition for a BBS. However, we are going to clar-
ify it a little further, for use in the computer world. By our definition (and the way we’ll use it in this
chapter), a forum is a place to talk to other people about a common interest. A bulletin board is the loca-
tion in which the forum exists, which may house multiple forums. Therefore, you might visit a book
BBS to find different forums for science fiction, nonfiction, authors, and more.

Your Bulletin Board
This brings us to the reason for this chapter. You are going to create a Bulletin Board System. Once you
create the BBS, it will be up to you to create any type of forums within it that you need.

No doubt, you have visited many bulletin boards by now and are aware of the different features they
have to offer. Some of them have many bells and whistles, and are very slick programs. PHPBB and
Vbulletin are two of those very nice applications. Yours will not have quite the feature set these offer
(unless you are ambitious and decide to expand the app you write).

You have probably seen some very simple boards out there, too. Some are nothing more than a couple of
input boxes for Subject and Body, with no authentication. Those are fine for some Web sites, but not for
us. This is the last application of the book, and we’re going to put a few features in this thing. We are
also going to use cascading style sheets (CSS) to alter the look of the page because, let’s face it, the apps
up to now have been fairly plain. Because of the extended feature set of this app, CSS will help you posi-
tion things on the page a little better.

Don’t worry if you don’t know CSS; it’s not a requirement. We will provide you with a CSS file, down-
loadable from the Web site. If you know how, you can write your own style sheet, or modify the one we
provide. Otherwise, simply use the one we give you and you’ll be fine. The application will work fine
without the CSS, but as you will see, it will be much prettier and better laid out with it.

504

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 504

Here is a list of some of the more prominent features of the bulletin board you will build:

❑ User authentication: You want to keep track of who is posting what. You can certainly allow
anonymous access (hmm . . . might make a good exercise . . .), but this app will require users to
log in before they can post. Users will not have to log in to read posts, however.

❑ Search: This is the key to any good board, in our opinion. This will allow users to see if their
question has already been answered, as well as enable people to find posts that discuss the topic
they want to talk about.

❑ Admin screen: There will be a few features of the site that can be modified in the admin screen.
These will be fairly limited, but we hope that the implementation will inspire you to figure out
what other parts of the bulletin board you can include in the Admin section.

❑ Regular expressions: We include BBcodes in the application. If you have never seen them, these
are special codes that give the user a limited ability to format their posts. For example, by plac-
ing [b] and [/b] around words they will become bold (for example, [b]some words[/b] will
become some words). We will be using regular expressions for this feature.

❑ Pagination: You don’t want to have 328 posts on a single page. For one, it’s a bit long for users
to read. Second, PHP takes a while to render such a page, especially if there are images in the
posts. For this reason, we offer page links at the bottom to load different pages. To enable this,
you will be creating a pagination function.

These are most of the major features of the board. There will be a few more bells and whistles added, but
we won’t spoil the surprise yet. We want to give you plenty of “ooh,” “aah,” and “You’re a genius!”
moments later.

Try It Out The Bulletin Board Code
This is a large application—the biggest in the book. It consists of about 1,800 lines of code. Are you
scared yet? Well, don’t be. The hardest part is the typing, and if you want to avoid that, you can always
download the code from the Web site:

www.wrox.com

If you do download the code and want to skip what follows and jump ahead to read the explanation of
the code, go now to the next Try It Out section.

The first thing you will need to do is create a database. If you have already created a database for the
other apps in this book, we recommend you use the same database. There is no need to create a new one.
This app uses the prefix forum_ for its tables, so there should be no conflict.

If you do not have a database created, then Chapter 9 will help you create one. Do that, and then come
back. We’ll wait

There are around 20 PHP files to enter. We are simply going to list them one after another, giving you the
filename of each, and a short explanation of what the file is for. Save each file in the same folder.

Do your typing finger warm-ups, and let’s get started!

505

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 505

1. Open your favorite PHP editor. Remember to save early, and save often!

2. Create conn.php: This is the file that connects the application to the database.

This file will be included at the top of almost every other page, and contains all of your connec-
tion information. Substitute the appropriate data for your host, username, password, and
database.

<?php
define(‘SQL_HOST’,’localhost’);
define(‘SQL_USER’,’buzzly_comic’);
define(‘SQL_PASS’,’spiderman’);
define(‘SQL_DB’,’buzzly_comicsite’);

$conn = mysql_connect(SQL_HOST,SQL_USER,SQL_PASS)
or die(‘Could not connect to the database; ‘ . mysql_error());

mysql_select_db(SQL_DB,$conn)
or die(‘Could not select database; ‘ . mysql_error());

?>

3. Enter setup.php.

Once you have your database created, and conn.php saved, this file creates all of the necessary
tables in your database.

<?php
require_once “conn.php”;
$adminemail = “admin@yoursite.com”;
$adminpass = “admin”;
$adminname = “Admin”;

/******* Access Levels Table ***/
$sql = <<<EOS
CREATE TABLE forum_access_levels (

access_lvl tinyint(4) NOT NULL auto_increment,
access_name varchar(50) NOT NULL default ‘’,
PRIMARY KEY (access_lvl)

)
EOS;
$result = mysql_query($sql);
switch(mysql_errno()) {

case 1050:
break;

case 0:
$sql = “INSERT IGNORE INTO forum_access_levels

VALUES (1,’User’)”;
$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT IGNORE INTO forum_access_levels

VALUES (2,’Moderator’)”;
$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT IGNORE INTO forum_access_levels

VALUES (3,’Administrator’)”;
$result = mysql_query($sql) or die(mysql_error());
break;

506

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 506

default:
die(mysql_error());
break;

}
$a_tables[] = “forum_access_levels”;

/******* Admin Table ***/
$sql = <<<EOS
CREATE TABLE forum_admin (

id int(11) NOT NULL auto_increment,
title varchar(100) NOT NULL default ‘’,
value varchar(255) NOT NULL default ‘’,
constant varchar(100) NOT NULL default ‘’,
PRIMARY KEY (id)

)
EOS;
$result = mysql_query($sql);
switch(mysql_errno()) {

case 1050:
break;

case 0:
$sql = “INSERT INTO forum_admin VALUES (NULL,

‘Board Title’, ‘Comic Book Appreciation Forums’, ‘title’)”;
$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT INTO forum_admin VALUES (NULL, “.

“‘Board Description’, ‘The place to discuss your favorite “.
“comic books, movies, and more!’, ‘description’)”;

$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT INTO forum_admin VALUES (NULL, “.

“‘Admin Email’, ‘$adminemail’, ‘admin_email’)”;
$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT INTO forum_admin VALUES (NULL, ‘Copyright’, “.

“‘(c) 2003 CBA Inc. All rights reserved.’, “.
“‘copyright’)”;

$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT INTO forum_admin VALUES (NULL, “.

“‘Board Titlebar’, ‘CBA Forums’, ‘titlebar’)”;
$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT INTO forum_admin VALUES (NULL, “.

“‘Pagination Limit’, ‘10’, ‘pageLimit’)”;
$result = mysql_query($sql) or die(mysql_error());
$sql = “INSERT INTO forum_admin VALUES (NULL, “.

“‘Pagination Range’, ‘7’, ‘pageRange’)”;
$result = mysql_query($sql) or die(mysql_error());
break;

default:
die(mysql_error());
break;

}
$a_tables[] = “forum_admin”;

/******* BBcode Table **/
$sql = <<<EOS

507

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 507

CREATE TABLE IF NOT EXISTS forum_bbcode (
id int(11) NOT NULL auto_increment,
template varchar(255) NOT NULL default ‘’,
replacement varchar(255) NOT NULL default ‘’,
PRIMARY KEY (id)

)
EOS;
$result = mysql_query($sql) or die(mysql_error());
$a_tables[] = “forum_bbcode”;

/******* Forum Table ***/
$sql = <<<EOS
CREATE TABLE forum_forum (

id int(11) NOT NULL auto_increment,
forum_name varchar(100) NOT NULL default ‘’,
forum_desc varchar(255) NOT NULL default ‘’,
forum_moderator int(11) NOT NULL default ‘0’,
PRIMARY KEY (id)

)
EOS;
$result = mysql_query($sql);
switch(mysql_errno()) {

case 1050:
break;

case 0:
$sql = “INSERT INTO forum_forum VALUES (NULL, ‘New Forum’, “.

“‘This is the initial forum created when installing the “.
“database. Change the name and the description after “.
“installation.’, 1)”;

$result = mysql_query($sql) or die(mysql_error());
break;

default:
die(mysql_error());
break;

}
$a_tables[] = “forum_forum”;

/******* Post Count Table **/
$sql = <<<EOS
CREATE TABLE forum_postcount (

user_id int(11) NOT NULL default ‘0’,
count int(9) NOT NULL default ‘0’,
PRIMARY KEY (user_id)

)
EOS;
$result = mysql_query($sql);
switch(mysql_errno()) {

case 1050:
break;

case 0:
$sql = “INSERT INTO forum_postcount VALUES (1,1)”;
$result = mysql_query($sql) or die(mysql_error());
break;

508

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 508

default:
die(mysql_error());
break;

}
$a_tables[] = “forum_postcount”;

/******* Posts Table ***/
$sql = <<<EOS
CREATE TABLE forum_posts (

id int(11) NOT NULL auto_increment,
topic_id int(11) NOT NULL default ‘0’,
forum_id int(11) NOT NULL default ‘0’,
author_id int(11) NOT NULL default ‘0’,
update_id int(11) NOT NULL default ‘0’,
date_posted datetime NOT NULL default ‘0000-00-00 00:00:00’,
date_updated datetime NOT NULL default ‘0000-00-00 00:00:00’,
subject varchar(255) NOT NULL default ‘’,
body mediumtext NOT NULL,
PRIMARY KEY (id),
KEY IdxArticle (forum_id,topic_id,author_id,date_posted),
FULLTEXT KEY IdxText (subject,body)

)
EOS;
$result = mysql_query($sql);
switch(mysql_errno()) {

case 1050:
break;

case 0:
$sql = “INSERT INTO forum_posts VALUES (NULL, 0, 1, 1, 0, ‘“.
date(“Y-m-d H:i:s”, time()).”’, 0, ‘Welcome’, ‘Welcome to your “.
“new Bulletin Board System. Do not forget to change your admin “.
“password after installation. Have fun!’)”;
$result = mysql_query($sql) or die(mysql_error());
break;

default:
die(mysql_error());
break;

}
$a_tables[] = “forum_posts”;

/******* Users Table ***/
$sql = <<<EOS
CREATE TABLE forum_users (

id int(11) NOT NULL auto_increment,
email varchar(255) NOT NULL default ‘’,
passwd varchar(50) NOT NULL default ‘’,
name varchar(100) NOT NULL default ‘’,
access_lvl tinyint(4) NOT NULL default ‘1’,
signature varchar(255) NOT NULL default ‘’,
date_joined datetime NOT NULL default ‘0000-00-00 00:00:00’,
last_login datetime NOT NULL default ‘0000-00-00 00:00:00’,
PRIMARY KEY (id),
UNIQUE KEY uniq_email (email)

509

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 509

)
EOS;
$result = mysql_query($sql);
switch(mysql_errno()) {

case 1050:
break;

case 0:
$datetime = date(“Y-m-d H:i:s”,time());
$sql = “INSERT IGNORE INTO forum_users VALUES (NULL, “.

“‘$adminemail’, ‘$adminpass’, ‘$adminname’, 3, ‘’, “.
“‘$datetime’, 0)”;

$result = mysql_query($sql) or die(mysql_error());
break;

default:
die(mysql_error());
break;

}
$a_tables[] = “forum_users”;

/******* Display Results ***/
require(“config.php”);
echo “<html><head><title>Forum Tables Created “ .

$datetime . “</title>”;
echo “<link rel=’stylesheet’ type=’text/css’ “;
echo “href=’forum_styles.css’>”;
echo “</head><body>”;
echo “<div class=’bodysmall’>”;
echo “<h1>”.$admin[‘title’][‘value’].”</h1>”;
echo “<H3>Forum Tables created:</h3>\n”;
foreach ($a_tables as $table) {

$table = str_replace(“forum_”,””,$table);
$table = str_replace(“_”, “ “,$table);
$table = ucWords($table);
echo “$table\n”;

}
echo “\n<h3>Here is your initial login information:</h3>\n”;
echo “login: “ . $adminemail . “\n”;
echo “password: “ . $adminpass . “\n”;
echo “<h3>Log In “;
echo “to the site now.</h3></div>”;
echo “<div class=’copyright’>”.$admin[‘copyright’][‘value’].”</div>”;
echo “</body></html>”;
?>

4. Create functions.php. Okay, this is a big one. This file contains most of the major functions
that the board uses.

<?php
function trimBody($theText, $lmt=100, $s_chr=”@@@”, $s_cnt=1) {

$pos = 0;
$trimmed = FALSE;
for ($i = 1; $i <= $s_cnt; $i++) {

if ($tmp = strpos($theText,$s_chr,$pos)) {

510

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 510

$pos = $tmp;
$trimmed = TRUE;

} else {
$pos = strlen($theText);
$trimmed = FALSE;
break;

}
}
$theText = substr($theText,0,$pos);

if (strlen($theText) > $lmt) {
$theText = substr($theText,0,$lmt);
$theText = substr($theText,0,strrpos($theText,’ ‘));
$trimmed = TRUE;

}
if ($trimmed) $theText .= ‘...’;
return $theText;

}

function msgBox($m, $t, $d=”index.php”, $s=”Info”) {
$theMsg = “<div id=’requestConfirm” . $s . “‘>”;
$theMsg .= “<h2>” . $t . “</h2>\n”;
$theMsg .= “<p>” . $m . “</p>”;
$theMsg .= “<p><a href=’” . $d . “‘ “;
$theMsg .= “class=’buttonlink’>”;
$theMsg .= “Yes”;
$theMsg .= “”;
$theMsg .= “No</p>”;
$theMsg .= “</div>”;
return $theMsg;

}

function getForum($id) {
$sql = “SELECT forum_name as name, forum_desc as description, “.

“forum_moderator as mod “.
“FROM forum_forum “.
“WHERE id = “ . $id;

$result = mysql_query($sql)
or die(mysql_error() . “
” . $sql);

$row = mysql_fetch_array($result);
return $row;

}

function getForumID($topicid) {
$sql = “SELECT forum_id FROM forum_posts WHERE id=$topicid”;
$result = mysql_query($sql)

or die(mysql_error() . “
” . $sql);
$row = mysql_fetch_array($result);
return $row[‘forum_id’];

}

function breadcrumb($id, $getfrom=”F”) {
$sep = “”;

511

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 511

$sep .= “ · “;
$sep .= “”;
if ($getfrom == “P”) {

$sql = “SELECT forum_id, subject FROM forum_posts “.
“WHERE id = “ . $id;

$result = mysql_query($sql)
or die(mysql_error() . “
” . $sql);

$row = mysql_fetch_array($result);
$id = $row[‘forum_id’];
$topic = $row[‘subject’];

}
$row = getForum($id);
$bc = “Home$sep”;
switch ($getfrom) {

case “P”:
$bc .= “”.$row[‘name’].

“$sep”.$topic;
break;

case “F”:
$bc .= $row[‘name’];
break;

default:
}

return “<h4 class=’breadcrumb’>” . $bc . “</h4>”;
}

function showTopic($topicid, $showfull=TRUE) {
global $conn;
global $userid;
global $limit;

echo breadcrumb($topicid, “P”);
if (isset($_GET[‘page’])) {

$page = $_GET[‘page’];
} else {

$page = 1;
}
if ($limit == “”) $limit = 25;
$start = ($page - 1) * $limit;
if (isset($_SESSION[‘user_id’])) {

echo topicReplyBar($topicid, getForumID($topicid), “right”);
}
$sql = “SELECT SQL_CALC_FOUND_ROWS “.

“p.id, p.subject, p.body, p.date_posted, “ .
“p.date_updated, u.name as author, u.id as author_id, “ .
“u.signature as sig, c.count as postcount, “ .
“p.forum_id as forum_id, f.forum_moderator as mod, “ .
“p.update_id, u2.name as updated_by “ .

“FROM forum_forum f “ .
“JOIN forum_posts p “ .
“ON f.id = p.forum_id “ .
“JOIN forum_users u “ .
“ON u.id = p.author_id “ .
“LEFT JOIN forum_users u2 “ .

512

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 512

“ON u2.id = p.update_id “ .
“LEFT JOIN forum_postcount c “ .
“ON u.id = c.user_id “ .
“WHERE (p.topic_id = $topicid OR p.id = $topicid) “ .
“ORDER BY p.topic_id, p.date_posted “.
“LIMIT $start,$limit”;

$result = mysql_query($sql,$conn)
or die(mysql_error() . “
” . $sql);

$pagelinks = paginate($limit);
if (mysql_num_rows($result) == 0) {

$msg = “There are currently no posts. Would you “ .
“like to be the first person to create a thread?”;

$title = “No Posts...”;
$dest = “compose.php?forumid=” . $forumid;
$sev = “Info”;
$message = msgBox($msg,$title,$dest,$sev);
echo $message;

} else {
echo “<table class=’forumtable’ cellspacing=’0’ “;
echo “cellpadding=’2’><tr>”;
echo “<th class=’author’>Author</th>”;
echo “<th class=’post’>Post</th>”;
echo “</tr>”;
while ($row = mysql_fetch_array($result)) {

$lastupdate = “”;
$editlink = “”;
$dellink = “”;
$replylink = “ ”;
$pcount = “”;
$pdate = “”;
$sig = “”;
if ($showfull) {

$body = $row[‘body’];
if (isset($_SESSION[‘user_id’])) {

$replylink = “<a href=’compose.php?forumid=”.
$row[‘forum_id’].”&topicid=$topicid&reid=”.$row[‘id’].
“‘ class=’buttonlink’>REPLY ”;

} else {
$replylink = “”;

}
if ($row[‘update_id’] > 0) {
$lastupdate = “<p class=’smallNote’>Last updated: “ .

$row[‘date_updated’] . “ by “ .
$row[‘updated_by’] . “</p>”;

}
if (($userid == $row[‘author_id’]) or

($userid == $row[‘mod’]) or
($_SESSION[‘access_lvl’] > 2)) {

$editlink = “<a href=’compose.php?a=edit&post=”.$row[‘id’].
“‘ class=’buttonlink’>EDIT ”;

$dellink = “<a href=’transact-affirm.php?action=deletepost&”.
“id=” . $row[‘id’] .
“‘ class=’buttonlink’>DELETE ”;

}

513

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 513

$pcount = “
Posts: “ .
($row[‘postcount’]==””?”0”:$row[‘postcount’]) . “”;

$pdate = $row[‘date_posted’];
$sig = ($row[‘sig’] != “”?”<p class=’sig’>”.

bbcode(nl2br($row[‘sig’])):””).”</p>”;
} else {

$body = trimBody($body);
}
$rowclass = ($rowclass == “row1”?”row2”:”row1”);
echo “<tr class=’$rowclass’>”;
echo “<td class=’author’>” . $row[‘author’];
echo $pcount;
echo “</td><td class=’post’><p>”;
if (isset($_SESSION[‘user_id’])

and ($_SESSION[‘last_login’] < $row[‘date_posted’])) {
echo NEWPOST . “ “;

}
if (isset($_GET[‘page’])) $pagelink = “&page=” . $_GET[‘page’];
echo “<a name=’post” . $row[‘id’] .

“‘ href=’viewtopic.php?t=” . $topicid . $pagelink . “#post” .
$row[‘id’] . “‘>”.POSTLINK.””;

if (isset($row[‘subject’])) {
echo “ ” . $row[‘subject’] . “”;

}
echo “</p><p>” . bbcode(nl2br(htmlspecialchars($body))) . “</p>”;
echo $sig;
echo $lastupdate;
echo “</td></tr>”;
echo “<tr class=’$rowclass’><td class=’authorfooter’>”;
echo $pdate . “</td><td class=’threadfooter’>”;
echo $replylink;
echo $editlink;
echo $dellink;
echo “</td></tr>\n”;

}
echo “</table>”;
echo $pagelinks;
echo “<p>”.NEWPOST.” = New Post ”;
echo POSTLINK.” = Post link (use to bookmark)</p>”;

}
}

function isParent($page) {
$currentpage = $_SERVER[‘PHP_SELF’];
if (strpos($currentpage, $page) === false) {

return FALSE;
} else {

return TRUE;
}

}

function topicReplyBar($topicid,$forumid,$pos=”right”) {
$html = “<p class=’buttonBar” . $pos . “‘>”;
if ($topicid > 0) {

514

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 514

$html .= “<a href=’compose.php?forumid=$forumid”.
“&topicid=$topicid&reid=$topicid’ class=’buttonlink’>Reply “.
“to Thread”;

}
if ($forumid > 0) {

$html .= “<a href=’compose.php?forumid=$forumid’ “.
“class=’buttonlink’>New Thread”;

}
$html .= “</p>”;
return $html;

}

function userOptionList($level) {
$sql = “SELECT id, name, access_lvl “ .

“FROM forum_users “ .
“WHERE access_lvl=” . $level . “ “ .
“ORDER BY name”;

$result = mysql_query($sql) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
echo “<option value=’”. $row[‘id’] . “‘>” .

htmlspecialchars($row[‘name’]) . “</options>”;
}

}

function paginate($limit=10) {
global $admin;

$sql = “SELECT FOUND_ROWS();”;
$result = mysql_query($sql) or die(mysql_error());
$row = mysql_fetch_array($result);
$numrows = $row[0];
$pagelinks = “<div class=pagelinks>”;
if ($numrows > $limit) {

if(isset($_GET[‘page’])){
$page = $_GET[‘page’];

} else {
$page = 1;

}
$currpage = $_SERVER[‘PHP_SELF’] . “?” . $_SERVER[‘QUERY_STRING’];
$currpage = str_replace(“&page=”.$page,””,$currpage);

if($page == 1){
$pagelinks .= “< PREV”;

}else{
$pageprev = $page - 1;
$pagelinks .= “<a class=’pageprevlink’ href=’” . $currpage .

“&page=” . $pageprev . “‘>< PREV”;
}

$numofpages = ceil($numrows / $limit);
$range = $admin[‘pageRange’][‘value’];
if ($range == “” or $range == 0) $range = 7;
$lrange = max(1,$page-(($range-1)/2));

515

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 515

$rrange = min($numofpages,$page+(($range-1)/2));
if (($rrange - $lrange) < ($range - 1)) {

if ($lrange == 1) {
$rrange = min($lrange + ($range-1), $numofpages);

} else {
$lrange = max($rrange - ($range-1), 0);

}
}

if ($lrange > 1) {
$pagelinks .= “..”;

} else {
$pagelinks .= “ ”;

}
for($i = 1; $i <= $numofpages; $i++){

if($i == $page){
$pagelinks .= “$i”;

}else{
if ($lrange <= $i and $i <= $rrange) {

$pagelinks .= “<a class=’pagenumlink’ href=’” . $currpage .
“&page=” . $i . “‘>” . $i . “”;

}
}

}
if ($rrange < $numofpages) {

$pagelinks .= “..”;
} else {

$pagelinks .= “ ”;
}

if(($numrows - ($limit * $page)) > 0){
$pagenext = $page + 1;
$pagelinks .= “<a class=’pagenextlink’ href=’” . $currpage .

“&page=” . $pagenext . “‘>NEXT >”;
} else {

$pagelinks .= “NEXT >”;
}

} else {
$pagelinks .= “

< PREV ”;
$pagelinks .= “

NEXT > ”;
}
$pagelinks .= “</div>”;
return $pagelinks;

}

function bbcode($data) {
$sql = “SELECT * FROM forum_bbcode”;
$result = mysql_query($sql);
if (mysql_num_rows($result) > 0) {

while($row = mysql_fetch_array($result)) {
$bbcode[‘tpl’][] =

“§” . html_entity_decode($row[‘template’],ENT_QUOTES). “§i”;

516

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 516

$bbcode[‘rep’][] =
html_entity_decode($row[‘replacement’],ENT_QUOTES);

}
$data1 = preg_replace($bbcode[‘tpl’],$bbcode[‘rep’],$data);
$count = 1;
while (($data1 != $data) and ($count < 4)) {

$count++;
$data = $data1;
$data1 = preg_replace($bbcode[‘tpl’],$bbcode[‘rep’],$data);

}
}

return $data;
}
?>

5. Enter http.php.

This is for various functions used for navigating around the site. It contains the redirect()
function.

<?php
function redirect($url) {

if (!headers_sent()) {
header(‘Location: http://’ . $_SERVER[‘HTTP_HOST’] .

dirname($_SERVER[‘PHP_SELF’]) . ‘/’ . $url);
} else {

die(‘Could not redirect; Headers already sent (output).’);
}

}
?>

6. Create config.php.

This sets up any constants or variables you may need in the app. It loads admin settings and
BBcodes into arrays to be used by the board.

<?php
require_once ‘conn.php’;
require_once ‘functions.php’;

$sql = ‘SELECT * FROM forum_admin’;
$result = mysql_query($sql) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
$admin[$row[‘constant’]][‘title’] = $row[‘title’];
$admin[$row[‘constant’]][‘value’] = $row[‘value’];

}

$sql = ‘SELECT * FROM forum_bbcode’;
$result = mysql_query($sql) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
$bbcode[$row[‘id’]][‘template’] = $row[‘template’];
$bbcode[$row[‘id’]][‘replacement’] = $row[‘replacement’];

517

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 517

}

// define constants here:
define(“NEWPOST”,

“»”);
define(“POSTLINK”,

“♦”);
?>

7. Create header.php. This goes at the top of each page that gets displayed.

<?php
session_start();
require_once ‘config.php’;
$title = $admin[titlebar][value];
if ($pageTitle != “”) {

$title .= “ :: “ . $pageTitle;
}
$userid = $_SESSION[‘user_id’];
$access_lvl = $_SESSION[‘access_lvl’];
$username = $_SESSION[‘name’];
?>
<html>
<head>
<title><?php echo $title; ?></title>
<link rel=”stylesheet” type=”text/css” href=”forum_styles.css”>
</head>
<body>
<div class=”body”>
<div id=”header”>

<form method=”get” action=”search.php” id=”searchbar”>
<input id=”searchkeywords” type=”text” name=”keywords”
<?php

if (isset($_GET[‘keywords’])) {
echo ‘ value=”’ . htmlspecialchars($_GET[‘keywords’]) . ‘“ ‘;

}
echo ‘onfocus=”this.select();” ‘

?>
/>
<input id=”searchbutton” class=”submit” type=”submit”
value=”Search” />

</form>
<h1 id=”sitetitle”><?php echo $admin[‘title’][‘value’];?></h1>
<div id=”login”>
<?php

if (isset($_SESSION[‘name’])) {
echo ‘Welcome, ‘.$_SESSION[‘name’];

}
?>
</div>
<p id=”subtitle”><?php echo $admin[‘description’][‘value’]; ?></p>

</div>
<div id=”subheader”>

<div id=’navigation’>

518

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 518

<?php
echo ‘ Home’;
if (!isset($_SESSION[‘user_id’])) {

echo ‘ | Log In’;
echo ‘ | Register’;

} else {
echo ‘ | ’;
echo “Log out “ . $_SESSION[‘name’] . “”;
if ($_SESSION[‘access_lvl’] > 2) {

echo ‘ | Admin’;
}
echo ‘ | Profile’;

}
?>
</div>

</div>

8. Enter footer.php, which places a footer at the bottom of each page that gets displayed:

</div>
<div class=”copyright”>

<?php echo $admin[copyright][value]; ?>
</div>
</body>
</html>

9. Create index.php, the home page. This is the page users first see when they view the board.

<?php
require_once ‘conn.php’;
require_once ‘functions.php’;
require_once ‘header.php’;

$sql = <<<EOS
SELECT f.id as id, f.forum_name as forum, f.forum_desc as description,

count(forum_id) as threads, u.name as mod
FROM forum_forum f
LEFT JOIN forum_posts p
ON f.id = p.forum_id
AND p.topic_id=0
LEFT JOIN forum_users u
ON f.forum_moderator = u.id
GROUP BY f.id

EOS;
$result = mysql_query($sql)

or die(mysql_error());
if (mysql_num_rows($result) == 0) {

echo “
\n”;
echo “ There are currently no forums to view.\n”;

} else {
echo “<table class=’forumtable’ cellspacing=’0’ “;
echo “cellspacing=’0’><tr>”;
echo “<th class=’forum’>Forum</th>”;
echo “<th class=’threadcount’>Threads</th>”;
echo “<th class=’moderator’>Moderator</th>”;

519

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 519

echo “</tr>”;
while ($row = mysql_fetch_array($result)) {

$rowclass = ($rowclass == “row1”?”row2”:”row1”);
echo “<tr class=’$rowclass’>”;
echo “<td class=’firstcolumn’>”;
echo $row[‘forum’] . “
”;
echo “” . $row[‘description’];
echo “</td>”;
echo “<td class=’center’>” . $row[‘threads’] . “</td>”;
echo “<td class=’center’>” . $row[‘mod’] . “</td>”;
echo “</tr>\n”;

}
echo “</table>”;

}

require_once ‘footer.php’;
?>

10. Enter login.php, the login page. (Guess what it’s used for?)

<?php require_once ‘header.php’;?>
<form name=”theForm” method=”post” action=”transact-user.php”>
<h3>Member Login</h3>
<p>

Email Address:

<input type=”text” name=”email” maxlength=”255” value=”<?php
echo $_GET[‘e’];?>” />

</p>
<p>

Password:

<input type=”password” name=”passwd” maxlength=”50” />

</p>
<p>

<input type=”submit” class=”submit” name=”action” value=”Login” />
</p>

<p>
Not a member yet? Create a new account!

</p>
<p>

Forgot your password?
</p>
</form>
<?php require_once ‘footer.php’; ?>

11. Create forgotpass.php. This page is displayed if the user forgets his or her password.

<?php require_once ‘header.php’; ?>
<form method=”post” action=”transact-user.php”>
<h3>Email Password Reminder</h3>
<p>

Forgot your password? Just enter your email address, and we’ll email
your password to you!

</p>
<p>

520

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 520

Email Address:

<input type=”text” id=”email” name=”email” />

</p>
<p>

<input type=”submit” class=”submit” name=”action” value=”Send my reminder!” />
</p>
</form>
<?php require_once ‘footer.php’; ?>

12. Enter admin.php. This is the page used to edit different board attributes, user information,
forums, and more.

<?php
require_once ‘header.php’;
?>

<script type=”text/Javascript”>
<!—
function delBBCode(id) {

window.location = “transact-admin.php?action=deleteBBCode&b=” + id;
}
function delForum(id) {

window.location = “transact-affirm.php?action=deleteForum&f=” + id;
}
//—>
</script>

<?php
$sql = “SELECT access_lvl, access_name FROM forum_access_levels “ .

“ORDER by access_lvl DESC”;
$result = mysql_query($sql) or die(mysql_error());
while ($row = mysql_fetch_array($result)) {

$a_users[$row[‘access_lvl’]] = $row[‘access_name’];
}

$menuoption = “boardadmin”; // default
if (isset($_GET[‘option’])) $menuoption = $_GET[‘option’];

$menuItems = array(
“boardadmin” => “Board Admin”,
“edituser” => “Users”,
“forums” => “Forums”,
“bbcode” => “BBcode”
);

echo “<p class=’menu’>|”;
foreach ($menuItems as $key => $value) {

if ($menuoption != $key) {
echo “”;

}
echo “ $value “;
if ($menuoption != $key) echo “”;
echo “|”;

}

521

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 521

echo “</p>”;

switch ($menuoption) {
case ‘boardadmin’:
?>

<h3>Board Administration</h3>
<form id=’adminForm’ method=’post’ action=’transact-admin.php’>
<table cellspacing=’0’ class=’forumtable’>
<tr>

<th>Title</th><th>Value</th><th>Parameter</th>
</tr>

<?php
foreach ($admin as $k => $v) {

echo “<tr><td>”. $v[‘title’] . “</td><td>” .
“<input type=’text’ name=’”. $k . “‘ “ .
“value=’” . $v[‘value’] . “‘ size=’60’>” .
“</td><td>$k</td></tr>\n”;

}
?>

</table>
<p class=’buttonBar’>

<input class=’submit’ type=’submit’ name=”action”
id=”Update” value=’Update’>

</p>
</form>

<?php
break;

case ‘edituser’:
?>

<h3>User Administration</h3>
<div id=”users”>
<form name=”myform” action=”transact-admin.php” method=”post”>
Please select a user to admin:

<select id=’userlist’ name=’userlist[]’>

<?php
foreach ($a_users as $key => $value) {

echo “<optgroup label=’”. $value . “‘>\n”;
userOptionList($key);
echo “\n</optgroup>\n”;

}
?>

</select>
<input class=”submit” type=”submit” name=”action”

value=”Modify User”>
</form>
</div>

<?php
break;

case ‘forums’:
?>
<h2>Forum Administration</h2>
<table class=’forumtable’ cellspacing=’0’>
<tr><th class=”forum”>Forum</th><th> </th><th> </th></tr>
<?php

522

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 522

$sql = “SELECT * FROM forum_forum”;
$result = mysql_query($sql) or die(mysql_error());
while ($row = mysql_fetch_array($result)) {

echo “<tr><td>” . $row[‘forum_name’] .
“
” . $row[‘forum_desc’] .
“</td><td>” . “<a href=’editforum.php?forum=” .
$row[‘id’] . “‘>Edit</td><td>” .
“<a href=’#’ onclick=’delForum(“. $row[‘id’] .
“);’>” . “Delete</td></tr>”;

}
?>
</table>
<p class=’buttonBar’>

New Forum
</p>

<?php
break;

case ‘bbcode’:
?>

<h3>BBcode Administration</h3>
<form id=’bbcodeForm’ method=’post’ action=’transact-admin.php’>
<table cellspacing=’0’ class=’forumtable’>
<tr>

<th class=’template’>Template</th>
<th class=’replacement’>Replacement</th>
<th class=’action’>Action</th>

</tr>
<?php

if (isset($bbcode)) {
foreach ($bbcode as $k => $v) {

echo “<tr class=’row1’><td>” .
“<input class=’mono’ type=’text’ name=’bbcode_t”. $k . “‘ “ .
“value=’” . $v[‘template’] . “‘ size=’32’>” .
“</td><td>” .
“<input class=’mono’ type=’text’ name=’bbcode_r”. $k . “‘ “ .
“value=’” . $v[‘replacement’] . “‘ size=’32’>” .
“</td><td><input type=’button’ class=’submit’ “ .
“name=’action’ id=’DelBBCode’ value=’Delete’ “ .
“onclick=’delBBCode(“.$k.”);’>” .
“</td></tr>\n”;

}
}

?>
<tr class=’row2’><td colspan=’3’> </td></tr>
<tr class=’row2’><td>
<input class=’mono’ type=’text’ name=’bbcode-tnew’ size=’32’>
</td><td>
<input class=’mono’ type=’text’ name=’bbcode-rnew’ size=’32’>
</td><td>
<input type=’submit’ class=’submit’ name=’action’

id=’AddBBCode’ value=’Add New’>
</td></tr>
</table>
<p class=’buttonBar’>

523

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 523

<input class=’submit’ type=’submit’ name=”action”
id=”Update” value=’Update BBCodes’>

</p>
</form>

<?php
break;

default:
}
?>
</script>
<?php require_once ‘footer.php’; ?>

13. Create useraccount.php. Users access this page to edit their own profiles.

<?php
require_once ‘header.php’;

$userid = $username = $useremail = $password = $accesslvl = ‘’;
$mode = “Create”;
if (isset($_SESSION[‘user_id’])) {

$userid = $_SESSION[‘user_id’];
$mode = “Edit”;
if (isset($_GET[‘user’])) {

if (($_SESSION[‘user_id’] == $_GET[‘user’])
|| ($_SESSION[‘access_lvl’] > 2)) {

$userid = $_GET[‘user’];
$mode = “Modify”;

}
}
$sql = “SELECT * FROM forum_users WHERE id=$userid”;
$result = mysql_query($sql)

or die(‘Could not look up user data; ‘ . mysql_error());

$row = mysql_fetch_array($result);
$username = $row[‘name’];
$useremail = $row[‘email’];
$accesslvl = $row[‘access_lvl’];
$signature = $row[‘signature’];

}

echo “<h3>$mode Account</h3>\n”;
echo “<form method=\”post\” action=\”transact-user.php\”>\n”;
?>

<p>
Full name:

<input type=”text” class=”txtinput” name=”name” maxlength=”100”

value=”<?php echo htmlspecialchars($username); ?>” />
</p>
<?php

if ($mode == “Edit”) {
?>
<p>

Email Address:

<input type=”text” class=”txtinput” name=”email” maxlength=”255”

524

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 524

value=”<?php echo htmlspecialchars($useremail); ?>” />
</p>
<?php

}
if ($mode == “Modify”) {

echo “<div><fieldset>\n”;
echo “ <legend>Access Level</legend>\n”;

$sql = “SELECT * FROM forum_access_levels ORDER BY access_lvl DESC”;
$result = mysql_query($sql,$conn)

or die(‘Could not list access levels; ‘ . mysql_error());

while ($row = mysql_fetch_array($result)) {
echo ‘ <input type=”radio” class=”radio” id=”acl_’ .

$row[‘access_lvl’] . ‘“ name=”accesslvl” value=”’ .
$row[‘access_lvl’] . ‘“ ‘;

if ($row[‘access_lvl’] == $accesslvl) {
echo ‘checked=”checked” ‘;

}
echo ‘/>’ . $row[‘access_name’] . “
\n”;

}
echo “</fieldset></div>”;

}
if ($mode != “Modify”) echo “<div id=’passwords’>”;
if ($mode == “Edit”) {

if ($_GET[‘error’] == “nopassedit”) {
echo “Could not modify passwords.”;
echo “ Please try again.
”;

}
?>
<p>

Old Password:

<input type=”password” id=”oldpasswd”

name=”oldpasswd” maxlength=”50” />
</p>
<?php
}
if ($mode != “Modify”) {
?>
<p>

New Password:

<input type=”password” id=”passwd” name=”passwd” maxlength=”50” />

</p>
<p>

Password Verification:

<input type=”password” id=”passwd2” name=”passwd2” maxlength=”50” />

</p>
<?php }
if ($mode != “Modify”) echo “</div>”;
if ($mode != “Create”) {
?>
<p>

Signature:

<textarea name=”signature” id=”signature” cols=60 rows=5><?php

525

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 525

echo $signature;?></textarea>
</p>
<?php } ?>
<p>

<input type=”submit” class=”submit” name=”action”
value=”<?php echo $mode;?> Account” />

</p>
<?php if ($mode == “Edit”) {?>
<input type=”hidden” name=”accesslvl”

value=”<?php echo $accesslvl; ?>” />
<?php } ?>
<input type=”hidden” name=”userid” value=”<?php echo $userid; ?>” />
</form>
<?php require_once ‘footer.php’; ?>

14. Enter editforum.php, which is used to edit forum details:

<?php
if (isset($_GET[‘forum’])) {

$action=”Edit”;
} else {

$action=”Add”;
}
$pageTitle = “$action Forum”;
require_once ‘header.php’;

$forum = 0;
$fname = ‘’;
$fdesc = ‘’;
$fmod = ‘’;
$userid = 0;

if (isset($_GET[‘forum’])) {
$forum = $_GET[‘forum’];
$sql = “SELECT forum_name, forum_desc, u.name, u.id “ .

“FROM forum_forum f “ .
“LEFT JOIN forum_users u “ .
“ON f.forum_moderator = u.id “ .
“WHERE f.id = $forum”;

$result = mysql_query($sql) or die(mysql_error());
if ($row = mysql_fetch_array($result)) {

$fname = $row[‘forum_name’];
$fdesc = $row[‘forum_desc’];
$fmod = $row[‘name’];
$userid = $row[‘id’];

}
}
echo “<h2>$action forum</h2>”;
?>
<form name=”forumedit” action=”transact-admin.php” method=”post”>
<table class=”forumtable” cellspacing=’0’>
<tr><th colspan=’2’>General Forum Settings</th></tr>
<tr>

<td>Forum Name</td>
<td>

526

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 526

<input type=’text’ name=’forumname’
value=”<?php echo $fname;?>”>

</td>
</tr>
<tr>

<td>Forum Description</td>
<td>

<input type=’text’ name=’forumdesc’ size=’75’
value=”<?php echo $fdesc;?>”>

</td>
</tr>
<tr>

<td>Forum Moderator</td>
<td>

<select id=”moderator” name=”forummod[]”>
<option value=’0’>unmoderated</option>
<?php
$sql = “SELECT * FROM forum_users “.

“WHERE access_lvl > 1”;
$result = mysql_query($sql) or die(mysql_error());
while ($row = mysql_fetch_array($result)) {

echo “<option value=’” . $row[‘id’] . “‘“;
if ($userid == $row[‘id’]) echo “ selected=’selected’”;
echo “>” . $row[‘name’] . “</option>”;

}
?>
</select>

</td>
</tr>
<tr>

<td colspan=’2’>
<input class=”submit” type=”submit” name=”action”

value=”<?php echo $action;?> Forum”>
</td>

</table>
<input type=”hidden” name=”forum_id” value=”<?php echo $forum;?>”>
</form>
<?php require_once ‘footer.php’;?>

15. Create viewtopic.php, which displays all of the posts in a thread:

<?php
require_once ‘conn.php’;
require_once ‘functions.php’;
require_once ‘http.php’;
if (!isset($_GET[‘t’])) redirect(‘index.php’);
require_once ‘header.php’;

$topicid = $_GET[‘t’];
$limit = $admin[‘pageLimit’][‘value’];

showTopic($topicid,TRUE);

require_once ‘footer.php’;
?>

527

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 527

16. Create viewforum.php, which displays all of the threads (topics) for a forum:

<?php
require_once ‘conn.php’;
require_once ‘functions.php’;
require_once ‘http.php’;
if (!isset($_GET[‘f’])) redirect(‘index.php’);
require_once ‘header.php’;

$forumid = $_GET[‘f’];
$forum = getForum($forumid);

echo breadcrumb($forumid, “F”);
if (isset($_GET[‘page’])) {

$page = $_GET[‘page’];
} else {

$page = 1;
}
$limit = $admin[‘pageLimit’][‘value’];
if ($limit == “”) $limit = 25;
$start = ($page - 1) * $admin[‘pageLimit’][‘value’];

$sql = “CREATE TEMPORARY TABLE tmp (“.
“topic_id INT(11) NOT NULL DEFAULT 0, “.
“postdate datetime NOT NULL default ‘0000-00-00 00:00:00’);”;

mysql_query($sql) or die(mysql_error().”
”.$sql);

$sql = “LOCK TABLES forum_users READ,forum_posts READ;”;
mysql_query($sql) or die(mysql_error().”
”.$sql);

$sql = “INSERT INTO tmp SELECT topic_id,MAX(date_posted) “.
“FROM forum_posts “.
“WHERE forum_id = $forumid “.
“AND topic_id > 0 “.
“GROUP BY topic_id;”;

mysql_query($sql) or die(mysql_error().”
”.$sql);

$sql = “UNLOCK TABLES”;
mysql_query($sql) or die(mysql_error().”
”.$sql);

//die(‘stop’);
$sql = “SELECT SQL_CALC_FOUND_ROWS “.

“t.id as topic_id, t.subject as t_subject, “.
“u.name as t_author, count(p.id) as numreplies, “.
“t.date_posted as t_posted, tmp.postdate as re_posted “.

“FROM forum_users u “.
“JOIN forum_posts t “.
“ON t.author_id = u.id “.
“LEFT JOIN tmp “.
“ON t.id = tmp.topic_id “.
“LEFT JOIN forum_posts p “.
“ON p.topic_id = t.id “.
“WHERE t.forum_id = $forumid “.
“AND t.topic_id = 0 “.
“GROUP BY t.id “.

528

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 528

“ORDER BY re_posted DESC “ .
“LIMIT $start, $limit”;

$result = mysql_query($sql)
or die(mysql_error().”
”.$sql);
$numrows = mysql_num_rows($result);

if ($numrows == 0) {
$msg = “There are currently no posts. Would you “ .

“like to be the first person to create a thread?”;
$title = “Welcome to “ . $forum[‘name’];
$dest = “compose.php?forumid=” . $forumid;
$sev = “Info”;
$message = msgBox($msg,$title,$dest,$sev);
echo $message;

} else {
if (isset($_SESSION[‘user_id’])) {

echo topicReplyBar(0, $_GET[‘f’], “right”);
}
echo “<table class=’forumtable’ cellspacing=’0’ “;
echo “cellpadding=’2’><tr>”;
echo “<th class=’thread’>Thread</th>”;
echo “<th class=’author’>Author</th>”;
echo “<th class=’replies’>Replies</th>”;
echo “<th class=’lastpost’>Last Post</th>”;
echo “</tr>”;
while ($row = mysql_fetch_array($result)) {

$rowclass = ($rowclass == “row1”?”row2”:”row1”);
if ($row[‘re_posted’]==””) {

$lastpost = $row[‘t_posted’];
} else {

$lastpost = $row[‘re_posted’];
}
if ((isset($_SESSION[‘user_id’])) and

($_SESSION[‘last_login’] < $lastpost)) {
$newpost = true;

} else {
$newpost = false;

}
echo “<tr class=’$rowclass’>”;
echo “<td class=’thread’>”.($newpost?NEWPOST.” ”:””);
echo “<a href=’viewtopic.php?t=”;
echo $row[‘topic_id’] . “‘>” . $row[‘t_subject’] . “</td>”;
echo “<td class=’author’>” . $row[‘t_author’] . “</td>”;
echo “<td class=’replies’>” . $row[‘numreplies’] . “</td>”;
echo “<td class=’lastpost’>” . $lastpost . “</td>”;
echo “</tr>\n”;

}
echo “</table>”;
echo paginate($limit);
echo “<p>”.NEWPOST.” = New Post(s)</p>”;

}
$sql = “DROP TABLE tmp;”;
mysql_query($sql) or die(mysql_error().”
”.$sql);

require_once ‘footer.php’;
?>

529

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 529

17. Enter compose.php, the form used to enter the subject and body of a post:

<?php
require_once ‘conn.php’;
require_once ‘functions.php’;
require_once ‘header.php’;

$subject = ‘’;
$topicid = $_GET[‘topicid’];
$forumid = $_GET[‘forumid’];
$reid = $_GET[‘reid’];
$body = ‘’;
$post = ‘’;
$authorid = $_SESSION[‘user_id’];
$edit_mode=FALSE;

if (isset($_GET[‘a’])
and $_GET[‘a’] == ‘edit’
and isset($_GET[‘post’])
and $_GET[‘post’]){

$edit_mode=TRUE;
}

require_once ‘header.php’;

if (!isset($_SESSION[‘user_id’])) {
echo “<div class=’notice’>” .

“You must be logged in to post. Please <a href=’” .
“login.php’>Log in before posting a message.” .
“</div>”;

} elseif ($edit_mode and $_SESSION[‘user_id’] != $authorid) {
echo “<div class=’noauth’>” .

“You are not authorized to edit this post. Please contact “ .
“your administrator.</div>”;

} else {
if ($edit_mode) {

$sql = “SELECT * FROM forum_posts p, forum_forum f “ .
“WHERE p.id = “ . $_GET[‘post’].
“ AND p.forum_id = f.id”;

$result = mysql_query($sql,$conn)
or die(‘Could not retrieve post data; ‘ . mysql_error());

$row = mysql_fetch_array($result);

$subject = $row[‘subject’];
$topicid = $row[‘topic_id’];
$forumid = $row[‘forum_id’];
$body = $row[‘body’];
$post = $_GET[‘post’];
$authorid = $row[‘author_id’];

} else {

if ($topicid == “”) {
$topicid = 0;
$topicname = “New Topic”;

530

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 530

} else {
if ($reid != “”) {

$sql = “SELECT subject FROM forum_posts WHERE id = “ . $reid;
$result = mysql_query($sql,$conn)

or die(‘Could not retrieve topic; ‘ . mysql_error());
if (mysql_num_rows($result) > 0) {

$row = mysql_fetch_array($result);
$re = preg_replace(“/(re:)/i”,””,$row[‘subject’]);

}
}
$sql = “SELECT subject FROM forum_posts WHERE id = “;
$sql .= $topicid . “ AND topic_id = 0 AND forum_id = $forumid;”;
$result = mysql_query($sql,$conn)

or die(‘Could not retrieve topic; ‘ . mysql_error());
if (mysql_num_rows($result) > 0) {

$row = mysql_fetch_array($result);
$topicname = “Reply to ” . $row[‘subject’] . “\n”;
$subject = ($re == “”?””:”Re: “ . $re);

} else {
$topicname = “Reply”;
$topicid = 0;

}
}

}
if ($forumid == “” or $forumid == 0) $forumid=1;
$sql = “SELECT forum_name FROM forum_forum WHERE id = ‘“;
$sql .= $forumid . “‘“;
$result = mysql_query($sql,$conn)

or die(‘Could not retrieve forum name; ‘ . mysql_error());
$row = mysql_fetch_array($result);
$forumname = $row[‘forum_name’];

?>

<form id=”forumpost” method=”post” action=”transact-post.php”>

<h3><?php echo $edit_mode
?”Edit Post”
:”$forumname: $topicname”;?>

</h3>
<p>

Subject:

<input type=”text” class=”subject” name=”subject” maxlength=”255”

value=”<?php echo $subject; ?>” />
</p>
<p>

Body:

<textarea class=”body” name=”body” rows=”10” cols=”60”><?php

echo $body; ?></textarea>
</p>
<p>
<?php

if ($edit_mode) {
echo ‘<input type=”submit” class=”submit” name=”action” ‘ .

531

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 531

“value=\”Save Changes\” />\n”;
} else {

echo ‘<input type=”submit” class=”submit” name=”action” ‘ .
“value=\”Submit New Post\” />\n”;

}
?>
</p>
<?php
echo “<input type=’hidden’ name=’post’ value=’$post’>\n”;
echo “<input type=’hidden’ name=’topic_id’ value=’$topicid’>\n”;
echo “<input type=’hidden’ name=’forum_id’ value=’$forumid’>\n”;
echo “<input type=’hidden’ name=’author_id’ value=’$authorid’>\n”;
echo “</form>\n”;

}
require_once ‘footer.php’;
?>

18. Create search.php, which displays the user’s search results:

<?php
require_once ‘conn.php’;
require_once ‘functions.php’;
require_once ‘header.php’;

$result = NULL;
if (isset($_GET[‘keywords’])) {

$sql = “SELECT *, MATCH (subject,body) “ .
“AGAINST (‘“ . $_GET[‘keywords’] . “‘) AS score “ .
“FROM forum_posts “ .
“WHERE MATCH (subject,body) “ .
“AGAINST (‘“ . $_GET[‘keywords’] . “‘) “ .
“ORDER BY score DESC”;

$result = mysql_query($sql,$conn)
or die(‘Could not perform search; ‘ . mysql_error());

}

echo “<table class=’forumtable’ width=’100%’ “ .
“cellspacing=’0’>\n”;

echo “<tr><th class=’searchHeader’>Search Results</th></tr>\n”;

if ($result and !mysql_num_rows($result)) {
echo “<tr class=’row1’><td>No articles found that match the “;
echo “search term(s) ‘” . $_GET[‘keywords’] . “’”;
if ($access_lvl > 2) echo “<p>SQL: $sql</p>”;
echo “</td></tr>\n”;

} else {
while ($row = mysql_fetch_array($result)) {

$rowclass = ($rowclass == “row1”?”row2”:”row1”);
echo “<tr class=’$rowclass’>\n<td>\n”;
$topicid=($row[‘topic_id’]==0?$row[‘id’]:$row[‘topic_id’]);
echo “<p class=’searchSubject’>\n<a href=’viewtopic.php?t=” .

$topicid . “#post” . $row[‘id’] . “‘>” .
$row[‘subject’] . “\n”;

echo “</p>\n”;

532

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 532

echo “<p class=’searchBody’>\n”;
echo htmlspecialchars(trimBody($row[‘body’]));
if ($access_lvl > 2) {

echo “

relevance: “ . $row[‘score’];
}
echo “\n</p>\n”;
echo “</td>\n</tr>\n\n”;

}
}
echo “</table>”;

require_once ‘footer.php’;
?>

19. Create transact-admin.php, one of four transaction pages.

Admin forms post to this page, which manipulates the data and then redirects the user to
another page. Transaction pages do not send any data to the client unless there is an error.

<?php
session_start();
require_once ‘conn.php’;
require_once ‘http.php’;

if (isset($_REQUEST[‘action’])) {
switch ($_REQUEST[‘action’]) {

case ‘Add Forum’:
if (isset($_POST[‘forumname’])

and $_POST[‘forumname’] != “”
and isset($_POST[‘forumdesc’])
and $_POST[‘forumdesc’] != “”)

{
$sql = “INSERT IGNORE INTO forum_forum “ .

“VALUES (NULL, ‘“ .
htmlspecialchars($_POST[‘forumname’], ENT_QUOTES) .
“‘, ‘“ .
htmlspecialchars($_POST[‘forumdesc’], ENT_QUOTES) .
“‘, “ . $_POST[‘forummod’][0] . “)”;

mysql_query($sql) or die(mysql_error());
}
redirect(‘admin.php?option=forums’);
break;

case ‘Edit Forum’:
if (isset($_POST[‘forumname’])

and $_POST[‘forumname’] != “”
and isset($_POST[‘forumdesc’])
and $_POST[‘forumdesc’] != “”)

{
$sql = “UPDATE forum_forum “ .

“SET forum_name = ‘“ . $_POST[‘forumname’] .
“‘, forum_desc = ‘“ . $_POST[‘forumdesc’] .
“‘, forum_moderator = “ . $_POST[‘forummod’][0] .
“ WHERE id = “ . $_POST[‘forum_id’];

mysql_query($sql) or die(mysql_error());
}

533

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 533

redirect(‘admin.php?option=forums’);
break;

case ‘Modify User’:
redirect(“useraccount.php?user=” . $_POST[‘userlist’][0]);
break;

case ‘Update’:
foreach($_POST as $key => $value) {

if ($key != ‘action’) {
$sql = “UPDATE forum_admin SET value=’$value’ “.

“WHERE constant = ‘$key’”;
mysql_query($sql) or die(mysql_error());

}
}
redirect(‘admin.php’);
break;

case “deleteForum”:
$sql = “DELETE FROM forum_forum WHERE id=” . $_GET[‘f’];
mysql_query($sql) or die(mysql_error());
$sql = “DELETE FROM forum_posts WHERE forum_id=” . $_GET[‘f’];
mysql_query($sql) or die(mysql_error());
redirect(‘admin.php?option=forums’);
break;

case “Add New”:
$sql = “INSERT INTO forum_bbcode “ .

“VALUES (NULL,’”.
htmlentities($_POST[‘bbcode-tnew’],ENT_QUOTES).”’,’”.
htmlentities($_POST[‘bbcode-rnew’],ENT_QUOTES).”’);”;

mysql_query($sql) or die(mysql_error().”
”.$sql);
redirect(‘admin.php?option=bbcode’);
break;

case “deleteBBCode”:
if (isset($_GET[‘b’])) {

$bbcodeid = $_GET[‘b’];
$sql = “DELETE FROM forum_bbcode WHERE id=” . $bbcodeid;
mysql_query($sql) or die(mysql_error());

}
redirect(‘admin.php?option=bbcode’);
break;

case ‘Update BBCodes’:
foreach($_POST as $key => $value) {

if (substr($key,0,7) == ‘bbcode_’) {
$bbid = str_replace(“bbcode_”, “”, $key);
if (substr($bbid,0,1) == ‘t’) {

$col = “template”;
} else {

$col = “replacement”;
}
$id = substr($bbid,1);
$sql = “UPDATE forum_bbcode SET $col=’$value’ “.

“WHERE id=$id”;
mysql_query($sql) or die(mysql_error());

}
}
redirect(‘admin.php?option=bbcode’);
break;

534

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 534

default:
redirect(‘index.php’);

}
} else {

redirect(‘index.php’);
}
?>

20. Enter transact-post.php, the second of four transaction pages. This one deals with forum posts.

<?php
session_start();
require_once ‘conn.php’;
require_once ‘http.php’;

if (isset($_REQUEST[‘action’])) {
switch (strtoupper($_REQUEST[‘action’])) {

case ‘SUBMIT NEW POST’:
if (isset($_POST[‘subject’])

and isset($_POST[‘body’])
and isset($_SESSION[‘user_id’]))

{
$sql = “INSERT INTO forum_posts VALUES (“ .

“NULL,” . $_POST[‘topic_id’] .
“,” . $_POST[‘forum_id’] .
“,” . $_SESSION[‘user_id’] .
“,0” .
“,’” . date(“Y-m-d H:i:s”,time()) .
“‘,0” .
“,’” . $_POST[‘subject’] .
“‘,’” . $_POST[‘body’] . “‘)”;

mysql_query($sql,$conn)
or die(‘Could not post: ‘ . mysql_error() . “
$sql”);

$postid = mysql_insert_id();

$sql = “INSERT IGNORE INTO forum_postcount VALUES (“ .
$_SESSION[‘user_id’] . “,0);”;

mysql_query($sql,$conn)
or die(mysql_error());

$sql = “UPDATE forum_postcount SET count = count + 1 “ .
“WHERE user_id = “ . $_SESSION[‘user_id’];

mysql_query($sql,$conn)
or die(mysql_error());

}
$topicid=($_POST[‘topic_id’]==0?$postid:$_POST[‘topic_id’]);
redirect(‘viewtopic.php?t=’ . $topicid . ‘#post’ . $postid);
break;

case ‘NEW TOPIC’:
redirect(‘compose.php?f=’ . $_POST[‘forum_id’]);

case ‘EDIT’:

535

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 535

redirect(‘compose.php?a=edit&post=’ . $_POST[‘topic_id’]);
break;

case ‘SAVE CHANGES’:
if (isset($_POST[‘subject’])

and isset($_POST[‘body’]))
{

$sql = “UPDATE forum_posts “ .
“SET subject=’” . $_POST[‘subject’] .
“‘, update_id=” . $_SESSION[‘user_id’] .
“, body=’” . $_POST[‘body’] . “‘, date_updated=’” .
date(“Y-m-d H:i:s”,time()) . “‘ “ .
“WHERE id=” . $_POST[‘post’];

if (isset($_POST[‘author_id’])) {
$sql .= “ AND author_id=” . $_POST[‘author_id’];

}

mysql_query($sql,$conn)
or die(‘Could not update post; ‘ . mysql_error());

}
$redirID = ($_POST[‘topic_id’] == 0?$_POST[‘post’]:

$_POST[‘topic_id’]);
redirect(‘viewtopic.php?t=’ . $redirID);

break;

case ‘DELETE’:
if ($_REQUEST[‘post’]) {

$sql = “DELETE FROM forum_posts “ .
“WHERE “ . “id=” . $_REQUEST[‘post’];

mysql_query($sql,$conn)
or die(‘Could not delete post; ‘ . mysql_error());

}
redirect($_REQUEST[‘r’]);
break;

}
} else {

redirect(‘index.php’);
}
?>

21. Create transact-user.php, the third of four transaction pages. This one handles functions
related to the users (such as logging in).

<?php
require_once ‘conn.php’;
require_once ‘http.php’;

if (isset($_REQUEST[‘action’])) {
switch ($_REQUEST[‘action’]) {

case ‘Login’:
if (isset($_POST[‘email’])

and isset($_POST[‘passwd’]))
{

536

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 536

$sql = “SELECT id,access_lvl,name,last_login “ .
“FROM forum_users “ .

“WHERE email=’” . $_POST[‘email’] . “‘ “ .
“AND passwd=’” . $_POST[‘passwd’] . “‘“;

$result = mysql_query($sql,$conn)
or die(‘Could not look up user information; ‘ . mysql_error());

if ($row = mysql_fetch_array($result)) {
session_start();
$_SESSION[‘user_id’] = $row[‘id’];
$_SESSION[‘access_lvl’] = $row[‘access_lvl’];
$_SESSION[‘name’] = $row[‘name’];
$_SESSION[‘last_login’] = $row[‘last_login’];
$sql = “UPDATE forum_users SET last_login = ‘“.

date(“Y-m-d H:i:s”,time()) . “‘ “.
“WHERE id = “. $row[‘id’];

mysql_query($sql,$conn)
or die(mysql_error().”
”.$sql);

}
}
redirect(‘index.php’);
break;

case ‘Logout’:
session_start();
session_unset();
session_destroy();

redirect(‘index.php’);
break;

case ‘Create Account’:
if (isset($_POST[‘name’])

and isset($_POST[‘email’])
and isset($_POST[‘passwd’])
and isset($_POST[‘passwd2’])
and $_POST[‘passwd’] == $_POST[‘passwd2’])

{
$sql = “INSERT INTO forum_users “.

“(email,name,passwd,date_joined,last_login) “ .
“VALUES (‘“ . $_POST[‘email’] . “‘,’” .
$_POST[‘name’] . “‘,’” . $_POST[‘passwd’] . “‘,’”.
date(“Y-m-d H:i:s”,time()). “‘,’”.
date(“Y-m-d H:i:s”,time()). “‘)”;

mysql_query($sql,$conn)
or die(‘Could not create user account; ‘ . mysql_error());

session_start();
$_SESSION[‘user_id’] = mysql_insert_id($conn);
$_SESSION[‘access_lvl’] = 1;
$_SESSION[‘name’] = $_POST[‘name’];
$_SESSION[‘login_time’] = date(“Y-m-d H:i:s”,time());

537

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 537

}
redirect(‘index.php’);
break;

case ‘Modify Account’:
if (isset($_POST[‘name’])

and isset($_POST[‘email’])
and isset($_POST[‘accesslvl’])
and isset($_POST[‘userid’]))

{
$sql = “UPDATE forum_users “ .

“SET email=’” . $_POST[‘email’] .
“‘, name=’” . $_POST[‘name’] .
“‘, access_lvl=” . $_POST[‘accesslvl’] .
“, signature=’” . $_POST[‘signature’] . “‘ “ .
“ WHERE id=” . $_POST[‘userid’];

mysql_query($sql,$conn)
or die(‘Could not update user account... ‘ . mysql_error() .

‘
SQL: ‘ . $sql);
}
redirect(‘admin.php’);
break;

case ‘Edit Account’:
if (isset($_POST[‘name’])

and isset($_POST[‘email’])
and isset($_POST[‘accesslvl’])
and isset($_POST[‘userid’]))

{
$chg_pw=FALSE;
if (isset($_POST[‘oldpasswd’])

and $_POST[‘oldpasswd’] != ‘’) {
$sql = “SELECT passwd FROM forum_users “ .

“WHERE id=” . $_POST[‘userid’];
$result = mysql_query($sql) or die(mysql_error());
if ($row = mysql_fetch_array($result)) {

if (($row[‘passwd’] == $_POST[‘oldpasswd’])
and (isset($_POST[‘passwd’]))
and (isset($_POST[‘passwd2’]))
and ($_POST[‘passwd’] == $_POST[‘passwd2’]))

{
$chg_pw = TRUE;

} else {
redirect(‘useraccount.php?error=nopassedit’);
break;

}
}

}
$sql = “UPDATE forum_users “ .

“SET email=’” . $_POST[‘email’] .

538

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 538

“‘, name=’” . $_POST[‘name’] .
“‘, access_lvl=” . $_POST[‘accesslvl’] .
“, signature=’” . $_POST[‘signature’];

if ($chg_pw) {
$sql .= “‘, passwd=’” . $_POST[‘passwd’];

}
$sql .= “‘ WHERE id=” . $_POST[‘userid’];

mysql_query($sql,$conn)
or die(‘Could not update user account... ‘ . mysql_error() .

‘
SQL: ‘ . $sql);
}
redirect(‘useraccount.php?blah=’ . $_POST[‘userid’]);
break;

case ‘Send my reminder!’:
if (isset($_POST[‘email’])) {

$sql = “SELECT passwd FROM forum_users “ .
“WHERE email=’” . $_POST[‘email’] . “‘“;

$result = mysql_query($sql,$conn)
or die(‘Could not look up password; ‘ . mysql_error());

if (mysql_num_rows($result)) {
$row = mysql_fetch_array($result);

$subject = ‘Comic site password reminder’;
$body = “Just a reminder, your password for the “ .

“Comic Book Appreciation site is: “ . $row[‘passwd’] .
“\n\nYou can use this to log in at http://” .
$_SERVER[‘HTTP_HOST’] .
dirname($_SERVER[‘PHP_SELF’]) . ‘/login.php?e=’.
$_POST[‘email’];

$headers = “From: admin@yoursite.com\r\n”;

mail($_POST[‘email’],$subject,$body,$headers)
or die(‘Could not send reminder email.’);

}
}
redirect(‘login.php’);
break;

}
}
?>

22. Create transact-affirm.php.

This is the only “transaction page” that does send data to the client. If a function requires confir-
mation, the user is sent here and redirected forward.

539

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 539

<?php
require_once ‘conn.php’;
require_once ‘functions.php’;
require_once ‘http.php’;
require_once ‘header.php’;
?>
<script type=’text/javascript’>
<!—
function deletePost(id,redir) {

if (id > 0) {
window.location = “transact-post.php?action=delete&post=” +

id + “&r=” + redir;
} else {

history.back();
}

}
function deleteForum(id) {

if (id > 0) {
window.location = “transact-admin.php?action=deleteForum&f=” + id;

} else {
history.back();

}
}
//—>
</script>
<?php
switch (strtoupper($_REQUEST[‘action’])) {

case “DELETEPOST”:
$sql = “SELECT * FROM forum_posts WHERE id=” . $_REQUEST[‘id’];
$result = mysql_query($sql);
$row = mysql_fetch_array($result);
if ($row[‘topic_id’] > 0) {

$msg = “Are you sure you wish to delete the post
”.
“”.$row[‘subject’].”?”;

$redir = htmlspecialchars(“viewtopic.php?t=” . $row[‘topic_id’]);
} else {

$msg = “If you delete this post, all replies will be deleted “.
“as well. Are you sure you wish to delete the entire “.
“thread
”.$row[‘subject’].”?”;

$redir = htmlspecialchars(“viewforum.php?f=” . $row[‘forum_id’]);
}
echo “<div id=’requestConfirmWarn’>”;
echo “<h2>DELETE POST?</h2>\n”;
echo “<p>” . $msg . “</p>”;
echo “<p><input class=’confirm’ type=’button’ value=’Delete’ “;
echo “onclick=’deletePost(“ . $row[‘id’] .

“,\”” . $redir . “\”);’>”;
echo “<input class=’confirm’ type=’button’ value=’Cancel’ “;
echo “onclick=’history.back()’></p>”;
echo “</div>”;
break;

540

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 540

case “DELETEFORUM”:
$sql = “SELECT * FROM forum_forum WHERE id=” . $_REQUEST[‘f’];
$result = mysql_query($sql);
$row = mysql_fetch_array($result);
$msg = “If you delete this forum, all topics and replies will be”.

“ deleted as well. Are you sure you wish to delete the entire “.
“forum
”.$row[‘forum_name’].”?”;

echo “<div id=’requestConfirmWarn’>”;
echo “<h2>DELETE FORUM?</h2>\n”;
echo “<p>” . $msg . “</p>”;
echo “<p><input class=’confirm’ type=’button’ value=’Delete’ “;
echo “onclick=’deleteForum(“ . $_REQUEST[‘f’] . “);’>”;
echo “<input class=’confirm’ type=’button’ value=’Cancel’ “;
echo “onclick=’history.back()’></p>”;
echo “</div>”;

default:
}
require_once ‘footer.php’;
?>

Excellent. We are sure you typed all 1,800 lines of code without a single mistake. Let’s move on to the
application and see how it works, shall we?

Try It Out The Bulletin Board Application
Let’s work our way through a fresh installation of the Comic Book Appreciation Bulletin Board System.
(That is a mouthful, so from now on, we’ll refer to it as the “CBA board.”)

Note that many screens are involved in this application. You have probably seen a bulletin board appli-
cation before, so we are not going to show you each and every screen as we describe the application, just
some of the more important screens.

If you have not already done so, your first step should be to create the CBA board tables.

1. Load setup.php in your browser.

You should see a screen similar to Figure 15-1, informing you that the databases have been cre-
ated and reminding you of your initial login e-mail and password.

If you downloaded the application from the Web site, your screen should look very similar to Figure
15-1. However, if you entered the code from the book, it will look quite different. The reason for this is
that you are missing a file, forum_styles.css, that modifies the way the page looks. You can down-
load this file from the Web site if you would like to use it, although it is not required. All screenshots in
this chapter utilize the forum_styles.css style sheet. Although CSS is beyond the scope of this
book, we will discuss forum_styles.css briefly in the “How It Works” section that follows this
“Try It Out” section.

541

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 541

Figure 15-1

2. Click the Log In link at the bottom of the setup page. You are taken to the login page, and the
e-mail address is filled in for you.

Observe the link at the bottom of the login screen, “Forget your password?” If a user cannot
remember her password, she can click this link and submit her e-mail address. If she is verified
to be a valid user, her password will be sent to the e-mail address given. You can try this out
yourself if you like, assuming you are using a legitimate e-mail address (and not the
admin@yoursite.com default).

3. Enter your password and click the Login button. You should now see the home page of the CBA
board application (see Figure 15-2).

You are now logged in as the administrator of the CBA board application. As the administrator, you
have complete control of your application. There are three other roles that apply to the board:
Moderator, User, and Anonymous. Technically “Anonymous” isn’t really a role, but if you are not
logged in, the system does not know who you are and treats you as “anonymous.”

542

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 542

Figure 15-2

We are going to create a couple of new user identities to demonstrate the difference between the various
roles.

1. Log out, and click Register. You should see a screen similar to the one shown in Figure 15-3.

2. Enter a username. This name will be used for display purposes.

3. Enter your e-mail address. This doesn’t have to be a real address unless you want to be able to
have your password e-mailed to you.

4. Enter your password twice for verification.

5. Click the Create Account button.

Your account will be created, and you will be automatically logged in with your new account.

543

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 543

Figure 15-3

6. Repeat Steps 2 through 5 to create one more account.

7. Log out, and then Log back in with your original admin account.

If you don’t remember the e-mail and password, just run setup.php again in your browser.
Don’t worry—your tables won’t be re-created.

8. Now that you are logged in as the site administrator, you should see a menu item called
“Admin.” Click it.

This brings you to the administration page (see Figure 15-4). The values in the fields you now
see are used in the application. For instance, the first field, Board Title, is “Comic Book
Appreciation Forums.”

9. Edit the Board Title field to read “Comic Book Appreciation Bulletin Board” and click Update.

The title at the top of the page should change accordingly.

544

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 544

Figure 15-4

10. Complete the other fields in the administration page:

❑ Board Description

❑ Admin Email

❑ Copyright

❑ Board Titlebar

Most of those should be fairly self-explanatory. The last two fields control how many posts you
see on one page and how many pages you have access to at one time.

11. Change Pagination Limit to 3 and click the Update button.

12. Click the Administration menu “Users.”

This displays the User Administration screen; from here you can select a user from the drop-
down menu, and edit user details.

13. Choose one of the user profiles you created in Step 5 and click “Modify User.”

From this page (see Figure 15-5), you can modify a user’s name, access level, and signature.

545

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 545

Figure 15-5

14. Change the user’s access level to Moderator and click “Modify Account.”

15. Now, click the Administration menu “Forums.” You should see a list of the forums available for
your board. If this is your initial installation, you will have only one forum—called New Forum.
You can edit this forum, delete it, and/or create a new forum. Feel free to create as many forums
as you want. Note that when creating or editing a forum, you can choose a moderator. The
user’s account you edited in Step 13 is now available as a choice in the Moderator field.

16. Click the Administration menu item “BBcodes.”

You will see a form where you can enter a “template” and “replacement.” This allows you to
designate words or phrases that will be replaced by different words or phrases. For instance,
you can enter the phrase “very hard” in the template field, and “cats and dogs” in the replace-
ment field. Once you click the Add New button, these will be added to the database. Note that
the real power of this page is in the use of regular expressions. If you are not familiar with regu-
lar expressions, we explain how they work in the “How It Works” section.

546

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 546

17. Enter the following template and replacement values exactly as they are shown. Remember to
click Add New after entering each one:

Target Replacement

\[url\]([^[]+?)\[/url\] $1

\[img\]([^[]+?)\[/img\]

\[i\]([^[]+?)\[/i\] <i>$1</i>

\[b\]([^[]+?)\[/b\] $1

\[u\]([^[]+?)\[/u\] <u>$1</u>

\[url=([^]]+?)\]

\[/url\]

very hard cats and dogs

That’s it for the administration functions. There are not too many, but we are sure you will think
of many things to add down the road.

18. Click the Profile menu item on the main menu.

This screen should look familiar. It is the same page we used to modify user accounts. However,
because you are now looking at the page as a user and not as an admin, you have access that
allows you to modify different data.

19. Add a short signature. Your name should be enough for now.

Okay, you have goofed off enough. Let’s create a few posts:

1. Click the Home menu item on the main menu.

You should now see a screen similar to Figure 15-6. If you did not make any changes to the
forums, there will be just one forum called “New Forum.” If you did make changes, you should
see your forums listed here.

2. Click the first forum on the page.

3. If you are prompted to create a new thread, click “yes.” Otherwise, click New Thread.

4. Enter any subject you like, and any text in the body. Somewhere in the body field, include the
phrase “It was raining very hard today.”

5. When you are done, click the button Submit New Post.

You should now see your post on the screen (see Figure 15-7). Note that although you typed in
“very hard” in your post, it now reads “cats and dogs.” That is the BBcode tool at work. We’ll
look at that in more detail in the “How It Works” section that follows this “Try It Out” section.

547

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 547

Figure 15-6

6. Click Reply to Thread and repeat Steps 4 and 5 to create at least three more posts.

After creating the last post, note that the Next/Prev buttons become available at the bottom of
the thread. Because we changed our Pagination Limit to 3 in the steps, we can see only three
posts on this page. You can see that you can click the number 2, or click “Next” and it will take
you to the next (up to 3) posts.

Let’s look at one more function, Search. After that, we’ll delve a little deeper into the application to see
how it ticks.

Up at the top of the screen, you should see a text box with a button labeled “Search.” Enter the word
“raining” and click the Search button.

If you followed Step 4 in the previous series of steps, you should see at least one document returned in
the search results. If you are still logged in as the administrator, you should also see the SQL statement
that was used to find that document, and a score value. We explain that later in “How It Works.”

548

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 548

Figure 15-7

That’s just about it for the Bulletin Board application. It’s not overly complex, but it does have a few use-
ful features. When you are done with this chapter (and the book), you should be armed with enough
knowledge to add your own ideas to this and the other applications.

But now, let’s take a look under the covers.

How It Works
As we stated before, we are not going to show you how the app works page by page, line by line. Not
only is it a very large application that would take too many pages to explain, but most of the code of the
Bulletin Board application has been explained in previous chapters. So far, we have shown you how to
write a SQL statement, how to work with arrays, and how to create reusable functions.

We will concentrate on some of the new concepts introduced in this application, such as pagination and
regular expressions. Let’s start with the setup.php file.

549

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 549

setup.php
We’re doing things a little differently here from the way we did them in other chapters. Previously, when
creating a database, we used CREATE TABLE IF NOT EXISTS. That is a good way to create a new table yet
avoid errors if the table already exists. But what if data needs to be inserted into the table? How do you
know whether or not the table was just created or already existed? By using the CREATE TABLE com-
mand, you can’t know.

Instead, we are going to trap the error caused by creating an existing table. If the error occurs, then we
know the table already exists, and we will skip over the data insertions and continue with the next table.
If any other error occurs, we will halt execution with the die() command, as usual.

First, we create our SQL statement and then run it with the mysql_query command. Note the creation
of a full text index for the subject and body fields. This makes searches much faster (which we will cover
shortly). Also note the absence of the “IF NOT EXISTS” keywords.

$sql = <<<EOS
CREATE TABLE forum_posts (

id int(11) NOT NULL auto_increment,
topic_id int(11) NOT NULL default ‘0’,
forum_id int(11) NOT NULL default ‘0’,
author_id int(11) NOT NULL default ‘0’,
update_id int(11) NOT NULL default ‘0’,
date_posted datetime NOT NULL default ‘0000-00-00 00:00:00’,
date_updated datetime NOT NULL default ‘0000-00-00 00:00:00’,
subject varchar(255) NOT NULL default ‘’,
body mediumtext NOT NULL,
PRIMARY KEY (id),
KEY IdxArticle (forum_id,topic_id,author_id,date_posted),
FULLTEXT KEY IdxText (subject,body)

)
EOS;
$result = mysql_query($sql);

Next, we test for the error condition caused by the table existing in the database. The error code is 1050
and is returned by the function mysql_errno(). If we receive that particular error code, everything is
okay, but no insert will take place. If there is no error, the table creation worked, and we insert our new
data. Any other error code halts the program.

switch(mysql_errno()) {
case 1050:

break;
case 0:

$sql = “INSERT INTO forum_posts VALUES (NULL, 0, 1, 1, 0, ‘“.
date(“Y-m-d H:i:s”, time()).”’, 0, ‘Welcome’, ‘Welcome to your “.
“new Bulletin Board System. Do not forget to change your admin “.
“password after installation. Have fun!’)”;
$result = mysql_query($sql) or die(mysql_error());
break;

default:
die(mysql_error());
break;

}

550

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 550

You may assume we have a vast knowledge of MySQL just because we know that the error code for cre-
ating a table that already exists is 1050. The fact is, we did not know the code: We simply ran a CREATE
query on a table we knew already existed, and echoed the resulting mysql_errno() to the screen. We
then knew the code and could trap for it.

Why do we give away such a secret? Some day you may find yourself trying to trap a particular error con-
dition in your code, and you won’t know the code you are looking for. Rather than scouring the Internet
hoping to find the code, you can usually induce the error yourself and echo the resulting code number to
the screen. Once you have the code number, you can trap for it, just as we did in the preceding code.

One last comment about setup.php before we move on: You may notice that in some cases we did use
IF NOT EXISTS. If you do not need to know whether you are duplicating a table, then IF NOT EXISTS
will work nicely. We included it only in cases where we did not need to insert any data.

Next, let’s take a look at our login procedure. There isn’t much new to see here, but it gives us a chance
to discuss authentication with you for a moment.

A Last Look at User Authentication
The CBA board uses user authentication, but it is by no means totally secure. For a board application, it
is probably secure enough. However, if this were human resources data containing sensitive informa-
tion, you might want to make it a bit more secure.

This book does not attempt to help you create a virtual Fort Knox. If you have such a need, we strongly
suggest you look for a good book on security, and perhaps look at a few online resources. A good start is
www.w3.org/Security/Faq/.

Let’s take a look at our security model, and see where there might be some places to improve it a bit. If
you look at most of the PHP pages that make up the application, you see where we check for a user’s
access level before displaying certain items. For example, take a look at header.php.

Because header.php is included at the top of almost every Web page, we do most of our user authenti-
cation there. By checking for the existence of the user_id session variable, we know the user is logged
in. By checking if access_lvl is greater than 2, we know whether the user has administrator access.
This allows us to customize the main menu depending on whether the user is logged in, and what access
level he or she possesses. It also allows us to address the user by name.

echo ‘ Home’;
if (!isset($_SESSION[‘user_id’])) {

echo ‘ | Log In’;
echo ‘ | Register’;

} else {
echo ‘ | ’;
echo “Log out “ . $_SESSION[‘name’] . “”;
if ($_SESSION[‘access_lvl’] > 2) {

echo ‘ | Admin’;
}
echo ‘ | Profile’;

}

551

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 551

So, if users are not logged in, we give them links to log in or register as a new user. If they are logged in,
they can log out or view their profile. And, if they are administrators, they will have access to the admin
functions.

That brings us to the admin.php page. We were able to get here by clicking the Admin link, which is
available only if you are logged in as the administrator. So far, so good. What if the user attempts to
access the admin.php page directly?

Try it yourself. Load index.php in your browser, and then make sure you are logged out. Once you are
logged out, load admin.php by typing it directly in the address bar of your browser. It should load with
no problem. Now, edit one of the fields on the main admin page. Again, nothing is stopping you.
Indeed, when you click the Update button, the data will be saved.

But wait . . . you are not logged in! How is this possible? Simple. You have not checked the user’s
credentials once he or she got into the page.

Just as you are responsible for checking IDs in your bar in case underage patrons slip in, you are respon-
sible for the users’ access to your entire site. If you don’t want certain people to access a page, you not
only have to bar access to any link loading the page, but kick them off the page if they are successful in
loading it.

Fortunately, this is easy to do. At the top of your page, simply check their credentials (Those are up to
you. Do they need a certain access level? Do they just need to be logged in?), and then redirect them to
another page if they don’t pass (shameonyou.php, or simply back to index.php).

You can do other things to make your site more secure. Most are way beyond the scope of the book. A look
at the link we gave you earlier should help you if you are interested in learning more about security. Just
don’t ever think you are “secure enough” if you haven’t considered the risk of unauthorized access.

While we are still visiting admin.php, let’s take a closer look at it.

admin.php
The file admin.php is set up in four different areas: board administration, user admin, forum admin,
and BBcode admin. A lot is going on in this page. We’ll tackle each area, one at a time. First let’s look at
board administration.

Board Administration
Looking at the code, you will see that we simply build our table of fields by looping through an array
called $admin.

foreach ($admin as $k => $v) {
echo “<tr><td>”. $v[‘title’] . “</td><td>” .

“<input type=’text’ name=’”. $k . “‘ “ .
“value=’” . $v[‘value’] . “‘ size=’60’>” .
“</td><td>$k</td></tr>\n”;

}

552

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 552

The array $admin is associative. The key is a unique identifier for the data, which is associated with a
value and a title. For example, the title bar’s title is “Board Titlebar” and the value is “CBA Forums.” It is
represented in the $admin array as follows:

$admin[‘titlebar’][‘title’] = “Board Titlebar”
$admin[‘titlebar’][‘value’] = “CBA Forums”

By looping through the $admin array, we can extract each piece of data and use it to build our form. But
the question is, where is $admin populated? It is certainly not created anywhere in admin.php.

If you look at the top of admin.php, you’ll notice that header.php is included. The array is not built in
header.php either, but looking at the top of header.php you will notice another included file, con-
fig.php. A quick look into config.php uncovers the fact that $admin is loaded there. Note also that
$bbcode is also being built. We’ll see that used shortly.

$sql = ‘SELECT * FROM forum_admin’;
$result = mysql_query($sql) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
$admin[$row[‘constant’]][‘title’] = $row[‘title’];
$admin[$row[‘constant’]][‘value’] = $row[‘value’];

}

$sql = ‘SELECT * FROM forum_bbcode’;
$result = mysql_query($sql) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
$bbcode[$row[‘id’]][‘template’] = $row[‘template’];
$bbcode[$row[‘id’]][‘replacement’] = $row[‘replacement’];

}

Notice that $admin (and $bbcode) are built by looping through the entire admin (and BBcode) table.
This is important because it illustrates how the board administration page contains every piece of data
contained in the admin table. These values are available, and are used, throughout the application. For
example, header.php uses some of the $admin data:

$title = $admin[‘titlebar’][‘value’];
...

<title><?php echo $title; ?></title>
...
<h1 id=”sitetitle”><?php echo $admin[‘title’][‘value’];?></h1>
...
<p id=”subtitle”><?php echo $admin[‘description’][‘value’]; ?></p>

You may also notice the lack of any way to add or delete admin values. There is a good reason for this.
The $admin values are available at the code level. Because of this, you don’t want to be able to delete a
value that the code is relying on. You also don’t need to create new values because the code wouldn’t
use the new values in any case.

553

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 553

However, you may find the need to create a new row of data in the admin table to be used in your board
application. For example, we are using a style sheet to alter the appearance of the application. Perhaps
you want the ability to dynamically change the style sheet used by changing a value in the admin page,
rather than editing the header.php file.

The good news is that once you add a new row of data to the admin table, it is automatically detected by
the board administration page and displayed. The bottom line? If you feel you need a new, administra-
tor-controlled value in your application, simply add the appropriate row of data to your admin table
(using phpMyAdmin, if you like), and access it in your code using the $admin[‘key’][‘value’] and
$admin[‘key’][‘title’] syntax.

User Administration
Users require a similar treatment, although this treatment is just a bit different from the $admin array.

The first thing we need to do is gather up all of the access levels, along with their names. That is done
with the following code, which results in a numerical array of Access Levels:

$sql = “SELECT access_lvl, access_name FROM forum_access_levels “ .
“ORDER by access_lvl DESC”;

$result = mysql_query($sql) or die(mysql_error());
while ($row = mysql_fetch_array($result)) {

$a_users[$row[‘access_lvl’]] = $row[‘access_name’];
}

Next, we create an HTML select field, dynamically building up the options. By looping through the
access level array we just created, we can also use the optgroup tag to categorize the select list by access
level. (Aren’t we so clever?)

<select id=’userlist’ name=’userlist[]’>
<?php

foreach ($a_users as $key => $value) {
echo “<optgroup label=’”. $value . “‘>\n”;
userOptionList($key);
echo “\n</optgroup>\n”;

}
?>

</select>

Note that you create the list of users by calling the userOptionList() function. This function resides in
functions.php and is called once for each access level. A list of <option> tags is output, each contain-
ing the appropriate user information.

function userOptionList($level) {
$sql = “SELECT id, name, access_lvl “ .

“FROM forum_users “ .
“WHERE access_lvl=” . $level . “ “ .
“ORDER BY name”;

$result = mysql_query($sql) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {

554

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 554

echo “<option value=’”. $row[‘id’] . “‘>” .
htmlspecialchars($row[‘name’]) . “</options>”;

}
}

That’s really all there is to it. When the appropriate user is chosen, his or her ID is passed on to the
transact-admin.php transaction page, where the admin user is redirected to the useraccount.php
page for that user.

Let’s take a gander at the forum administration page next.

Forum Administration
This part is pretty straightforward. We look up all of the forums in the forum table and then list them
with their descriptions, plus a link for editing and a link for deleting. Choosing delete takes the adminis-
trator to transact-affirm.php, which prompts the user for confirmation before deleting the forum.
This is a safety precaution because deleting a forum results in the deletion of all posts within that forum
as well. We leave it to you to explore transact-affirm.php on your own. It is a fairly self-explanatory
page, and by now you should have no problem figuring out how it works.

BBcode Administration
Now we come to the real neat stuff. This is really part of a larger topic of discussion involving regular
expressions. Therefore, we believe it deserves its own heading.

Regular expressions
If you are not familiar with regular expressions, one look at a typical regular expression might prompt
you to wonder just who would consider it “regular.” However, just like any language, once you learn
what the syntax means, regular expressions are not that difficult. With the right combination of com-
mands, however, regular expressions can be very powerful.

A regular expression (often abbreviated “regex” or “regexp”) is a pattern of symbols and letters used to
match text. Once a match is found, it can either be displayed, erased, or replaced with something else. If
you have ever used *.php to list all PHP files in a directory, then you have used a regex pattern.

So, how do regular expressions apply to an application such as this one? Good question. Imagine that
this site catered to children (as it might, in fact, because many children are comic book fans). You might
want to prevent the usage of obscene words on your site, so that it is a friendly place that parents appre-
ciate and allow their children to visit. By using regular expressions, you can scan a post before it gets
displayed on the screen and replace any vulgarities with cleaner prose.

The topic of regular expressions could easily fill a book by itself. Indeed, there are many places to learn
more about regular expressions than you will learn in this chapter. You can start with the PHP manual
by visiting www.php.net/pcre.

The two types of regex functions
In PHP, there are two basic types of regular expression functions: POSIX and PCRE.

555

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 555

POSIX stands for Portable Operating System Interface (don’t ask about the X; we think geeks just like to
use X wherever they can). POSIX is a set of standard operating system interfaces based on the UNIX
operating system. The term POSIX, therefore, does not actually refer to the regular expressions them-
selves, but describes the source of the regular expression syntax. It is more proper to refer to them as
POSIX-style regular expressions. POSIX-style regular expressions are implemented in PHP by using the
ereg() functions, such as ereg(), eregi(), and ereg_replace().

PCRE stands for Perl Compatible Regular Expressions. They are usually faster than POSIX-style regular
expressions, and for that reason along with the fact that PCRE regular expressions are usually more
powerful, most developers choose to use PCRE functions such as preg_match() and preg_replace().

Chapter 7 briefly introduced you to a POSIX-style regular expression. Here we show you PCRE. It is
ultimately up to you which you choose to use. However, for a thorough understanding of both styles,
make sure you read the PHP manual.

How to write a PCRE regex
So, what does a regex look like? We will demonstrate different regex patterns using the
preg_replace() function. The preg_replace() function takes three arguments: the search pattern
(the needle), the replacement pattern, and the text to be searched (the haystack). The regex pattern is
contained in $needle:

$result = preg_replace($needle, $replacement, $haystack);

When creating your regex pattern, you must use delimiters to define the boundaries of your regex. The
delimiters can be any character except alphanumeric. Most use the forward slash character (/). This is
not a requirement; use any character you are comfortable with. Just remember that if you use the same
character within your pattern, it must be escaped by a preceding backslash (\).

There are many ways to designate search patterns in your regexp. The simplest is the literal: What you
are looking for is literally entered in your pattern, usually within parentheses:

preg_replace(‘/(goose)/’, ‘pinch’, ‘Do not goose me, please’);

If you are looking for one of a group of patterns, separate them with the pipe (|):

/(goose|duck|egret)/

To look for specific characters, put them in square brackets. All of the following are legal regex expressions:

/[abc]/ Matches the letter a, b, or c

/[a-z]/ Matches any lowercase letter

/[a-zA-Z0-9]/ Matches any alphanumeric character

/[^aeiou]/ Matches any consonant (^ means “not”)

556

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 556

In order to specify the number of times a character should or can be repeated, there are a few options:

. (period) Matches any single character except newlines

? Matches any 0 or 1 character

* Matches any 0 or more characters

+ Matches any 1 or more characters

{x} Matches any x characters (such as {5})

{x,y} Matches any x through y characters (such as {2,4})

There is much more to regular expressions than this list covers. For a complete list, visit
www.php.net/manual/en/pcre.pattern.syntax.php.

In addition to pattern matching, there are modifiers that change the “rules” of your pattern. These go
on the right side of the right-hand delimiter. For the complete list of modifiers, visit www.php.net/
manual/en/pcre.pattern.modifiers.php; for now, here is a partial list:

i Caseless: Pattern matches any uppercase and lowercase.

s Dot (.) matches all characters, including newlines.

e Very powerful! After pattern matching, evaluates the result as PHP.

In Step 19 of the previous “Try It Out” section, you entered a few strange patterns in the BBcode
Administration page. We will clear up the mystery of those values for you, and show you how they
work. Before we do that, however, let’s look at how BBcodes are implemented. Once you see where the
replacements take place, we will look at the actual patterns.

If you take a look at the showTopic() function defined in functions.php, you’ll see a line that looks
like this:

echo “</p><p>” . bbcode(nl2br(htmlspecialchars($body))) . “</p>”;

The variable $body contains the text we want to display on the screen. However, before we do that, we
have a couple of “cleanup” tasks to perform. First, we want to convert (and not render) any HTML that
might exist in the form to the HTML equivalents, so that the HTML is displayed in the body as it was
entered. This will prevent malicious users from inputting HTML that can break your page. The function
htmlspecialchars() will take care of that for us.

Once all of the HTML has been converted to the HTML entity equivalents, enter
 tags for every
newline entered in the body of the post. PHP has a handy tool for that, of course: nl2br().

Finally, perform all of the replacements we have set up on the BBcode administration page. That is
accomplished using our own function, bbcode(), which runs through each of the target/replacement
pairs in the BBcode database, replacing any relevant text in the body. It does this recursively (a max of
four iterations) until no more matches are found.

557

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 557

function bbcode($data) {
$sql = “SELECT * FROM forum_bbcode”;
$result = mysql_query($sql);
if (mysql_num_rows($result) > 0) {

while($row = mysql_fetch_array($result)) {
$bbcode[‘tpl’][] =

“§” . html_entity_decode($row[‘template’],ENT_QUOTES). “§i”;
$bbcode[‘rep’][] =

html_entity_decode($row[‘replacement’],ENT_QUOTES);
}
$data1 = preg_replace($bbcode[‘tpl’],$bbcode[‘rep’],$data);
$count = 1;
while (($data1 != $data) and ($count < 4)) {

$count++;
$data = $data1;
$data1 = preg_replace($bbcode[‘tpl’],$bbcode[‘rep’],$data);

}
}

return $data;
}

Because regex uses many odd characters in the pattern, before storing the data in our table we use
htmlentities() to convert the data into something MySQL can safely store. For that reason, when
retrieving the data, we must perform html_entity_decode(). Note the use of the § character as a
delimiter. Because it is not a character used in regex patterns, it’s a perfect delimiter. To use the character,
make sure your numlock is enabled, hold down your Alt key, and type 0167. Alternatively, you could
use a different non-alphanumeric character as your delimiter.

Also note the use of the i modifier after the right-hand modifier. This specifies that we do not care about
upper or lower case matching. If you want to use case matching, feel free to remove this modifier.

As you can see from the code, $row[‘template’] contains the regex pattern. The array variable
$row[‘replacement’] contains the replacement pattern. Now, let’s look at some of the
pattern/replacement pairs you entered earlier:

Pattern Replacement Explanation

very hard cats and dogs This is a very simple replacement, using a lit-
eral pattern match. It replaces the words “very
hard” with the words “cats and dogs” in any
post or signature. You saw evidence of this in
one of your posts.

\[/url\] Replaces any instance of [/url] in the body
with . Note that the opening and closing
square brackets must be delimited to show
that you want to match them literally.

\[b\]([^[]+?)\[/b\] $1 Now we’re getting into some interesting stuff.
This pattern matches [b]some text
here[/b] and replaces it with some text
here.

558

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 558

The last pattern deserves a bit of explanation, as it introduces a couple of new concepts. The parentheses
are there so we can use what we call back references. Note the $1 in the replacement pattern. This tells the
function “Take whatever you found in the first set of parentheses and put it here.” If we had a more
complex pattern with a second set of parentheses, we would refer to the data matched within those
parentheses using $2.

Within those parentheses, we are matching any character at all except a left square bracket. The + tells the
expression to match from 1 to any number of those characters. If you wanted the expression to match 0
or more, use * instead of +.

The ? can be very confusing, especially for those not familiar with regular expressions. Because it is
immediately preceded by a quantifier (+), it does not mean 0 characters or 1 character as it usually does.
In this case, it is telling the regex not to be greedy.

Imagine the following text:

Hello, [b]George[/b], how are [b]you[/b] doing today?

If we ran the regex pattern §\[b\]([^[]+)\[/b\]§i against that text (note the lack of ?), the regex
would be “greedy” and match the maximum sized pattern it could find by default. The result is that the
preceding text would be altered like so:

Hello, George[/b], how are [b]you doing today?

This isn’t good in this particular case because we are trying to style “George” and “you” in boldface. We
use the ? in our pattern after the + to tell the regex pattern to be ungreedy, so that it finds the smallest
matches. By adding in the ?, the result would be

Hello, George, how are you doing today?

which of course is the intended result.

We know regular expressions can be a bit confusing. Take the time to learn them, though. If you under-
stand them well, they can be your biggest ally. You will be surprised at the sort of patterns you can
match with regex.

For more information on regular expressions, visit the following pages in the PHP manual:

❑ http://www.php.net/manual/en/ref.pcre.php

❑ http://www.php.net/manual/en/pcre.pattern.modifiers.php

❑ http://www.php.net/manual/en/pcre.pattern.syntax.php

Searching
A bulletin board would not be worth much unless you had the ability to search for old posts. Visit any
bulletin board you might be familiar with, and most likely you will find a search function there.

There are many types of searches. The simplest requires that you enter text into an input field, and when
you hit the Search button, it looks for any of the text you entered. That is the search we created for this
application.

559

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 559

Searches can get very complicated, too. You might want to search posts by the date they were entered, or
by author. You might want to find a range of dates. You might even want to be able to designate how the
result page is sorted. These capabilities are not currently available in the CBA Forums, but if you feel
ambitious enough, feel free to beef up your search.

The actual search mechanism is fairly simple. You have a single text field with a Search button that sub-
mits your form. The search.php page captures the search term, and builds a relatively simple SQL
statement that is designed to return matching rows. We then simply iterate through those rows and dis-
play the data on the screen. It’s not that much different than displaying a forum or thread on the page.
The only real difference is the SQL statement.

if (isset($_GET[‘keywords’])) {
$sql = “SELECT *, MATCH (subject,body) “ .

“AGAINST (‘“ . $_GET[‘keywords’] . “‘) AS score “ .
“FROM forum_posts “ .
“WHERE MATCH (subject,body) “ .
“AGAINST (‘“ . $_GET[‘keywords’] . “‘) “ .
“ORDER BY score DESC”;

$result = mysql_query($sql,$conn)
or die(‘Could not perform search; ‘ . mysql_error());

}

The bulk of the work of a search happens in the database. It stands to reason, then, that the more effi-
cient and well-built our database is, the faster our data will be retrieved. In order to maximize the
efficiency, we create an index for the fields to be searched. In this case, we index the subject and body
columns of our forum_posts table. You can see how this works in the CREATE TABLE command in
setup.php:

CREATE TABLE forum_posts (
id int(11) NOT NULL auto_increment,
topic_id int(11) NOT NULL default ‘0’,
forum_id int(11) NOT NULL default ‘0’,
author_id int(11) NOT NULL default ‘0’,
update_id int(11) NOT NULL default ‘0’,
date_posted datetime NOT NULL default ‘0000-00-00 00:00:00’,
date_updated datetime NOT NULL default ‘0000-00-00 00:00:00’,
subject varchar(255) NOT NULL default ‘’,
body mediumtext NOT NULL,
PRIMARY KEY (id),
KEY IdxArticle (forum_id,topic_id,author_id,date_posted),
FULLTEXT KEY IdxText (subject,body)

)

Note that after creating each of the columns, we set the Primary Key, a Key, and a Fulltext Key. We dis-
cussed Primary Keys in Chapter 9. These help us create and track unique records. The KEY is another
term for INDEX. As you can see, we have created in index for forum_id, topic_id, author_id, and
date_posted. An index makes searching for rows much faster.

For more information on keys (indexes), visit www.mysql.com/doc/en/MySQL_indexes.html.

560

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 560

As you can see from the last line of the SQL query, we create a Fulltext index with the subject and body
columns. This allows us to quickly find the records we are searching for.

Let’s take a look at the SQL statement that does the actual search. Let’s assume you are looking for the
word “Board.”

SELECT *, MATCH (subject,body) AGAINST (‘Board’) AS score
FROM forum_posts
WHERE MATCH (subject,body) AGAINST (‘Board’)
ORDER BY score DESC

In order to understand how this returns records, you must understand the MATCH command. MATCH
returns a score value that rates how relevant the match was for each and every row in the table.
According to the MySQL manual, it is based on the “number of words in the row, the number of unique
words in that row, the total number of words in the collection, and the number of documents (rows) that
contain a particular word.”

Note that the same MATCH command is used twice. Fortunately, the MySQL optimizer caches the results
of the MATCH command the first time it is run, and will not run it twice. Because the MATCH command
returns a zero (0) for rows that do not match at all, putting MATCH in the WHERE clause prevents those
rows from returning. If you do not put in the WHERE clause, all rows in the table will be returned, and
they will not be sorted.

Using MATCH in the WHERE clause causes the rows to be returned sorted by relevance. This is not intuitive
to all users, however, so we like to put in ORDER BY score DESC just for good measure, although it is not
required.

For more information on Fulltext Indexes, visit www.mysql.com/doc/en/Fulltext_Search.html.

Pagination
If you are not familiar with pagination, then we suggest you do a quick search on Google.com. Search
for the term Spider-Man. Don’t get caught up looking at the sites your search returns! When your search
results are displayed, scroll to the bottom of the page. You should see some links that will take you to
more pages of search results, with the option of clicking next, previous, or a specific numbered page.

That, friend, is pagination, and we are going to teach you how to do it for your own pages. (No need to
thank us. Just send money.)

If you visit the PHPBuilder.com forums, you may see this question asked over and over again: “How do
I add PREV/NEXT buttons to the bottom of my pages?” We have yet to see a good, comprehensive
answer. Indeed, you may even run screaming after we explain it to you. But, we hope to finally clear the
air, and give you a tool that will allow you to paginate almost any set of data returned from MySQL. So
let’s get started.

When paginating your data, there are a few things you should have. The first, of course, is a large set of
data that you can’t display on one page. You also need to know how many rows of data you will display
per page, and how many total records you have in your result set. For our purposes, we also need to

561

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 561

know how many pages you will have access to at one time. For example, if you had 40 pages of data to
display, you might want to show links only for pages 1 through 10, or 12 through 21, and so forth. We
call this the range.

Let’s take a look at how we paginate a page of posts. Most of the code can be located in functions.php.

In viewtopic.php, you can see that we create a variable called $limit and that it is grabbed from the
$admin array that gets set in config.php:

$limit = $admin[‘pageLimit’][‘value’];

Now we take a look at showTopic() in functions.php. We will list the rows relevant to pagination
only:

global $limit;
...
if (isset($_GET[‘page’])) {

$page = $_GET[‘page’];
} else {

$page = 1;
}
if ($limit == “”) $limit = 25;
$start = ($page - 1) * $limit;

Declaring $limit global makes the variable (set in viewtopic.php) available to the function. If we
don’t pass $page to the Web page, we assume we are on page 1. Otherwise, we set $page to the value
passed to us in the URL. By knowing the page, and the limit (number of posts per page), we can calcu-
late our $start value (which will be used by the LIMIT statement in the SQL used to retrieve rows). For
example, if we are on page 3, and our limit is 25 posts per page, then the third page will display rows 51
through 75.

Here is the whole SQL statement for returning posts. It is long, but not overly complex. It is simply four
tables joined by the JOIN statement. Please note the first line and the last line of the SQL statement:

SELECT SQL_CALC_FOUND_ROWS “.
“p.id, p.subject, p.body, p.date_posted, “ .
“p.date_updated, u.name as author, u.id as author_id, “ .
“u.signature as sig, c.count as postcount, “ .
“p.forum_id as forum_id, f.forum_moderator as mod, “ .
“p.update_id, u2.name as updated_by “ .

“FROM forum_forum f “ .
“JOIN forum_posts p “ .
“ON f.id = p.forum_id “ .
“JOIN forum_users u “ .
“ON u.id = p.author_id “ .
“LEFT JOIN forum_users u2 “ .
“ON u2.id = p.update_id “ .
“LEFT JOIN forum_postcount c “ .
“ON u.id = c.user_id “ .
“WHERE (p.topic_id = $topicid OR p.id = $topicid) “ .
“ORDER BY p.topic_id, p.date_posted “.

562

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 562

“LIMIT $start,$limit”;
$result = mysql_query($sql,$conn)

or die(mysql_error() . “
” . $sql);
$pagelinks = paginate($limit);

This query will return a maximum of the number of rows in $limit. The problem is, we need to know
how many rows would have returned if LIMIT had not been used. Fortunately, MySQL provides a means
for us to find out.

In the first line, we are using the SQL command SQL_CALC_FOUND_ROWS. This doesn’t do anything to
the query directly. It slows it down slightly, but it does allow us to subsequently run the SQL command:

$sql = “SELECT FOUND_ROWS();”;

This command, when run, returns the number of rows that SQL_CALC_FOUND_ROWS found. Although
SQL_CALC_FOUND_ROWS makes the query take a little longer, it is still more efficient than running the
query a second time with the COUNT(*) parameter.

Okay. We have our numbers; time to create the page links.

function paginate($limit=10) {
global $admin;

$sql = “SELECT FOUND_ROWS();”;
$result = mysql_query($sql) or die(mysql_error());
$row = mysql_fetch_array($result);
$numrows = $row[0];
$pagelinks = “<div class=pagelinks>”;
if ($numrows > $limit) {

if(isset($_GET[‘page’])){
$page = $_GET[‘page’];

} else {
$page = 1;

}
...

} else {
$pagelinks .= “

< PREV ”;
$pagelinks .= “

NEXT > ”;
}

Our paginate function takes one parameter, $limit. If $limit is not passed in to the function, then we
set $limit to a default value of 10.

Because our focus is now in a function, in order for the code to access the admin variables (such as range
and limit), $admin must be declared global.

As you can see, by using SELECT FOUND_ROWS(), $numrows contains the number of rows your query
returns. As long as the number of rows is larger than our limit, we’ll generate the pagination links.
Otherwise, we’ll just display inactive links.

563

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 563

Next, we grab the page variable, if it is set. If not, we set $page to 1.

Our next step is to determine whether the <PREV link should be activated or not. Obviously, if we are
on page 1, there is no previous page. Otherwise, the previous page is the current page number minus 1:

if($page == 1){
$pagelinks .= “< PREV”;

}else{
$pageprev = $page - 1;
$pagelinks .= “<a class=’pageprevlink’ href=’” . $currpage .

“&page=” . $pageprev . “‘>< PREV”;
}

The next bit of code does a bit of math. We are determining a few things in this code block. First, the
number of pages is determined by dividing the total number of rows returned by our previous SELECT
FOUND_ROWS() query ($numrows) by the number of posts per page ($limit) and rounding up.

Next, the range is grabbed from the global variable $admin[‘pagerange’][‘value] and stored in
$range. If it’s not available, then $range defaults to 7. This value determines how many pages are
accessible via a link at the bottom of the page. For example, if the range is 5, there are 13 pages, and you
are currently viewing page 6, you will have access to pages 4, 5, 6, 7, and 8:

< PREV .. [4] [5] 6 [7] [8] .. NEXT >

The “..” tells you that there are more pages in that direction (before or after).

$numofpages = ceil($numrows / $limit);
$range = $admin[‘pageRange’][‘value’];
if ($range == “” or $range == 0) $range = 7;

The next few lines determine what range of pages to show you. In the previous example, if the $range is
5, but you are viewing page 2 out of 13 pages, the code should be smart enough to allow you access to
pages 1 through 5:

< PREV [1] 2 [3] [4] [5] .. NEXT >

As you can see, you are viewing page 2, you can directly get to pages 1 through 5, and there are more
pages past 5. The piece of logic that determines which pages are available is the following:

$lrange = max(1,$page-(($range-1)/2));
$rrange = min($numofpages,$page+(($range-1)/2));
if (($rrange - $lrange) < ($range - 1)) {

if ($lrange == 1) {
$rrange = min($lrange + ($range-1), $numofpages);

} else {
$lrange = max($rrange - ($range-1), 0);

}
}

Then, the next part of the code renders the space between PREV and NEXT. If the lower range is higher
than 1, put “..” in to show that there are more pages by clicking <PREV. Then, use the $lrange and

564

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 564

$rrange values to build the page number links. If the link corresponds to the current page, don’t make
it a link. Next, if the high end of the range of pages is lower than the total number of pages available, put
in the “..” to show that there are more pages by clicking NEXT>.

if ($lrange > 1) {
$pagelinks .= “..”;

} else {
$pagelinks .= “ ”;

}
for($i = 1; $i <= $numofpages; $i++){

if($i == $page){
$pagelinks .= “$i”;

}else{
if ($lrange <= $i and $i <= $rrange) {

$pagelinks .= “<a class=’pagenumlink’ href=’” . $currpage .
“&page=” . $i . “‘>” . $i . “”;

}
}

}
if ($rrange < $numofpages) {

$pagelinks .= “..”;
} else {

$pagelinks .= “ ”;
}

The last part is to render NEXT> as clickable or not, depending on whether or not you are looking at the
last post of the thread. Doing this is relatively simple:

if(($numrows - ($limit * $page)) > 0){
$pagenext = $page + 1;
$pagelinks .= “<a class=’pagenextlink’ href=’” . $currpage .

“&page=” . $pagenext . “‘>NEXT >”;
} else {

$pagelinks .= “NEXT >”;
}

You may notice that this code generates simple text links for the pages. This is true. However, each ele-
ment is surrounded by tags, which allows us to use style sheets to easily modify the look of
these links.

Voilà! You have a terrific, customizable, dynamically built pagination function.

Breadcrumbs
Once upon a time, there were two skinny little yahoos named Hansel and Gretel. They didn’t want to
get lost in the forest, blah blah blah, so Hansel got the bright idea of dropping crumbs of bread so that
they could find their way back. Birds ate the bread, the kids got lost, and they ate a house. Hansel got fat
eating German chocolates and candies while sitting in a cage, and Gretel was forced to do chores. Then
one day they stuffed a little old lady in an oven and ran home. The End.

565

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 565

Except for the fact that the birds ate their trail, Hansel had the right idea. By placing a trail of crumbs
behind themselves, they should have been able to navigate out of any dark forest.

Some time ago, Yahoo! came along, giving us the ability to find Web sites based on categories. Because
there are so many sites out there that are very specialized, some of them might be in a sub-sub-sub-sub-
category.

For example, let’s say you wanted to view some sites in the Yahoo! directory about PHP. You click the
Computers and Internet category. Hmmm. Next, click Software, then Internet, World Wide Web, Servers,
(ah, getting close we think), Server Side Scripting, and (yes, finally!) PHP. Or, you could have simply
done a search for “PHP” and clicked the categories link near the top of the page.

Now that you have been to this page, wouldn’t it be nice to remember how you got here? If you look
near the top of the screen, you should see something that looks like this:

Directory > Computers and Internet > Software > Internet >
World Wide Web > Servers >Server Side Scripting > PHP

It is a map of subdirectories telling you exactly how to get to the category you are looking at. Someone
(probably a fan of gingerbread houses, but don’t quote me on that) saw this “map” and decided to call it
a breadcrumb list. The name has stuck.

The truth is, breadcrumbs are very helpful, and they make a lot of sense for a bulletin board forum. They
can give you a map from the post you are reading, to the thread it was in, to the forum the thread was in,
to the category the forum was in, to the home page. Perhaps it would look like this:

Home > Comic Book Movies > Spider-Man > This movie rocked! > I agree

By allowing you to click on any part of the breadcrumb, you can easily navigate to another part of the site.

We have implemented breadcrumbs for this application, and we will show you how it was done. There
are many different ways you could implement a breadcrumb system (such as by folder structure). This is
just one, and it is relatively simple.

The function itself takes two arguments, $id and $getfrom. The argument $getfrom will either be “F”
for forum, or “P” for post. The default is “F.”

function breadcrumb($id, $getfrom=”F”) {

There is usually a standard separator for crumbs. Some people use >, but we like to use a bullet, or dot.
If you prefer to use >, then use the HTML entity > in place of ·:

$sep = “”;
$sep .= “ · “;
$sep .= “”;

If we are in a post, then we want our breadcrumb to include a link to the forum, along with a non-linked
indication of what thread we are in. We pass in the topic_id to retrieve the right topic and get the
forum_id from that topic and put it into the $id field. We also extract the name of the topic.

566

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 566

if ($getfrom == “P”) {
$sql = “SELECT forum_id, subject FROM forum_posts “.

“WHERE id = “ . $id;
$result = mysql_query($sql)

or die(mysql_error() . “
” . $sql);
$row = mysql_fetch_array($result);
$id = $row[‘forum_id’];
$topic = $row[‘subject’];

}

Next, we run getForum on the $id that is now a forum_id. It returns a row that contains the name and
description of the forum. We don’t currently use description, but you could if you wanted to use it as the
alt or title attribute for the breadcrumb. At this point, we begin building the breadcrumb in the vari-
able $bc; Home is always first, and then the separator. Next is either a link to the forum (if looking at a
post), or simply the forum listed without a link. Next comes the thread title for the post we are looking at.

$row = getForum($id);
$bc = “Home$sep”;
switch ($getfrom) {

case “P”:
$bc .= “”.$row[‘name’].

“$sep”.$topic;
break;

case “F”:
$bc .= $row[‘name’];
break;

default:
}

return “<h4 class=’breadcrumb’>” . $bc . “</h4>”;
}

As we said, this breadcrumb is not that difficult. We are sure that armed with all of the PHP knowledge
you now have, you could come up with a very impressive breadcrumb function.

Going Out in Style
As promised, here is the section on cascading style sheets (CSS). Unfortunately, because CSS is beyond
the scope of this book, we are not going to give you a handy tutorial on how to implement them.
However, you have come a long way to get here, and your education would not be complete without at
least learning a little bit about CSS.

If you are not familiar with CSS, we recommend getting a book, or reading an online tutorial. There are
some excellent sites dedicated to teaching people how to make their Web pages CSS-compliant. We rec-
ommend you take a look at the following pages:

❑ www.w3schools.com/css/default.asp: A great site at which to start learning the basics of CSS.

❑ http://hotwired.lycos.com/webmonkey/authoring/stylesheets/tutorials/tutorial1.html: A long
URL, yes, but an excellent tutorial. It’s very funny, too. We strongly recommend you check this
one out. In fact, put www.webmonkey.com in your favorites list. There are many articles there
you will want to read.

567

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 567

❑ www.zeldman.com: Jeffrey Zeldman’s very informative site. If you get into CSS and XHTML com-
pliance, you will hear his name many times. Get his book—you can link to it from his Web site.

❑ www.alistapart.com: Many very informative articles on everything from CSS to XML to typog-
raphy. The authors of these articles are considered by some to be the gods of CSS and XHTML
compliance.

So there you have it. You do not need to know a single bit of CSS to do every example in this book, includ-
ing this chapter. But if you are ambitious enough to have read this far and have written most of the
applications in the book, We are sure a little thing like CSS will be no problem for you. Happy coding!

After thoughts
Congratulations! You have just completed the creation of a fully functioning bulletin board system. It is
more powerful than some of the simpler ones you’ll find, but it is certainly not the most complex. There
are many things you could still do to this application that could really make it sing, if you were so
inclined.

What else could you add to this application? Perhaps you have a few ideas already, based on what you
have seen on other forums. If you need some ideas, here is a short list to get you started:

❑ Avatars: Allow your users to upload (or choose from your site) a small image that can be placed
under his or her username.

❑ Smilies! Most forums will replace smilies with a graphical representation of some sort. Create
some smilies yourself (or find good ones on the Internet that are not copyrighted), store them in
an images folder on your Web site, and use regular expressions to replace smilies with the
appropriate images.

❑ User profiles: Allow users to add more information to their profiles, such as hobbies, location,
age, sex, and so on. Also allow them to add their AIM, Yahoo! IM, and MSN IDs. Make their
usernames into a link that allows other users to contact them via e-mail or Instant Messenger.
Make sure you include a checkbox to allow users to hide their e-mail address, if they want to.

❑ Quoting: What is a forum without the ability to quote relevant text? Allow users to quote all or
part of a post. We leave it up to you to figure out how to implement it.

❑ Polls: A very popular option, polls allow users to post a short questionnaire for their peers to
answer. Install a poll option when posting a new topic, and display a graph of the results at the
top of the thread.

That should keep you busy for a while. Good luck!

Summary
Now you have created a community where your visitors can hang their hats and stay a while. Combined
with all of the other applications you have built, you should no doubt have a very cool, integrated Web

568

Chapter 15

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 568

site up and running in no time! Congratulations on making it this far. This chapter was long, with a lot
of code. Most of it was not overly difficult; indeed, most of the code was stuff you did in other chapters.
But we hope that by the time you have read this whole chapter, you will feel comfortable creating a Web
site from the ground up, using PHP and MySQL installed on an Apache server.

Exercises
If you would like to test out how much you have learned from this chapter, take the time to do these lit-
tle exercises. Not only will they help you learn; they will allow you to add some extra features to your
bulletin board application.

❑ Add code to admin.php to prevent unauthorized users from loading the page. Redirect them
back to index.php.

❑ Create a regular expression that recognizes an e-mail address in a post and turns it into a link.

❑ Add a bit of code to the pagination function to allow the user to go to the first page or last page.
For example, if there are 14 pages, and the user is on page 8, and the range is 7, it should look
something like this:

<PREV [1] .. [5] [6] [7] 8 [9] [10] [11] .. [14] NEXT >

569

Creating a Bulletin Board System

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 569

20 557440 Ch15.qxd 2/6/04 9:17 AM Page 570

Part IV: Advanced Users

Chapter 16: Using Log Files to Improve Your Site

Chapter 17: Troubleshooting

21 557440 PP04.qxd 2/6/04 9:17 AM Page 571

21 557440 PP04.qxd 2/6/04 9:17 AM Page 572

16
Using Log Files to
Improve Your Site

The cool thing about being a Web developer is that sometimes you get to act like Big Brother and
keep close tabs on what your visitors are doing. Although it may seem voyeuristic to some, ana-
lyzing what goes on at your site can give you valuable information that will enable you to make
your site better.

Some examples of the types of information you can glean from logs include:

❑ What IP addresses your visitors are using so you can get a geographical location for your
most common visitors; this helps with language and international issues

❑ What browsers your visitors are using so you can make sure your site is readable by your
most common visitors

❑ What times and days your visitors are visiting so you can schedule maintenance during
slow times or special events during busier times

❑ What pages are the most popular on your site so you can gauge the success or failure of
certain pages and remove the dead weight

❑ Whether or not your traffic is increasing so you can determine if your site is becoming
more well-known or stagnating itself into oblivion

❑ What pages and processes are causing problems so you can fix them—duh

❑ If you’re using user authentication on your site, what users are logging in when and what
their activity is so you can see who your MVPs are and perhaps offer them special Web
site features (or maybe a beer at the local bar)

This chapter is all about logs, and in it we cover the following:

❑ What logs look like and what information they contain

❑ Where you can find them on your system

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 573

❑ What resources you can use to help analyze your statistics

❑ How you can use the information to improve your site

What Is a Log?
A log is a text file saved on your server; this file appends itself every time something happens, such as
when a file is requested by someone or when an error occurs. Here are three types of logs:

❑ Access Logs track every hit.

❑ Error Logs track every error or warning.

❑ Custom Logs track whatever information you tell them to.

Where Are These Logs?
Log files are in different locations, depending on what program created them and what their function is.
Most are available in a folder outside the scope of your Web site so that users don’t have access to them.

Apache
Apache keeps access logs and error logs. If Apache has been installed on your server, the default location
is \<apache install directory>\logs.

The typical access log entry looks like this:

127.0.0.1 - george [29/Aug/2003:13:55:36 -0500] “GET /index.php?xyz=123 HTTP/1.0”
200 2326 “http://www.yourserver.com/cms/index.php” “Mozilla/4.08 [en] (Win98; I
;Nav)”

All of this information is on one line of the log, and is built by Apache according to the LogFormat direc-
tive in the mod_log_config module. The typical config looks like this:

LogFormat “%h %l %u %t \”%r\” %>s %b” common

The config string that built the above line used the combined format, and looks like this:

LogFormat “%h %l %u %t \”%r\” %>s %b \”%{Referer}i\” \”%{User-agent}i\””
combined

Although the LogFormat directive is beyond the scope of this book, we will list each parameter here so
that you can understand what each piece of the log is and how it’s broken down:

❑ %h (127.0.0.1): The address of the client currently accessing your server. This can be an IP
address or a hostname (if HostNameLookups is turned on on your server).

❑ %l (-): The RFC 1413 identity of the client. This is usually a hyphen (-) to indicate that Apache
was not able to obtain the information.

574

Chapter 16

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 574

❑ %u (george): The username of the client. This is set if the page is using HTTP User
Authentication. Otherwise, you see a hyphen (-).

❑ %t ([29/Aug/2003:13:55:36 -0500]): The date/time the client accessed your server.

❑ The format for this is as follows: [day/month/year:hour:minute:second zone]

❑ day = 2 digits

❑ month = 3 letters

❑ year = 4 digits

❑ hour = 2 digits

❑ minute = 2 digits

❑ second = 2 digits

❑ zone = (`+’ | `-’) 4 digits

❑ \"%r\" ("GET /index.php?xyz=123 HTTP/1.0"): The request line from the client. This is
wrapped in quotes, which have to be escaped. This is actually multiple information, which
could be built using other parameters:

❑ %m (request method), in this case, GET

❑ %U (URL), in this case, /index.php

❑ %q (query string), in this case, ?xyz=123

❑ %H (protocol), in this case, HTTP/1.0

❑ \"%m %U%p %H\" is the functional equivalent of \"%r\"

❑ %>s (200): The status code sent back to the client. In this case, because it starts with a “2,” we
know it was a successful request.

❑ %b (2326): The size of the object returned to the client in bytes (not including headers). If no
content is returned, the value is hyphen (-), or “0” if %B is used.

❑ \"%{Referer}i\" ("http://www.yourserver.com/cms/index.php"): The address of the page the
client came from. This is useful for compiling information about where your users heard about
your Web site.

❑ \"%{User-agent}i\" ("Mozilla/4.08 [en] (Win98; I ;Nav)"): User-Agent HTTP request header
information. This is the information the client’s browser sends about itself. This is very useful
for determining how many people are using certain browsers, such as Internet Explorer.

If the preceding information looks like Greek to you, don’t worry. There are ways of getting the informa-
tion without understanding any programming, and methods of reading the information to build statistics,
charts, graphs, and other things that are much easier to read. We share those methods with you shortly.

Here is what the typical error log entry looks like:

[Wed Aug 27 14:32:52 2003] [warning] [client 69.129.21.24] File does
not exist: /home/grebnol/public_html/index.php

575

Using Log Files to Improve Your Site

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 575

The information in the error log is pretty self-explanatory. It is free-form and descriptive, but typically
most error logs capture the date/time, the error severity, the client IP address, the error message, and the
object the client was requesting.

Because the error message is also contained in the Apache access log, it makes more sense to pull the
data out of the access log. For example, the preceding error will show up in the access log with access
code 404.

PHP
PHP also keeps a log of errors for you, but as we discussed in Chapter 1, the default setting for this fea-
ture is set to “off” in your php.ini file. You have to turn it on to enable error logging, which we highly
recommend. Also, don’t forget to tell your php.ini file where you want the error log to be saved.

The typical error log entry looks like this:

[01-Sep-2003 18:42:03] PHP Parse error: parse error, unexpected ‘}’ in
C:\Program Files\Apache Group\Apache2\test\deleteme.php on line 14

As in the other logs we have looked at, the logs themselves are relatively straightforward, and their pur-
pose is to keep track of all of the errors that occurred when your PHP pages were being accessed.

In the preceding example, you can see that there was a parse error in the file deleteme.php on line 14,
which merits our attention. Anyone attempting to see the contents of this file will see only the parse
error until we get it fixed.

A regular check of the PHP error log should be on your “to-do” list, just to make sure there aren’t any
errors in your code.

MySQL
As if that’s not enough, MySQL also logs queries and errors that pertain to database transactions. By
default, the error log is stored as hostname.err in the data directory (in Windows and UNIX both). You
can specify where the error log is saved by issuing the following command from the command prompt
when starting the MySQL server:

mysqld —log-error[=filename].

Here is a typical entry in the error log:

030812 0:28:02 InnoDB: Started
MySql: ready for connections.
Version: ‘4.0.14-max-debug’ socket: ‘’ port: 3306

576

Chapter 16

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 576

This lets us know that the MySQL server started successfully, what version is currently running, and
what socket and port it is configured for. It also gives us the date and time that the server began running
(in the first line). It should also be noted that this log cannot be accessed while the server is running; you
will need to stop the server to open this file.

MySQL also allows us to view every query that is sent to the server. To specify where the general query
log is located, you would type the following command when starting the MySQL server;

mysqld —log[=file]

Again, by default, this file will be stored in the “data” directory with the name hostname.log file,
unless you specify otherwise. An entry in the general query log looks like this:

/usr/local/mysql/libexec/mysqld, Version: 4.0.16-log, started with:
Tcp port: 3306 Unix socket: /tmp/mysql.sock
Time Id Command Argument
031109 21:33:34 1 Connect buzzly_comic@localhost on

1 Init DB buzzly_comicsite
1 Query SELECT * FROM forum_admin
1 Query SELECT * FROM forum_bbcode
1 Quit

031109 21:33:50 2 Connect buzzly_comic@localhost on
2 Init DB buzzly_comicsite
2 Query SELECT id,access_lvl,name,last_login FROM

forum_users
WHERE email=’admin@yoursite.com’ AND passwd=’admin’

2 Query UPDATE forum_users SET last_login = ‘2003-11-09
21:33:50’
WHERE id = 1

2 Quit
3 Connect buzzly_comic@localhost on
3 Init DB buzzly_comicsite
3 Query SELECT * FROM forum_admin
3 Query SELECT * FROM forum_bbcode

If you are interested in seeing only the queries that changed data, you should view the binary log file
instead of the general query file. With previous versions of PHP you would have used the update log,
but it is highly recommended that you begin using the binary log instead.

The update log will be phased out with the release of PHP 5.0.

This file is also saved by default in your “data” directory, with the filename of hostname-bin unless you
specify otherwise. You would activate this log by typing the following at the command prompt:

mysqld —log-bin[=file_name]

An entry in the binary log looks like this:

577

Using Log Files to Improve Your Site

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 577

at 4
#031109 21:29:46 server id 1 log pos 4 Start: binlog v 3, server v 4.0.16-
log
created 031109 21:29:46 at startup
at 79
#031109 21:33:50 server id 1 log_pos 79 Query thread_id=2 exec_time=0
error_code=0
use buzzly_comicsite;
SET TIMESTAMP=1068431630;
UPDATE forum_users SET last_login = ‘2003-11-09 21:33:50’ WHERE id = 1;
at 196
#031109 21:34:52 server id 1 log_pos 196 Query thread_id=8
exec_time=0
error_code=0
SET TIMESTAMP=1068431692;
UPDATE forum_users SET email=’admin@yoursite.com’, name=’Admin’, access_lvl=3,
signature=’Testing, testing, 123.’ WHERE id=1;

Unlike the other logs in this chapter that could be accessed with Wordpad or Notepad, you must access
the binary log using the mysqlbinlog utility. At the command prompt, you would type mysqlbinlog to
see the parameters for this software. Your screen will look something like the one shown in Figure 16-1.

Figure 16-1

As you can see, there are many parameters you can set to glean the specific information you are
looking for.

578

Chapter 16

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 578

Now That I Know What and Where
They Are, What Do I Do with Them?

There are numerous software programs out there that live to help you take this gobbledy-gook and
make sense out of it. Note that most of these programs are used for analyzing Web server activity, and
not MySQL or PHP logs.

Webalizer
Webalizer can be found at www.webalizer.com and is a proud part of the wonderful open source com-
munity we talked about in Chapter 1. It provides reports in an easy-to-read HTML format with pretty
charts and such that can be read by just about anyone, including the higher-ups. Its main purpose is to
spit out reports on server activity, most specifically Apache. It is meant for use on UNIX systems, and
thus far, isn’t compatible with Windows. If you set your Apache config files to do DNS server lookups,
then your reports with Webalizer will show those instead of simple IP addresses. This program is also
known for its incredible speed, as it can process 10,000 records in a matter of one second.

You can see a sample screenshot in Figure 16-2, also available at the Webalizer Web site.

Figure 16-2

579

Using Log Files to Improve Your Site

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 579

Analog
Another open source contender for helping you make sense of your log files is Analog, which you can
find at www.analog.cx. While it’s a little rough around the edges, it’s still a powerful tool that can be
customized to show what you want to see. By using the add-on, Report Magic (available at
www.reportmagic.org), you can generate all kinds of fancy 3-D charts and graphs and really impress
your superiors (or your dog if you’re a one-man or one-woman show).

You can see sample screenshots in Figures 16-3, 16-4, and 16-5, also available at the Analog Web site.

Figure 16-3

WebTrends
If you’ve got some money to throw around, WebTrends (www.netiq.com) is another good log analyzer
program. For a mere $499 it can pretty much tell you everything you ever wanted to know about your

580

Chapter 16

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 580

Web site. It works on numerous platforms, including Apache, and you are really given a lot of control
over what your output looks like. We recommend this type of software if you have a high-powered
server and are supporting a high-powered client who wants fancy stuff like his own logo on his own
reports. The customization is really a great feature.

This software also offers a SmartSource data option that allows you to track specific things about your
Web site with the use of client-side server tags in your HTML. This bypasses the whole “log” step and
sends the info straight to the WebTrends software. It can even perform a DNS lookup at report genera-
tion if you forget to enable this option in your config files, or if you want to reduce server activity.

Again, this powerful software is not for the feint of heart and should be reserved for the heavy-duty
users.

You can see a sample screenshot—provided by the WebTrends Web site—in Figure 16-6.

Figure 16-4

581

Using Log Files to Improve Your Site

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 581

Figure 16-5

Figure 16-6582

Chapter 16

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 582

AWStats
Another of our open source buddies, AWStats can be found at http://awstats.sourceforge.net/.
Don’t be fooled by its price tag—this free software provides numerous features also offered by the big
guys. Unlike some of the other open source stats programs, AWStats can track the number of unique vis-
itors; entry and exit pages; search engines and keywords used to find the site; and browser details of
each visitor, such as version and screen size.

AWStats also allows the Web administrator to set up customized reports for tracking something of
specific interest for his or her specific needs, which is a welcome addition to this software package.

You can see a sample screenshot in Figure 16-7, also available at the AWStats Web site.

Figure 16-7

HTTP Analyze
One more stats program for you to investigate can be found at www.http-analyze.org/. Another open
source favorite, this program works on any log file that is in the NCSA Common Logfile Format or W3C

583

Using Log Files to Improve Your Site

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 583

Extended File Format, and thus works great with Apache. It should be noted that HTTP Analyze is
supported by both UNIX and Windows systems. It also provides several different options for viewing
data, all in HTML and easy-to-read formats.

You can see a sample screenshot in Figure 16-8, also available at the HTTP Analyze Web site.

Figure 16-8

What Do the Reports Mean?
So now you have all these beautiful reports, and you go to your boss and proudly display your charts
and graphs and expect a big pat on the back. But what happens when he or she says to you, “So?”

Let’s talk a minute about what the reports mean to you, so you have a nice, neat, witty response.

584

Chapter 16

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 584

Earlier in the chapter, we touched on how using the stats can help you improve your site. Your logs are,
in many cases, your only source of feedback from your visitors. You can’t know what you’re doing right
or wrong without any feedback, so as your only tangible evidence, these stats are really quite valuable.
There are several different areas you probably want to pay attention to, depending on the specific needs
of your site.

User Preferences and Information
You can’t please all of the people all of the time, but you can certainly try. You care about what your
users like so you obviously want to tailor your site to the most common visitor, and try to minimize the
number of visitors who won’t have the optimal viewing experience. You want to know what percentage
of visitors are using which browsers so you can be sure and test your site against the most popular
browsers of your audience. You also care about how many unique and not-so-unique visitors are coming
to your site so you can tell if your site is gaining a new following, while maintaining its current one. You
also want to know what screen size they are using, so you can again tailor the look of your site to be the
best it can be for the most visitors.

Number of Hits and Page Views
Remember, a “hit” is any request made to the server, whereas a “page view” is a request for a page (such
as an HTML page). Hits can consist of images, sound files, or anything that requires activity from the
server. This number doesn’t really give you an accurate count of how many people are viewing a page,
so you typically go by page views.

You want to see which pages get the most page views, and are the most popular so that if you need to
make something known about your site, you can make sure it appears on those pages. For example, say
you have a new product to promote—if no one ever visits the “new products” page, it won’t do you
much good to only post it there. If the homepage of your site is the most popular, you want to also post
that information on that page, so you make sure that everybody who visits your site knows about your
new product.

You also want to be able to look at the pages that are doing well and compare them with the pages that
aren’t doing so well. Is the content of both pages clear and concise? What is it about the popular pages
that makes them so great? Can you make your losers closer to the winners in page design, content, or
positioning?

Trends over Time
It’s rewarding to see your site become more popular as time goes on, but it creates a big pit in your
stomach if things are going downhill. Tracking popularity over time can help you discern if interest in
your site is waning, or if it is perhaps more popular around certain seasons of the year. If your site sells
golf equipment and you notice a dip in page views during the winter months, obviously you don’t have
much to worry about, as your business is a seasonal business and this dip is understandable. Perhaps
you notice that during the winter months your average visitor is coming from Florida (makes sense,
eh?). Perhaps you can work with marketing to develop an advertising strategy tailored to the loyal
Floridians during those months. (Yes, we said “Work with marketing.” It happens, get over it!)

585

Using Log Files to Improve Your Site

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 585

Referring Sites
If you can discern where people are finding your site, you will have a very valuable resource at your dis-
posal. Are the search engines actually working in your favor? What keywords are people using to reach
your site? Do you fare better with certain search engines than others? Are you getting referred from
other, non-directory sites?

Perhaps you have a site that sells bowling equipment, and you notice through your stats that the
Professional Bowlers Association has your site listed on its own site as a resource for its visitors, and has
referred the majority of your visitors. Perhaps then you decide you want to offer a special discount to
PBA members as a “thank you.” Increasing your Web site traffic can be as simple as getting yourself
listed on as many other sites as possible. Not only will it help people see you, it will help increase your
listing in search engines such as Google that take into account criteria such as how many other places
your Web site is listed.

Summary
You should now feel comfortable looking at and manipulating log files to benefit your site and your
skills as a professional Web designer. You can choose to massage the data based on a program you have
written yourself, or you may choose to utilize numerous other resources out there to provide you with
fancy reports that let you know what is going on with your site. By paying attention to trends and popu-
lar pages in your site, you can get a better feel for who your visitor really is. This, in turn, enables you to
continually improve your site.

At the very least, you will be able to speak intelligently to your boss when he or she asks “So what’s
going on with our Web site?”

586

Chapter 16

22 557440 Ch16.qxd 2/6/04 9:17 AM Page 586

17
Troubleshooting

Nothing is more frustrating than thinking you have all your “t’s” crossed and your “i’s” dotted,
only to have your program blow up on you with a string of errors. Worse yet is having your pro-
gram produce completely perplexing and unwanted results.

Well, you may find comfort in knowing that many developers experience the same types of obsta-
cles. With this chapter, we hope to shed light on some potential problems you may encounter and
suggest a few troubleshooting strategies.

Installation Troubleshooting
You’re trying to access either PHP, MySQL, or Apache and you are running into problems. Perhaps
for some reason they are not playing well with others and you are getting errors, or things aren’t
working the way they should be based on the installation instructions.

Many times, commonly seen errors or obstacles will be discussed on the source Web sites for each
of the components. The source Web sites also provide detailed instructions for the particular sys-
tem you are using, and we encourage you to read through them carefully to double-check your-
self. Make sure you follow the instructions to the “t.”

If while configuring PHP you receive an error that tells you that the server can’t find a specific
library, you can do one of two things:

❑ Check to make sure you’ve actually installed the library on your machine.

❑ Verify that the correct path has been specified in your configure command.

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 587

Parse Errors
You’ve seen it many times:

Parse error: parse error, expecting `’,’’ or `’;’’ in
/foo/public_html/forum/index.php on line 25

Oh, the dreaded parse error! These are quite common, even with experienced programmers. Even with
the best color-coded PHP text editors that check your syntax for you, one or two parse errors undoubt-
edly slip through. These can be very frustrating, but they are usually the simplest to fix, as they usually
occur because of mistakes in your syntax, as opposed to your logic.

Cleanup on Line 26 . . . Oops, I Mean 94
When PHP displays a parse error, it includes a line number, which provides your first clue for solving
the mystery. However, don’t be fooled! Sometimes the line number can be misleading; in fact, at times
the mistake will have occurred several lines up from the one identified by the server as the culprit.

Take a missing semicolon, for example. Without the semicolon to signify to the server that the line has
come to an end, the server will continue to string subsequent lines together. It may not realize there is a
problem until several lines later, and it will issue a parse error on the wrong line.

Elementary, My Dear Watson!
Sometimes the simplest answer is the right answer. Make sure you check to see that each of the follow-
ing has been done:

❑ Each line ends with a semicolon.

❑ All quotes and parentheses are closed.

❑ All of your functions and control statements (if, which, and so on) end with a curly brace (}).

❑ All single and double quotes are nested properly.

If you get into the habit of checking your syntax regularly as you write your code, you will greatly
decrease the risk of introducing parse errors. You may want to use an editor that is familiar with PHP
and can color-code your programs. This makes it much easier to recognize when you have misspelled a
function or forgotten to close your quotes. We use two programs:

❑ UltraEdit (www.ultraedit.com): This one is very customizable and easy to use. There is a small
fee to register, but it’s well worth it.

❑ PHPEdit (www.phpedit.com): This program is extremely powerful and free. It includes a con-
text-sensitive manual for PHP, MySQL, and HTML. The program also has dynamic color cod-
ing, depending on whether you are currently typing in HTML or PHP. We have been using this
one for a while now, and we are very impressed with it.

588

Chapter 17

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 588

Empty Variables
You just built a large page that collects 50 fields of information from your users. There are no parse
errors. You fill in the form online and click the submit button. The next page loads, just as it should.
The only problem is that none of the variables seem to have been passed on to the new form!

This actually happens quite often. The first possible cause is that you are expecting your values to be
posted, but you forgot to use method=”post” on your form. By default, forms use the get method.

How do you solve this? Check the address of your second page. Are the variables in the query string?
If so, mystery solved.

The Ultimate Bait-and-Switch
Another very common problem, addressed ad nauseam in this book, is a setting in your php.ini file
called register_globals. If you have recently upgraded your server, or migrated your code to a dif-
ferent server, this just may be the reason you no longer have access to your variables.

As of PHP version 4.2.0, the PHP directive register_globals changed from a default value of “on”
to a default value of “off.” This was a controversial decision, and the cause of a lot of heartache with
developers who wrote their programs on the assumption that it would always default to “on.” When
register_globals is set to “off,” you must access your posted variables through the $_POST array.

For example, prior to 4.2.0, if you had register_globals set to the default of “on,” you could post a
form field called first_name, and the variable on the subsequent page could immediately be accessed
as $first_name. It was determined that this could be a big security risk, so it was changed in PHP 4.2.0.
Now, if you kept register_globals set to the default of “off,” you’d have to access your posted form
field first_name through the $_POST array, as $_POST[‘first_name’].

You can do a couple of things to fix this problem. The most obvious, of course, is to set the
register_globals setting to “on” in your php.ini file. However, because of the recognized security
risk, this is no longer the recommended course of action. For a more detailed discussion of this, visit the
following URL:

www.php.net/register_globals

A better solution is to always access your variables via the $_POST array. If you want, you can always set
your variables:

$first_name = $_POST[‘first_name’];

If you have a large number of $_POST variables, use this loop to convert them all to the more familiar
format:

foreach($_POST as $key => $value) {
$$key = $value;

}

589

Troubleshooting

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 589

If $_POST[‘first_name’] is set to George, the preceding code will set $key to first_name and
$value to George. Then, it sets $first_name = George. It will loop through every posted field, setting
each variable. This is a good temporary fix to make your pages work, but we strongly recommend that,
from this point forward, you always assume that register_globals is off, and you will never run into
this particular problem again.

Consistent and Valid Variable Names
First you should make sure that your variable names are appropriate and valid according to the naming
rules, as outlined in Chapter 2. Make sure you aren’t beginning any variable name with a number, or try-
ing to use a predefined variable for your variable name such as $php_errormsg. A complete list of these
can be found at the PHP manual, http://us2.php.net/manual/en/reserved.variables.php.

Also, check the case you are using when referencing variables, as variable names are case-sensitive. The
same holds true for database and table names. Make sure you are referencing them consistently, and if
you make a change to a variable name after the fact, be sure to change all the instances of the variable
name.

It is easier to maintain consistent variable names if you pick a naming convention and stick with it
throughout your scripts. For example, if you always name your variables with a prefix of $var_, you
can easily spot them in the code. This convention ties into the discussion in Chapter 2 regarding good
coding practices.

Open a New Browser
Sometimes if you are working with sessions, and you are in the testing phase of your scripts, there may
be an extraneous session setting hanging out there that could be preventing you from obtaining the
desired results, and altering your variable values.

You can clear all session variables (provided you haven’t changed your config files as we discuss in
Chapter 2) by simply closing the browser and opening a new one, instead of just hitting Refresh or
Reload.

“Headers Already Sent” Error
You may encounter an error message that looks like this:

Warning: Cannot modify header information - headers already sent by (output started
at C:\Program Files\Apache Group\Apache2\test\headererror.php:1) in C:\Program
Files\Apache Group\Apache2\test\headererror.php on line 2

This is a common error when working with sessions and cookies. It can occur if you try to set them after
you have sent HTML code to the server. The server has to deal with these before any HTML output is
sent to the server, which means that these lines must be the first in the code before any HTML code or
echo statement. If you have even a trailing leading space before your first <?php line of code, you will
see this error.

590

Chapter 17

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 590

If you need to set cookie or session variables within the body of your code, you need to rethink your
logic to accommodate this limitation. As we discuss in Chapter 2, those variables need to be addressed at
the beginning of your code for them to be parsed correctly by the PHP server.

There are ways to get around this error, using the output buffer to suppress these errors. The output
buffer is used to store all HTML output in a buffer until you are ready to send it to the browser. The
command ob_start is used to begin the output buffering process, and ob_end_flush will send all of
the stored HTML output to the browser, empty the buffer, and end the output storing process. This will
let you cheat the system and store session and cookie variables in the body of the code, as well as allow
you to use the header(“location:”) function in the body of the code. While this is not recommended
for beginners, as it is more important for you to learn to code well, and according to the “rules,” this can
be a useful set of functions for a more experienced programmer. If you would like to learn more about
the output buffer functions, you can find a complete list of them in Appendix C, or visit www.php.net.

General Debugging Tips
We have listed a few tips for general debugging purposes that can help you out of many sticky spots.

Using echo
Occasionally, you might want to read the server’s mind and see what it thinks is going on. One way to
do this is to echo out variable names periodically in your code. This will let you verify that the server is
parsing everything correctly.

You can use echo in a step-by-step process as you follow the path of your variable, to see how the server
is treating the variable throughout the code. This process would help, for example, if you wanted to per-
form a complex mathematical equation on a variable, and all you could tell from your output was that
you were getting the wrong answer. You want to find out at what point the breakdown occurs, so you
insert echo statements throughout each step of the equation to verify the accuracy of your calculation as
it runs through the equation. You will then see the value of the variable as it changes.

The echo command can also be useful in if statements, foreach statements, functions, and so on to
ensure that these loops are being called or processed correctly.

Let’s see how echo can help us in a very simple example. Assume you have the following script:

<?php
$curr_var = 0;

while ($curr_var < 20) {
$abc = 2 * $curr_var;
$curr_var ++;

}
echo $abc;
?>

591

Troubleshooting

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 591

By running this code in your browser, you get the number 38. What if you were expecting to get the
number 40, or you wanted to check to see if your $abc variable was right? You could echo out the vari-
able as it was processed to see how the program was working, as such:

<?php
$curr_var = 0;

while ($curr_var < 20) {
$abc = 2 * $curr_var;
$curr_var ++;

// debug lines
echo $curr_var;
echo “
”;

}
echo $abc;
?>

You now see the numbers 1–20, plus your original answer of 38. It is easier for you to see that although
the $curr_var goes to 20, it processes the answer only 19 times and so you get the answer of 38.
Therefore, you should change the while statement as such:

while ($curr_var <= 20) {

Now your while statement will process when $curr_var = 20, and you get a result of 40 at the end.
(Okay, so you probably figured that out without the echo statement—work with us, here.) Use the com-
ments as a reminder to yourself to delete the debugging lines when you have solved the problem, to
avoid unwanted output to your browser when your page goes live.

Remember that arrays, although variables, behave a little differently. If you echo an array, all you will
see on the screen is Array(). To view the contents of an array, instead of using echo, use
print_r($array). Even with a multidimensional array, every value in the array will be echoed to the
screen.

Divide and Conquer
Another good way to tackle a huge problem is to break it down into baby steps and test each one to
make sure you are getting the correct result every step of the way. One small mistake in the beginning of
a complex block of statements can have a snowball effect and completely alter your results at the end. By
checking each step one by one, you can iron out those small bugs and can eventually get the intended
results.

Test, Test, Test!
Many coders test their program out on their own system and as long as it works for them with their set-
tings, they assume they are home free. To be completely thorough, you should test your code using every
different environment available to you: different browsers, different preferences, different computer sys-
tems, and so on. If you have the opportunity and know-how, you should even try to hack through your
own system to look for holes that might be exploited by someone a little less kind than you.

592

Chapter 17

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 592

Where to Go for Help
Fortunately, the PHP community is growing. There are numerous sources online to help guide you
through the murky waters should the going get tough. We have mentioned these numerous times in this
book, but here they are again, one more time.

wrox.com
This book is specifically designed to provide help online in a companion Web site, so if you encounter
trouble, we strongly encourage you to check out the book’s sister site at www.wrox.com.

PHPBuilder.com
There are many PHP help Web sites out there, but our personal favorite tends to be PHPBuilder.com.
You can find numerous articles, archives, snippets of useful code, and, most important, a well-developed
and very helpful online community of fellow coders from all over the world with all levels of compe-
tency to assist you as quickly as they can. We have yet to find such a tight-knit and friendly community
elsewhere, and we encourage you to post your questions in their forums.

If you are lucky, you might find one of the authors of this book lurking around at PHPBuilder.com. We
are all regular contributors, and some of us are moderators. (Hint: check the Echo Lounge.)

Source Web Sites
You will see this time and time again, but like the other advice, we can’t stress it enough. If you have a
question about virtually anything, chances are the answer can be found at a source Web site. Each of
these Web sites provides a very comprehensive manual that encompasses basically all known knowl-
edge about the software at hand.

To refresh your memory, here they are:

❑ PHP: www.php.net (Useful hint: If you are looking for help with a function, such as echo, you
can simply type www.php.net/echo in your browser and it takes you directly to the echo page.
How nifty is that?)

PHP also provides the manual in a Microsoft Windows Help format (CHM), which is very use-
ful for Windows users. You can download the manual from the php.net Web site and install it
on your local machine.

❑ Apache: www.apache.org

❑ MySQL: www.mysql.com

Search and Rescue
If you’re experiencing problems with a script, chances are you aren’t the first to experience the same
obstacles. Use your favorite search engine (such as Google.com) to scour the Internet for articles, discus-
sion forum posts, tutorials, or anything that discusses the problems you’re having. This can be a very
quick and easy way to keep from reinventing the wheel.

593

Troubleshooting

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 593

IRC Channels
You may require immediate assistance with your dilemma or question, and the IRC resource may be
your solution. There are many PHP IRC channels out there: irc://quakenet.org/php and
irc://quakenet.org/phphelp are good ones.

Summary
We hope we have helped you trudge through the slush and muck of debugging and working out the
errors in your programs. Although you may not have found your “holy grail,” we hope you will at least
know where to search for it.

594

Chapter 17

23 557440 Ch17.qxd 2/6/04 9:17 AM Page 594

A
Answers to Exercises

This appendix supplies answers to the exercises we gave you at the end of many of the chapters.
Keep in mind, as is always the case in programming, there is more than one way to skin a cat, and
these are just our recommendations. If you were able to accomplish the given task in another way,
then pat yourself on the back and take yourself to a movie because you’re on your way!

Chapter 2
1. Go back to your date.php file and instead of displaying only the number of days in the

current month, add a few lines that say:

The month is ______.

There are ____ days in this month.

There are _____ months left in the current year.

A: Your date.php file should look like something like this:

<html>
<head>
<title>How many days in this month?</title>
</head>
<body>
<?php

$monthname = date(“F”);
echo “The month is: “ ;
echo $monthname;
echo “
”;

echo “There are “;
$month=date(“n”);
if ($month==1) echo “31”;
if ($month==2) echo “28 (unless it’s a leap year)”;

24 557440 AppA.qxd 2/6/04 9:18 AM Page 595

if ($month==3) echo “31”;
if ($month==4) echo “30”;
if ($month==5) echo “31”;
if ($month==6) echo “30”;
if ($month==7) echo “31”;
if ($month==8) echo “31”;
if ($month==9) echo “30”;
if ($month==10) echo “31”;
if ($month==11) echo “30”;
if ($month==12) echo “31”;
echo “ days in this month.”;

echo “
”;

$monthsleft = 12-$month;

echo “There are “;
echo $monthsleft;
echo “ months left in the year.”;

?>
</body>
</html>

2. On your movie Web site, write a file that displays the following line at the bottom center of
every page of your site, with a link to your e-mail address. Set your font size to 1.

This site developed by: ENTER YOUR NAME HERE.

A: The files of your movie site should all include these lines near the bottom of the script:

<?php
include “footer.php”;
?>

Then you need to create the file footer.php, which consists of these lines:

<div align=”center”>
This site developed by John
Doe
</div>

3. Write a program that displays a different message based on the time of day. For example, if it is
in the morning, have the site display “Good Morning!”

A: Your header.php page should include lines that resemble something like this:

<?php
if ((date(“G”) >=5) AND (date(“G”) <= 11)) echo “Good Morning!”;
if ((date(“G”) >=12) AND (date(“G”) <=18)) echo “Good Afternoon!”;
if ((date(“G”) >= 19) AND (date(“G”) <= 4)) echo “Good Evening!”;
?>

596

Appendix A

24 557440 AppA.qxd 2/6/04 9:18 AM Page 596

4. Write a program that formats a block of text (to be input by the user) based on preferences cho-
sen by the user. Give your user options for color of text, font choice, and size. Display the output
on a new page.

A: This would be most easily accomplished by CSS but that is really beyond the scope of this book.
Generally, you would include a form for your users, possibly on the login page, such as this:

<p>Enter your font choice:
<select name=”font”>
<option value=”Verdana”>Verdana</option>
<option value=”Arial”>Arial</option>
<option value=”Times New Roman”>Times New Roman</option>
</select>
</p>
<p>Enter your font size:
<select name=”size”>
<option value=”1”>1</option>
<option value=”2”>2</option>
<option value=”3”>3</option>
<option value=”4”>4</option>
</select>
</p>
<select name=”menu”>
<option value=”black”>Black</option>
<option value=”red”>Red</option>
<option value=”green”>Green</option>
<option value=”purple”>Purple</option>
</select>
</p>

If you didn’t want to use CSS, you could store the variables with your session variables. You
would add something like this to your movie1.php script, or whatever script is processing your
font information:

$_SESSION[‘font’]=$_POST[‘font’];
$_SESSION[‘size’]=$_POST[‘size’];
$_SESSION[‘color’]=$_POST[‘color’];

Then, every time you had text, you would echo in your session variable’s value, like this:

echo “<font face=’”;
echo $_SESSION[‘font’];
echo “‘ size=’”;
echo $_SESSION[‘size’];
echo “‘ color=’”;
echo $_SESSION[‘color’];
echo “‘>”;

As you can see, this would be quite tedious to type everywhere you had text, so perhaps you
would be better off putting this information in an include file, or using CSS.

597

Answers to Exercises

24 557440 AppA.qxd 2/6/04 9:18 AM Page 597

5. In the program you created in Step 4, allow your users the option of saving the information for
the next time they visit, and if they choose “yes,” save the information in a cookie.

A: You would add a line like this to the end of your font preference form, wherever you’ve stored it:

Do you want to save these preferences for the next time you log in?
<input type=”checkbox” name=”pref” value=”y”>

Then at the very beginning of your movie1.php script (or again, wherever your script is that is
processing the form variables) you would add a statement that looks something like this:

if ($_POST[‘pref’]==’y’) {
setcookie(‘font’, ‘$_POST[‘font’], time()+60);
setcookie(‘size’, ‘$_POST[‘size’], time()+60);
setcookie(‘color’, ‘$_POST[‘color’], time ()+60);

}

Then instead of accessing those variables through the session, you would access them through
the cookie like this:

echo $_COOKIE[‘font’];

6. Using functions, write a program that keeps track of how many times a visitor has loaded the
page.

A: Alter the following lines in your moviesite.php file:

//list the movies
echo “<table>”;

$numlist = 1;
while ($numlist <= $_POST[“num”]) {

echo “<tr>”;
echo “<td>”;
echo pos($favmovies);
echo “</td”>;
next($favmovies);
$numlist = $numlist + 1;
echo “</tr>”;
}

echo “</table>”;

Chapter 3
1. Create a PHP program that prints the lead actor and director for each movie in the database.

A: Your program should look something like this:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

598

Appendix A

24 557440 AppA.qxd 2/6/04 9:18 AM Page 598

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

//create function to get lead actor
function get_leadactor($lead_actor) {
global $actorname;

$query2=”SELECT people_fullname
FROM people
where people.people_id = $lead_actor”;
$results=mysql_query($query2)

or die(mysql_error());
$rows=mysql_fetch_array($results);
extract ($rows);
$actorname=$people_fullname;

}

//create a function to get director
function get_director($director) {
global $directorname;

$query2=”SELECT people_fullname
FROM people
where people.people_id = ‘$director’”;
$results=mysql_query($query2)

or die(mysql_error());
$rows=mysql_fetch_array($results);
extract($rows);
$directorname = $people_fullname;

}

//add a header row
echo “<table border=’1’>\n”;
echo “<tr>\n”;
echo “<td>Movie Name</td>”;
echo “<td>Lead Actor</td>”;
echo “<td>Director</td>”;
echo “</tr>”;

//get the movies
$query=”SELECT * FROM movie”;
$results=mysql_query($query)

or die(mysql_error());

while ($rows=mysql_fetch_assoc($results)) {
extract ($rows);

//call our functions to get specific info
get_leadactor($movie_leadactor);
get_director($movie_director);

//build the table
echo “<tr>\n”;

echo “<td>\n”;

599

Answers to Exercises

24 557440 AppA.qxd 2/6/04 9:18 AM Page 599

echo $movie_name;
echo “</td>\n”;
echo “<td>”;
echo $actorname;
echo “</td>\n”;
echo “<td>\n”;
echo $directorname;
echo “</td>\n”;

echo “</tr>\n”;
}
echo “</table>\n”;
?>

2. Pick only comedies from the movie table, and show the movie name and year it was produced.
Sort the list alphabetically.

A: Your code should look something like this:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

$query=”SELECT movie_name, movie_year
FROM movie
WHERE movie_type = 5
ORDER BY movie_name”;

$results=mysql_query($query)
or die(mysql_error());

echo “<table>\n”;
while ($rows=mysql_fetch_assoc($results)) {
echo “<tr>\n”;

foreach($rows as $value) {
echo “<td>\n”;
echo $value;
echo “</td>\n”;
}

echo “</tr>
\n”;
}
echo “</table>\n”;
?>

3. Show each movie in the database on its own page, and give the user links in a “page 1, page 2 . . . “
type navigation system.

A: Although you could do this many ways, a simple way is to manipulate the LIMIT clause in your
SELECT statement as we have done through the URL here:

<?php
//connect to MySQL
$connect = mysql_connect(“localhost”, “root”, “mysqlpass”) or

600

Appendix A

24 557440 AppA.qxd 2/6/04 9:18 AM Page 600

die (“Hey loser, check your server connection.”);

//make sure we’re using the right database
mysql_select_db (“wiley”);

//get our starting point for the query through the URL variable “offset”
$offset=$_REQUEST[‘offset’];
$query=”SELECT movie_name, movie_year

FROM movie
ORDER BY movie_name
LIMIT $offset,1”;

$results=mysql_query($query)
or die(mysql_error());

echo “<table>\n”;
while ($rows=mysql_fetch_assoc($results)) {
echo “<tr>\n”;

foreach($rows as $value) {
echo “<td>\n”;
echo $value;
echo “</td>\n”;
}

echo “</tr>
\n”;
}
echo “</table>\n”;
echo “Page 1
”;
echo “Page 2
”;
echo “Page 3
”;
?>

Chapter 8
In Chapter 8 you were shown three short snippets of code and asked to spot the errors and figure out
how to fix them. Then you were asked to create a little error-catching script to catch the errors.

1.
<?
$query = “select * from table_name where name = ‘“ . $_POST[‘name’] . “‘;”
$result = mysql_query($result) or die(mysql_error());
?>

2.
<?
if ($_POST[‘first_name’] = “Jethro”)
{
echo “Your name is “ . $_POST[‘first_name’];
}
?>

601

Answers to Exercises

24 557440 AppA.qxd 2/6/04 9:18 AM Page 601

3.
<?
$full_name = $_POST[‘mrmiss’] “. “ $_POST[‘first_name’] “ “ $_POST[‘last_name’];
?>

A1. Parse error from lack of semicolon at the end of the statement; the semicolon there is for the SQL
statement.

A2. You always need to check equality with double equals (= =), not single equals (=). Single equals
is for setting a variable equal to a value.

A3. This is missing concatenation operators between the variables and the strings.

Chapter 14
❑ Allow for options. You may have noticed that we didn’t let our customers pick the size of their

T-shirt or size and color of the Superhero Body Suit. Alter the codes to allow for these options.

A: First, you need to alter your database tables to add size and color fields to enable the users to
give you input. You should add these fields to your product and shopping cart-related tables.
Your shopping cart should show these two options as extra columns.

❑ Allow for payment. Because of copyright issues, we weren’t able to actually hook you up with
Paypal or one of the other payment processors available. Decide how you want to accept pay-
ment, and then alter the code accordingly.

A: Again you need to alter your tables to add payment information. If your customer is paying
with a credit card, you need to make sure the form is being submitted to you via SSL. You need
a field for type of credit card, such as Visa, MasterCard, or Discover; you also need a field for
expiration date. These fields must to be added in the main order information, as this informa-
tion will be unique to each order.

If you are hooking up directly for instant payment processing through Verisign or another
online merchant, you need to check with them for specific instructions on coding your shopping
cart to match with their needs.

❑ Allow for tax. Many states require that you charge sales tax on the orders shipped to the state
where you have a physical presence, and some states require sales tax on all online orders. Set
your code to check for customers in your own state and add the appropriate sales tax to those
orders only.

A: Because we allowed for a sales tax field already in the main order table, this requires a simple
if statement in the final step of the order, where everything is processed. If the customer is hav-
ing his or her order shipped within your state, then take whatever your tax rate is, multiply that
by the customer’s subtotal, and insert that number in the tax field when you’re inserting all the
other information.

❑ Check for mistakes. We have not included any mechanism to check for required fields, or for
mismatched types (such as a bogus e-mail address). Add these checks in your code.

A: To check for weird characters and improperly formatted text, you should include statements
that fix these potential problems. You can find such statements in Chapter 7 under validating
user data.

602

Appendix A

24 557440 AppA.qxd 2/6/04 9:18 AM Page 602

❑ Allow for registering, login, and order tracking. Some customers like to check the status of
their orders.

A: We discussed login and user authentication in Chapter 11. You apply these same principles here,
and it is simply a matter of issuing a SELECT statement based on customer number and then
displaying the results in a simple table. The only other change you should make is to add a field
to the ordermain table that stores order status, such as “Shipped,” “Cancelled,” “Received,”
and so forth so customers can tell where in the order fulfillment process their order lies.

Chapter 15
❑ Add code to admin.php to prevent unauthorized users from loading the page. Redirect them

back to index.php.

A: This block of code should go at the top of admin.php:

<?php
include “http.php”;
session_start();
if ($_SESSION[‘access_lvl’] < 3) redirect(‘index.php’);
?>

❑ Create a regular expression that recognizes an e-mail address in a post and turns it into a link.

A: This is not the only answer but it gets the job done:

/[\w\-]+(\.[\w\-]+)*@[\w\-]+(\.[\w\-]+)+/

❑ Add a bit of code to the pagination function to allow the user to go to the first page or last page.
For example, if there are 14 pages, and the user is on page 8, and the range is 7, it should look
something like this:

<PREV [1] .. [5] [6] [7] 8 [9] [10] [11] .. [14] NEXT >

A: Replace the appropriate lines of code with the following code snippets:

if ($lrange > 1) {
$pagelinks .= “<a class=’pagenumlink’ href=’” . $currpage .

“&page=1’>[1]..”;
} else {

$pagelinks .= “ ”;
}

if ($rrange < $numofpages) {
$pagelinks .= “..<a class=’pagenumlink’ href=’” . $currpage . “&page=”.

$numofpages .”’>” . $numofpages . “”;
} else {

$pagelinks .= “ ”;
}

603

Answers to Exercises

24 557440 AppA.qxd 2/6/04 9:18 AM Page 603

24 557440 AppA.qxd 2/6/04 9:18 AM Page 604

B
PHP Quick Reference

In this appendix, we have listed some quick reference notes for your use. Consider the information
in this appendix to be your “cheat sheet.” These topics are covered in depth in Chapter 2.

PHP Syntax
The basic PHP syntax is as follows:

<?php
// enter lines of code, make sure they end with a semicolon;
?>

Displaying to Browser
To display text in a browser, use the following syntax:

<?php
echo “Enter text here”; //echo text
echo $variable; //echo values
echo “
”; //echo HTML text
?>

Setting a Value to a Variable
To set a value to a variable, use the following syntax:

<?php
$varname = value; //for numeric
$varname = “value”; //for text
?>

25 557440 AppB.qxd 2/6/04 9:18 AM Page 605

Passing Variables
There are three ways to pass variables among pages in your Web site: through a URL, through sessions,
and through a form.

Through a URL
To pass a variable through a URL, use the following HTML code:

Through Sessions
To pass a variable through a session, use the following PHP code:

<?php //this must be the first line of the script, before HTML code
session_start() //starts the session
$_SESSION[‘varname’]=value //sets values for the entire session
$_SESSION[‘varname2’]=value
?>

<?php //this must be the first few lines of every page accessing
session variables

session_start()
?>

Through a Form
A form must reference the PHP script that will parse the variables:

<?php
$_POST[‘varname’] //this is how you will access the

values from the form
?>

if Statements
In order to use if statements, type the following syntax:

<?php if (this is true) execute this command ?>

or

<?php
if (this is true) {
execute command 1;
execute command 2;

606

Appendix B

25 557440 AppB.qxd 2/6/04 9:18 AM Page 606

execute command 3;
}
?>

else Statements
In order to use else statements, type the following syntax:

<?php
if (this is true) execute this command;
else execute this command
?>

or

else {
execute command 1;
execute command 2;
execute command 3;
}
?>

Nested if Statements
You can use nested if statements by using the following syntax:

<?php
if (this is true) { //remember to use == for equals

if (this is true) execute this command;
if (this is true) execute this command;
else execute this command;

}
?>

Including a File
To include a file, use the following syntax:

<?php include “header.php” ?>

Using Functions
Functions can be created and called using the following syntax:

<?php
function funcname() //defines the function

607

PHP Quick Reference

25 557440 AppB.qxd 2/6/04 9:18 AM Page 607

{
line of php code;
line of php code;
line of php code;

}
funcname() //calls the function to execute
?>

Arrays
You can set the values for an array in one of two ways:

<?php
$name = array(“firstname”=>”Albert”, “lastname”=>”Einstein”, “age”=”124”);

echo $name[“firstname”];

?>

or

<?php
$name[“firstname”] = “Albert”;
$name[“lastname”] = “Einstein”;
$name[“age”] = 124;
?>

If no keys are required, you can set the values for an array like this:

<?php
$flavor[] = “blue raspberry”;
$flavor[] = “root beer”;
$flavor[] = “pineapple”;
?>

for
You can execute a block of code a specified number of times with the following for statement:

<?php
for ($n = 0; $n <= 10; $n=$n+1){

//these lines will execute while the value ‘n’ is
less than or greater than 10

echo $n;
echo “
”;

}

608

Appendix B

25 557440 AppB.qxd 2/6/04 9:18 AM Page 608

foreach
You can apply the same block of code to each value in a specified array with the foreach statement:

foreach ($arrayvalue, as $currentvalue) {
//these lines will execute as long as there is a value in $arrayvalue
echo $currentvalue;
echo “
\n”;

}

609

PHP Quick Reference

25 557440 AppB.qxd 2/6/04 9:18 AM Page 609

25 557440 AppB.qxd 2/6/04 9:18 AM Page 610

C
PHP Functions

In this appendix, we have listed some of the functions that will be applicable to those of you using
the Apache/PHP/MySQL components. PHP has numerous other functions available to you, and a
complete listing can be found in the manual at the source Web site, www.php.net.

Note that some of the functions listed here have optional parameters that can be used to further
specify the function (noted in brackets in our listing). In the interest of simplicity, some of those
optional parameters have not been explained here, so you are encouraged to visit the source Web
site for more information.

Apache/PHP Functions
PHP uses these functions with the Apache server.

PHP Function Description

apache_child_terminate() Stops the Apache server from running
after the PHP script has been executed.

apache_lookup_uri(filename) Returns information about the URI in file-
name as a class.

apache_note(note_name [, note_value]) Returns or sets values in the Apache notes
tables as strings.

apache_request_headers() Returns all HTTP headers as arrays.

apache_response_headers() Returns all Apache response headers as
arrays.

apache_setenv(variable, value[, bool]) Sets an Apache subprocess environment
variable.

Table continued on following page

26 557440 AppC.qxd 2/6/04 9:18 AM Page 611

PHP Function Description

ascii2ebcdic(string) Converts ASCII code to EBCDIC, opposite of ebcdic2ascii.

ebcdic2ascii(string) Converts EBCDIC to ASCII code, opposite of ascii2ebcdic.

getallheaders() Returns all HTTP request headers as arrays.

virtual(filename) Performs an Apache subrequest, returns an integer.

Array Functions
You can perform these functions on arrays of information.

Function Description

array([...]) Depending on the parameters, this creates an array
of values.

array_change_key_case(array[, case]) Converts the keys in the named array to either all
uppercase or all lowercase.

array_chunk(array, size[, Splits the array into chunks based on the named
keep_keys]) parameters.

array_combine(keys, values) Combines two arrays with equal number of keys
and values.

array_count_values(array) Counts the number of times each value appears,
and returns results in array format.

array_diff_assoc(arrays) Finds the values from the first array that do not
appear in subsequent arrays, but unlike
array_diff, this takes key values into account.

array_diff(arrays) Opposite of array_intersect, finds the values
from the first array that do not appear in subse-
quent arrays, and returns results in array format.

array_fill(array, number, value) Fills an array with named value, a named number
of times.

array_filter(array[, criteria]) Returns only array values that fit the named
criteria.

array_flip(array) Flips the array values and keys and returns results
in array format.

array_intersect_assoc(arrays) Finds the values from the first array that do not
appear in subsequent arrays, but unlike
array_intersect, this takes key values into
account.

612

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 612

Function Description

array_intersect(arrays) Opposite of array_diff, finds the values from the
first array that appear in subsequent arrays, and
returns results in array format.

array_key_exists(array, search) Verifies whether or not a key exists for an array.

array_keys(array[,search_value]) Will find either all the keys in the named array, or
those keys containing the search_value specified,
and returns results in an array format.

array_map(criteria, array) Applies a criterion to every element of the array.

array_merge(arrays) Merges named arrays together and returns results
in an array format. If two arrays have the same
string keys, the later array will overwrite an earlier
key, and if two arrays have the same numeric keys,
the array will be appended instead of overwritten.

array_merge_recursive(arrays) Similar to the array_merge function, but the val-
ues of the arrays are appended.

array_multisort(array[, mixed]) Sorts either a complex multidimensional array or
several arrays at one time.

array_pad(array, pad_size, Copies the existing array and pads the named size
pad_value) and value, returns value in array format.

array_pop(array) Similar to array_shift, except this deletes the
last value of an array and returns what was
deleted.

array_push(array, variables) Similar to array_unshift, except this adds the
named values to the end of the array and returns
the updated number of values in the array.

array_rand(array [,number]) Chooses a random value from the named array and
if “number” is specified, chooses “number” of ran-
dom values from the named array. The random
value that was chosen is returned (or if more than
one value is chosen, results are returned in array
format).

array_reduce(array, function) Reduces the array to a single function based on the
named parameters.

array_reverse(array) Reverses the order of the values in the array, and
results are returned in array format.

array_search(exp, array) Searches the array for the named expression and
returns the key if it exists.

array_shift(array) Similar to array_pop, except this deletes the first
value of an array and returns what was deleted.
Opposite of array_unshift.

Table continued on following page

613

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 613

Function Description

array_slice(array, offset[, length]) Based on the named offset, this will create a sub-
array from the original array. New array that is
returned will also be length (if named).

array_splice(array, offset[, length, Based on the named offset, this will remove a
new_values]) section of the named array (and replace it with

new values if they are named).

array_sum(array) Calculates the sum of the values in the named
array.

array_unique(array) Deletes any duplicate values in array, and returns
new array.

array_unshift(array, variables) Similar to array_push, except this adds the
named values to the beginning of an array and
returns the number of updated values in the array.
Opposite of array_shift.

array_values(array) Returns an array with the values in the named
array.

array_walk(array, function Applies the named function (based on named
[,parameter]) parameters) to every value in the array.

arsort(array) Sorts the array in descending order (while main-
taining the key/value relationship).

asort(array) Sorts the array in ascending order (while maintain-
ing the key/value relationship).

compact(variables) Merges the variables named into one array, returns
results in array format.

count(array) Equal to sizeof, this counts the number of values
in the named array and returns the results in an
integer format.

current(array) Displays the values in the named array.

each(array) Creates an array with the key and value of the cur-
rent element of the named array, and returns
results in array format.

end(array) Sets the last value as the current value.

extract(array[, type, prefix]) Takes the named array and imports values into the
symbol table. The type option directs server what
to do if there is a conflict, and prefix adds a prefix
to variable names.

in_array(value, array) Lets you know whether or not a specified value
exists in the array.

614

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 614

Function Description

key(array) Returns the key for the current value in the array.

krsort(array) Sorts the keys in the array in reverse order and
maintains the key/value relationship.

ksort(array) Sorts the keys in the array and maintains the
key/value relationship.

list(variables) Lists the named variables.

natsort(array) Uses “natural ordering” to sort alphanumeric
strings (case-sensitive).

natcasesort(array) Uses “natural ordering” to sort alphanumeric
strings (case-insensitive).

next(array) The opposite of prev, returns the value of the
“next” element from the current element and
returns false if the current element is the last ele-
ment in the array.

pos(array) Returns the value of the current element.

prev(array) The opposite of next, returns the value of the ele-
ment “before” the current element, and returns
false if the current element is the first element in
the array.

range(low, high) Creates a new array of integers between the named
parameters, and returns results in an array format.

reset(array) Sets the current element as the first element in the
array, and returns its value.

rsort(array) The opposite of sort, this sorts the array in
descending order.

shuffle(array) Shuffles the array in random order.

sizeof(array) Equal to count, returns the number of values in
the array.

sort(array) The opposite of rsort, this sorts the array in
ascending order.

uasort(array, function) Using the named function, this sorts the array
accordingly and maintains the key/value
relationship.

uksort(array, function) Using the named function, this sorts the array by
key.

usort(array, function) Using the named function, this sorts the array by
value.

615

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 615

Date/Time/Calendar Functions
The following are helpful functions built into PHP that you can use to work with dates, times, and calen-
dar settings. Please note that if you have installed PHP on a Linux system, you will need to compile PHP
with --enable-calendar.

Function Description

cal_days_in_month(calendar, Returns the number of days in the named month.
month, year)

cal_from_jd(julian_day, calendar) Converts a Julian Day Count into a date of a speci-
fied calendar.

cal_info([calendar]) Returns information about the named calendar.

cal_to_jd(calendar, month, day, year) Converts a specified calendar date into a Julian
Day Count.

checkdate(month, day, year) Validates the named date and returns true or
false.

date(format [, timestamp]) Returns the date (and time if named) of the local
server based on named format. See next table for
common formatting guidelines.

easter_date([year]) Gives the UNIX timestamp for midnight on Easter
of the current year, or named year if present.

easter_days([year]) Calculates the number of days between March 21
and Easter of the current year, or named year if
present.

frenchtojd(french) Converts from French Republican calendar to
Julian Day Count.

getdate(timestamp) Creates an array with the named date/timestamps.

gettimeofday Creates an array with the current time.

gmdate(format[,timestamp]) Formats a GMT date and time based on named
parameters. See next table for common formatting
guidelines.

gmmktime([hour, minute, second, Gives the UNIX timestamp for GMT time/day
month, day, year, is_dst]) based on named parameters, or current time/day

if not named.

gmstrftime(format, timestamp) Formats a GMT/CUT date/time based on
geography. See next table for common formatting
guidelines.

gregoriantojd(gregorian) Converts from Gregorian calendar to Julian Day
Count.

616

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 616

Function Description

jddayofweek(julianday, mode) Gives day of week of Julian Day Count, based on
format named in mode.

jdmonthname(julianday, mode) Gives month of Julian Day Count, based on format
named in mode.

jdtofrench(julianday) Converts from Julian Day Count to French Repub-
lican calendar.

jdtogregorian(julianday) Converts from Julian Day Count to Gregorian
calendar.

jdtojewish(julianday) Converts from Julian Day Count to Jewish
calendar.

jdtounix(julianday) Converts from Julian Day Count to UNIX
timestamp.

jewishtojd(jewish) Converts from Jewish calendar to Julian Day Count.

juliantojd(julian) Converts from Julian calendar to Julian Day Count.

localtime([timestamp, Finds and returns local time in array format.
is_associative])

microtime() Calculates and returns seconds and microseconds
since 00:00:00 January 1, 1970.

mktime([hour, minute, second, Gives the UNIX timestamp for time/day based on
month, day, year]) named parameters, or current time/day if not

named.

strftime(format [,timestamp]) Based on format and current location, this will for-
mat the local time and date. See next table for com-
mon formatting guidelines.

strtotime(time[, now]) Converts a time/date format in common English
into a UNIX timestamp.

time() Gives current UNIX timestamp.

unixtojd(timestamp) Converts from UNIX timestamp to Julian Day
Count.

Dates can be formatted with the following formatting codes (in conjunction with date()):

Format Character Description What Is Returned

a Lowercase ante meridiem and post meridiem. am, pm

A Uppercase ante meridiem and post meridiem. AM, PM

B Swatch Internet time. 000 through 999

Table continued on following page

617

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 617

Format Character Description What Is Returned

d Day of the month in 2 digits with leading zeros. 01 to 31

D Day of the week in text, abbreviated to three letters. Mon through Sun

F Month name in text format, unabbreviated. January through
December

g Hour in 12-hour format, without leading zeros. 1 through 12

G Hour in 24-hour format, without leading zeros. 0 through 23

h Hour in 12-hour format, with leading zeros. 01 through 12

H Hour in 24-hour format, with leading zeros. 00 through 23

i Minutes with leading zeros. 00 to 59

I (capital “i”) Indicates if date is in daylight savings time. 1 if DST, 0 otherwise

j Day of the month without leading zeros. 1 to 31

l (lowercase ‘L’) Day of the week in text, unabbreviated. Sunday through
Saturday

L Indicates if it’s a leap year. 1 if it is a leap year, 0
otherwise

m Month in numeric format, with leading zeros. 01 through 12

M Month in text format, abbreviated to three letters. Jan through Dec

n Month in numeric format without leading zeros. 1 through 12

O Difference to Greenwich time (GMT) in hours. -0500

r RFC 822 formatted date. Mon, 25 Aug 2003
18:01:01 +0200

s Seconds, with leading zeros. 00 through 59

S English ordinal suffix for the day of the month, st, nd, rd, or th
2 characters.

t Number of days in the month. 28 through 31

T Time zone setting of the server. EST, MDT, and so on

U Seconds since the Unix Epoch
(January 1 1970 00:00:00 GMT).

w Day of the week in numeric format. 0 (for Sunday)
through 6 (for
Saturday)

W ISO-8601 week number of year, weeks . 1–52
starting on Monday

618

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 618

Format Character Description What Is Returned

Y Year in numeric format in 4 digits. 2000, 2001, and so on

y Year in numeric format in 2 digits. 00, 01, 02, and so on

z Day of the year in numeric format. 0 through 366

Z Time zone offset in seconds. The offset for time -43200 through 43200
zones west of UTC is always negative, and for
those east of UTC is always positive.

Class/Object/Function Handling Functions
The functions in the table that follows are used when referencing and working with classes, objects, and
custom functions in your PHP code.

Function Description

call_user_func(function_name Calls the named user-defined function.
[, parameters])

call_user_func_array(function_name Calls the named user-defined function based on
[, parameters]) the array of parameters.

call_user_method(method, object Calls the user method from the named object.
[, parameters])

call_user_method_array(method, Calls the user method with the array of named
object[, parameters]) parameters.

class_exists(class_name) Verifies whether or not the class has been defined.

create_function (arguments, code) Creates a function based on the parameters and
returns a unique name for the function.

func_get_arg(argument_num) Returns an item from the argument list.

func_get_args() Gets complete argument list.

func_num_args() Returns the number of arguments in the argument
list.

function_exists(function_name) Verifies whether or not a function has been
defined.

get_class(object_name) Returns the name of the specified object’s class.

get_class_methods(class_name) Returns the methods for specified class, in an array
format.

Table continued on following page

619

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 619

Function Description

get_class_vars(class_name) Returns the properties for the specified class, in an
array format.

get_declared_classes() Returns all the classes that have been defined, in an
array format.

get_defined_functions() Returns all the functions that have been defined, in
an array format.

get_object_vars(object_name) Returns the properties for the specified object, in
an array format.

get_parent_class(object_name) Returns the name of the specified object’s parent
class.

is_subclass_of(object_name, Verifies whether or not object is a part of a subclass
superclass) of the named superclass.

method_exists(object_name, Verifies whether or not method has been defined.
method_name)

register_shutdown_function Sets up named function to be executed when script
(function) has been processed.

register_tick_function(function) Registers a function for execution upon every tick.

unregister_tick_function(function) Unregisters a function previously registered using
register_tick_function.

Directory and File Functions
These functions can modify your directory settings and allow you to work with files through your PHP
script.

Function Description

basename(path) Returns the filename listed in named path.

chdir(directory) Makes the named directory the current one.

chgrp(filename, group) Assigns the named file to the named group.

chroot(directory) Makes the named directory the root directory.

chmod(filename, mode) Changes the mode of the named file.

chown(filename, owner) Changes the owner of the named file.

clearstatcache() Clears the file stat cache.

closedir(directory) Closes the named directory.

620

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 620

Function Description

copy(source, destination) Copies the named source file to the named
destination.

dir(directory) Returns an object with the value of the named
directory.

dirname(path) Returns the directory listed in the named path.

disk_free_space(directory) Equal to disk_free_space, returns the amount of
free space in the named directory.

disk_total_space(directory) Returns the amount of space in the named
directory.

diskfreespace(directory) Equal to disk_free_space, returns the amount of
free space in the named directory.

getcwd() Returns the name of the current directory.

fclosefile(file_pointer) Closes the named file.

feof(file_pointer) Verifies whether or not the end of file has been
reached for the named file.

fflush(file_pointer) Flushes the output to a file.

fgetc(file_pointer) Returns the next character listed in the named file

fgetcsv(file_pointer, length[, Returns the next line in the named file.
delimiter])

fgets(file_pointer, length) Returns a line of up to length -1 in the named file.

fegtss(file_pointer, length[, Returns a line of up to length -1in the named file,
allowable_tags]) while removing all tags except those specified.

file(filename[, usepath]) Returns an entire file in an array format, with each
line representing a new value in the array.

file_get_contents(filename) Reads the entire file contents into a string.

file_exists(filename) Verifies whether or not the named file exists.

fileatime(filename) Returns the last time the named file was accessed.

filectime(filename) Returns the last time the named file was changed
(in UNIX timestamp format).

filegroup(filename) Returns the owner of the named file’s group.

fileinode(filename) Returns the named file’s inode number.

filemtime(filename) Returns the last time the named file was modified.

fileowner(filename) Returns the owner of the named file.

Table continued on following page

621

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 621

Function Description

fileperms(filename) Returns the permissions associated with the named
file.

filesize(filename) Returns the size of the named file.

filetype(filename) Returns the type of the named file.

flock(file_pointer, operation[, Locks or unlocks the named file.
wouldblock])

fnmatch(pattern, exp) Searches for a filename that matches the named
parameters.

fopen(filename, mode[, usepath]) Opens the named file.

fpassthru(file_pointer) Returns all remaining data in the named file.

fputs(file_pointer, string[, Equal to fwrite, writes the named string to the
length]) named file.

fread(file_pointer, length) Reads the named file up to the named length.

fscanf(handle, format[, var1, Parses input based on the named format from the
var2...]) named file.

fseek(file_pointer, offset[, start]) Moves the file pointer in the named file by named
offset spaces from start.

fstat(file_pointer) Returns information about named file.

ftell(file_pointer) Returns the position of the file pointer in the
named file.

ftruncate(file_pointer, size) Truncates the named file to the named size.

fwrite(file_pointer, strength[, Equal to fputs, writes the named string to the
length]) named file.

glob(string) Finds pathnames that match the named string.

is_dir(filename) Verifies whether or not the named file is a directory.

is_executable(filename) Verifies whether or not the named file is an
executable.

is_file(filename) Verifies whether or not the named file is a file.

is_link(filename) Verifies whether or not the named file is a link.

is_readable(filename) Verifies whether or not the named file is readable.

is_writeable(filename) Verifies whether or not the named file is writeable.

is_uploaded_file(filename) Verifies whether or not the named file has been
uploaded using HTTP POST.

link(target, link) Creates a new link.

622

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 622

Function Description

linkinfo(path) Returns all information about the named link.

lstat(filename) Returns information about named file.

mkdir(pathname, mode) Creates a directory based on specified pathname
and mode.

move_uploaded_file(filename, Moves the named file to a different directory.
destination)

opendir(path) Opens the named directory.

parse_ini_file(filename) Parses the named configuration file.

pathinfo(path) Returns information about the named path.

pclose(file_pointer) Closes the named filepointer to a pipe.

popen(command, mode) Opens a pipe with the named command.

readdir(directory) Reads the named directory and returns the next
entry.

readfile(filename[, usepath]) Reads the named file.

readlink(path) Reads the named link and returns the target.

realpath(path) Returns the absolute path.

rename(name, newname) Renames the named file.

rewind(file_pointer) Moves the pointer to the beginning of the file
stream.

rewinddir(directory) Moves the pointer to the beginning of the directory
and resets the directory stream.

rmdir(directory) Removes the named directory.

scandir(directory[, sort_order]) Lists the files and directories in the named path.

set_file_buffer(file_pointer, Sets the file buffer for named file.
buffer)

stat(filename) Returns information about the named file.

symlink(target, link) Creates a symbolic link.

tempnam(directory, prefix) Creates a temporary file in the named directory.

tmpfile() Creates a temporary file.

touch(filename[, time]) Sets the time the named file is modified.

umask(mask) Modifies the current umask.

unlink(filename) Deletes the named file.

623

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 623

Error Handling and Logging Functions
These functions can help you view and use errors to debug programs or alert you to potential problems
in your scripts.

Function Description

debug_backtrace() Generates a backtrace and returns the information
in an array format.

debug_print_backtrace() Displays a generated backtrace.

error_log(message, message_type[, Adds an error message.
dest, extra_headers])

error_reporting([level]) Determines which PHP errors will be displayed.

restore_error_handler() Restores error handler functions.

set_error_handler(error_handler) Sets an error handler function.

trigger_error(error_message[, Same as user_error, displays a user level error
error_type]) message.

user_error(error_message[, Same as trigger_error, displays a user level
error_type]) error message.

HTTP Functions
These functions work with the HTTP protocol.

Function Description

header(string) Outputs the named HTTP header.

header_sent() Verifies whether or not HTTP headers have
been sent.

setcookie(name, [value, expiration, Sends a cookie to the user based on the named
path, domain, secure]) parameters.

Image Functions
The following PHP functions enable you to manipulate and create images directly from your PHP code.
Please note that you may need to have the GD library, which enables you to create dynamic images,
installed to enable some of these functions. You can download GD from www.boutell.com/gd/.

624

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 624

Function Description

exif_imagetype(filename) Returns the type of named image file.

exif_read_data(filename) Reads the EXIF headers in a JPEG or TIFF image,
useful for reading digital images.

exif_thumbnail(filename[, width, Reads the embedded thumbnail image of a JPEG or
height, type]) TIFF image.

gd_info() Returns information about the currently installed
GD library.

getimagesize(filename, [image_info]) Returns the size of the named file.

image_type_to_mime_type(type) Gets the MIME-type for the named image type.

image2wbmp(image[, filename]) Outputs the image directly to a browser.

imagealphablending(image, blendmode) Sets the blending mode for the named image.

imageantialias(image, on_off) Toggles antialiasing on and off for the named
image.

imagearc(name, cx, cy, width, height, Draws a partial ellipse based on named
start, end, col) parameters.

imagechar(name, font, x, y, c, col) Draws a character horizontally based on named
parameters.

imagecharup(name, font, x, y, c, col) Draws a character vertically based on named
parameters.

imagecolorallocate(name, red, Allocates a color for the named image and returns
green, blue) an identifier.

imagecolorallocatealpha(name, red, Similar to imagecolorallocate except allows the
green, blue, transparent) color to display at a certain level of transparency.

imagecolorat(name, x, y) Indicates the color index of the pixel at the named
coordinates.

imagecolorclosest(name, red, Returns the closest color in the palette of the
green, blue) named image.

imagecolorclosestalpha(name, red, Similar to imagecolorclosest, except takes into
green, blue, alpha) account the alpha (transparency) level.

imagecolorclosesthwb(name, red, Similar to imagecolorclosest, except also looks
green, blue) at hue, whiteness, and blackness.

imagecolordeallocate(name, red, Opposite of imagecolorallocate, deallocates the
green, blue) color for the named image.

imagecolorexact(name, red, Returns the exact color in the palette of the named
green, blue) image.

Table continued on following page

625

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 625

Function Description

imagecolorexactalpha(name, red, Similar to imagecolorexact, except takes into
green, blue, alpha) account the alpha level.

imagecolorresolve(name, red, Returns either the index of the exact color or the
green, blue) closest color available in the palette of the named

image.

imagecolorresolvealpha(name, red, Similar to imagecolorresolve, except takes into
green, blue, alpha) account the alpha level.

imagecolorset(name, index, red, Sets the color for the palette of the named file.
green, blue)

imagecolorsforindex(name, index) Returns value for red, blue, and green for the speci-
fied index.

imagecolorstotal(name) Returns the number of available colors in the
palette of the named image.

imagecolortransparent(name[, color]) Sets named color as transparent in the named
image.

imagecopy(dest_name, source_name, Copies an image based on named parameters.
dest_x, dest_y, source_x, source_y,
source_width, source_height)

imagecopymerge(dest_name, source_ Similar to imagecopy, but copies an image based
name, dest_x, dest_y, source_x, on named parameters including percent (when set
source_y, source_width, source_ to 100, acts identically to imagecopy).
height, pct)

imagecopymergegray(dest_name, Similar to imagecopymerge, except copies image
source_name, dest_x, dest_y, in grayscale.
source_x, source_y, source_width,
source_height, pct)

imagecopyresampled(dest_name, Copies and resizes a resampled image based on the
source_name, dest_x, dest_y, source_x, named parameters.
source_y, dest_width, dest_height,
source_width, source_height)

imagecopyresized(dest_name, Copies and resizes an image based on named
source_name, dest_x, dest_y, source_x, parameters.
source_y, dest_width, dest_height,
source_width, source_height)

imagecreate(width, height) Creates a new image based on named width
and height.

imagecreatefromgd2(name) Creates a new image from a GD file or URL.

imagecreatefromgd2part(name, x, Creates a new image from a part of a GD file
y, width, height) or URL.

626

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 626

Function Description

imagecreatefromgd(name) Creates a new image from a GD file or URL.

imagecreatefromgif(name) Creates a new image from the named GIF file.

imagecreatefromjpeg(name) Creates a new image from the named JPEG or
JPG file.

imagecreatefrompng(name) Creates a new image from the named PNG file.

imagecreatefromstring(name) Creates a new image from an image stream in the
named string.

imagecreatefromwbmp(name) Creates a new image from named file or URL.

imagecreatefromxbm(name) Creates a new image from named file or URL.

imagecreatefromxpm(name) Creates a new image from named file or URL.

imagecreatetruecolor(x_size, y_size) Returns an image identifier based on a black image
according to the named parameters.

imagedashedline(name, x1, y1, x2, Draws a dashed line based on named parameters.
y2, color) Similar to imageline.

imagedestroy(name) Deletes the named image.

imageellipse(name, cx, cy, width, Draws an ellipse based on the named parameters.
height, color)

imagefill(name, x, y, color) Fills the entire image with one color based on the
named parameters.

imagefilledarc(name, cx, cy, width, Draws a filled partial ellipse based on the named
height, start, end, color, style) parameters.

imagefilledellipse(name, cx, cy, Draws a filled ellipse based on the named
width, height, color) parameters.

imagefilledpolygon(name, points, Draws a filled polygon based on the named
num_of_points, color) parameters.

imagefilledrectangle(name, x1, Draws a filled rectangle based on the named
y1, x2, y2, color) parameters.

imagefilltoborder(name, x, y, Fills the entire image with a color and outlines it
border_color, color) with a border color, based on named parameters.

imagefontheight(font) Returns the height of the named font in pixels.

imagefontwidth(font) Returns the width of the named font in pixels.

imagegammacorrect(name, inputgamma, Corrects the gamma levels in a GD image.
outputgamma)

Table continued on following page

627

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 627

Function Description

imagegd2(name[, filename, Outputs the named GD file to the browser based
chunk_size, type]) on the named parameters.

imagegd(name[, filename]) Sends the named GD file to the browser.

imagegif(name[, filename]) Sends the named GIF image (filename) to another
file or to a browser as the named image.

imageinterlace(name[, interlace]) Toggles whether or not interlacing is on or off for
the named image.

imagejpeg (name[, filename, quality]) Sends the named JPEG image (filename) to another
file or to a browser as the named image.

imageline(name, x1, y1, x2, y2, color) Draws a solid line based on the named parameters.
Similar to imagedashedline.

imageloadfont(filename) Loads the named font.

imagepallettecopy(destination, Copies the named color palette.
source)

imagepng(name[, filename]) Sends the named PNG image (filename) to another
file or to a browser as the named image.

imagepolygon(name, points, num_ Draws an empty polygon based on the named
of_points, color) parameters.

imagepsbbox(text, font, size, space, Returns the coordinates for a text box using a
width, angle) PostScript font, based on named parameters.

imagepsencodefont(encoding_file) Loads the named encoding vector for a PostScript
font.

imagepsextendfont(font_index, Extends a PostScript font.
extend)

imagepsfreefont(font_index) Frees the named PostScript font from memory.

imagepsloadfont(filename) Loads the named PostScript font file.

imagepsslantfont(font_index, slant) Slants the named PostScript font.

imagepstext(name, text, font, size, Writes a text string using the named PostScript font
foreground_color, background_color, and based on the named parameters.
x, y[, space, tightness, angle,
antialias])

imagerectangle(name, x1, y1, Draws an empty rectangle based on the named
x2, y2, color) parameters.

imagerotate(name, angle, color) Rotates an image based on the named parameters.

imagesavealpha(name, flag) Sets the flag to save with the image’s alpha
information.

imagesetbrush(name, brush) Sets the brush for line drawing.

628

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 628

Function Description

imagesetpixel(name, x, y, color) Draws a pixel based on the named parameters.

imagesetstyle(name, style) Sets the style for line drawing.

imagesetthickness(name, thickness) Sets the thickness for line drawing.

imagesettile(name, tile) Sets the tile image for fill functions.

imagestring(name, font, x, y, Draws a horizontal string based on the named
string, color) parameters.

imagestringup(name, font, x, y, Draws a vertical string based on the named
string, color) parameters.

imagesx(name) Determines the width of the named image.

imagesy(name) Determines the height of the named image.

imagetruecolortopallette(name, Converts a true color image to a color palette based
dither, colors) on the named parameters.

imagettfbbox(size, angle, Draws a text box using the named TrueType font
font_filename, text) and based on the named parameters.

imagettftext(name, size, angle, x, y, Writes a text string using the named TrueType font.
color, font_filename, text)

imagetypes() Displays the image types supported by the PHP
version currently being used.

iptcembed(data, filename) Embeds International Press Telecommunications
Council (IPTC) data into a JPEG file.

iptcparse(iptcblock) Parses an IPTC block into tags.

jpeg2wbmp(jpegfilename, wbmpfilename, Converts a JPEG file into a WBMP file.
height, width, threshold)

png2wbmp(pngfilename, wbmpfilename, Converts a PNG file into a WBMP file.
height, width, threshold)

read_exif_data(filename) Displays any EXIF headers from a JPEG file.

Mail Functions
Use these functions to send mail directly from your PHP script.

Function Description

ezmlm_hash(addr) Displays the hash value used by EZMLM scripts.

mail(to, subject, message[, headers]) Sends mail based on the named parameters.

629

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 629

Mathematical Functions
These functions allow you to perform mathematical calculations on your data while still in the PHP
code.

Function Description

abs(number) Calculates the absolute value of a number.

acos(argument) Calculates the arc cosine in radians.

asin(argument) Calculates the arc sine in radians.

atan(argument) Calculates the arc tangent in radians.

atan2(x, y) Calculates the arc tangent of x and y.

base_convert(number, Converts a number based on the named parameters.
startbase, endbase)

bindec(binary_string) Converts a binary string to a decimal, opposite of decbin.

ceil(number) Rounds fractions to next highest integer.

cos(argument) Calculates the cosine in radians.

decbin(number) Converts a decimal to a binary string, opposite of bindec.

dechex(number) Converts a decimal to hexadecimal, opposite of hexdec.

decoct(number) Converts a decimal to octal, opposite of octdec.

deg2rad(number) Converts degrees to radian, opposite of rad2deg.

exp(argument) Calculates e to the named power.

floor(number) Rounds fractions down to the next lowest integer.

getrandmax() Calculates the maximum random value from the rand
function.

hexdec(hex_string) Converts hexadecimal to decimal, opposite of dechex.

lcg_value() Calculates a pseudo random number between 0 and 1.

log(argument) Calculates the natural log.

log10(argument) Calculates the base 10 log.

max(num1, num2, ...) Calculates the maximum of listed values.

min(num1, num2, ...) Calculates the minimum of listed values.

mt_getrandmax() Calculates the maximum random value from the mt_rand
function.

mt_rand([min, max]) Generates a Mersenne Twister random value.

mt_srand(seed) Seeds the Mersenne Twister random number generator.

630

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 630

Function Description

number_format(number[, Formats the number based on the named parameters.
dec_places, dec_point,
thousands])

octdec(octal_string) Converts octal to decimal, opposite of decoct.

pi() Returns pi.

pow(number, exp) Calculates named number to the power of named exponent.

rad2deg(number) Converts radians to decimal, opposite of deg2rad.

rand([min, max]) Generates a random integer based on named parameters if
applicable.

round(number, [precision]) Rounds the named number to the nearest integer.

sin(argument) Calculates the sine in radians.

sqrt(argument) Calculates the square root.

srand(seed) Seeds the random number generator.

tan(argument) Calculates the tangent in radians.

Miscellaneous Functions
The table that follows lists useful functions that don’t exactly fit anywhere else.

Function Description

connection_aborted() Verifies whether or not the client connection has been
aborted.

connection_status() Verifies the client connection status.

connection_timeout() Verifies whether or not the script has timed out.

constant(name) Returns the value of the named constant.

define(name, value[, Defines a constant based on the named parameters.
case_insensitive])

defined(name) Verifies whether or not a named constant exists.

die(message) Displays the message and ends execution of the script.

eval(string) Evaluates the named string as PHP code.

exit() Ends execution of the script.

Table continued on following page

631

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 631

Function Description

get_browser([user_agent]) Returns information about the user’s browser.

highlight_file(filename) Displays a highlighted version of the named file.

highlight_string(str) Displays a highlighted version of the named string.

ignore_user_abort([setting]) Allows a script to continue executing if the user aborts a
connection.

iptcparse(iptcblock) Parses the named IPTC block into an array.

leak(bytes) Leaks the named amount of memory.

pack(format[, arg1, arg2...]) Packs the named arguments into a binary string.

show_source(filename) Displays a highlighted version of source code of named file.

sleep(seconds) Pauses execution of the script for named number of seconds

uniqid(prefix[, lcg]) Assigns a unique ID based on the current time and named
prefix.

unpack(format, data) Opposite of pack, this unpacks binary data into an array.

usleep(microseconds) Pauses execution of the script for named number of
microseconds.

MySQL Functions
The following table lists the PHP functions that can be used with your MySQL server for added func-
tionality in your PHP script.

Function Description

mysql_affected_rows([link_id]) Returns the number of rows of records affected
by the previous command.

mysql_change_user(user, pass[, Changes the user for the active database
database, link_id]) connection.

mysql_close([link_id]) Closes the active connection.

mysql_connect([hostname[:port] [:/path/ Opens the connection to the server based on the
to/socket], username, password]) named parameters. Similar to mysql_pconnect.

mysql_create_db(database [,link_id]) Creates a database.

mysql_data_seek(result_id, row_number) Moves to the named row of the results.

mysql_db_name(result, row [,field]) Gets data for result.

mysql_db_query(database, query[, Executes the named query on the named
link_id]) database and returns results.

632

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 632

Function Description

mysql_drop_db(database[, link_id]) Erases the named database.

mysql_errno([link_id]) Displays the error number for the previous
query.

mysql_error([link_id]) Displays the error message for the previous
query.

mysql_escape_string(string) Escapes the named string for use in a query.

mysql_fetch_array(result [, type]) Obtains the row of data based on the result from a
previous query, returns result in an array format.

mysql_fetch_field(result[, Returns the field based on the result from a
field_offset]) previous query.

mysql_fetch_lengths(result) Returns the length of each field in the result
from a previous query.

mysql_fetch_object(result[, type]) Obtains data based on the result from a previ-
ous query, returns result in an object format.

mysql_fetch_row(result) Obtains the row of data based on the result from
a previous query, returns result in an enumer-
ated array.

mysql_field_flags(result, field) Displays the field flag of the named field.

mysql_field_len(result, field) Displays the field length of the named field.

mysql_field_name(result, field) Displays the name of the named field.

mysql_field_seek(result, field_offset) Moves to the named field of the results.

mysql_field_table(result, field) Displays the table of the named field.

mysql_field_type(result, field) Displays the type of the named field.

mysql_free_result(result) Frees any memory still used by the result from a
previous query.

mysql_get_client_info() Returns the MySQL client information.

mysql_get_host_info([link_id]) Returns information about the server host.

mysql_get_proto_info([link_id]) Returns the protocol information.

mysql_get_server_info([link_id]) Returns information about the server.

mysql_info([link_id]) Gets information about the previous query.

mysql_insert_id([link_id]) Returns the ID value of the most recently
inserted auto_increment field.

mysql_list_dbs([link_id]) Lists the databases on the MySQL server.

Table continued on following page

633

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 633

Function Description

mysql_list_fields(database, table[, Lists the fields in the named database and table.
link_id])

mysql_list_processes([link_id]) Lists the processes.

mysql_list_tables(database) Lists the tables in the named database.

mysql_num_fields(result) Shows the number of fields in the result from a
previous query.

mysql_num_rows(result) Shows the number of rows in the result from a
previous query.

mysql_pconnect([hostname[:port] Opens a persistent connection to the server
[:/path/to/socket], username, password]) based on the named parameters. Similar to

mysql_connect.

mysql_ping([link_id]) Pings the server connection to verify the con-
nection is working properly.

mysql_query(query[, link_id]) Executes the named query.

mysql_real_escape_string(string[, Escapes a string to be used in the query, and
link_id]) takes into account the charset of the connection.

mysql_result(result, row[, field]) Obtains the data located in the named
field/row of the results.

mysql_select_db(database[, link_id]) Selects the named database and makes it
current.

mysql_stat([link_id]) Gets current system status.

mysql_thread_id([link_id]) Returns current connection thread ID.

mysql_tablename(result, index) Returns the table from which the result was
obtained.

mysql_unbuffered_query(query[, Queries the MySQL server without fetching and
link_id]) buffering the results.

Network Functions
The functions in the table that follows can be used to communicate with your network directly from PHP.

Function Description

checkdnsrr(host[, type]) Equal to dns_check_record, searches for DNS records
based on the named parameters.

closelog() Closes connection to the system log, opposite of openlog.

634

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 634

Function Description

debugger_off() Turns off the PHP debugger.

debugger_on(server) Turns on the PHP debugger and connects it to the named
server.

define_syslog_variables() Initializes syslog constants.

dns_check_record(host[, Equal to checkdnsrr, searches for DNS records based on
type]) named parameters.

dns_get_mxr(host, mxhosts[, Equal to getmxrr, returns MX records based on the
weight]) named host.

fsockopen([hostname, port, Opens a socket connection based on the named parameters.
errno, errstr, timeout])

gethostbyaddr(ip) Returns the hostname based on the named IP address.

gethostbyname(host) Returns the IP addressed based on the named host.

gethostbyname1(host) Returns multiple IP addresses based on the named host.

getmxrr(host, mxhosts[, Equal to dns_get_mxr, returns MX records based on the
weight]) named host.

getprotobyname(name) Returns protocol number based on named protocol.

getprotobynumber(number) Returns protocol name based on named protocol number.

getservbyname(service, Returns a port number based on named parameters.
protocol)

getservbyport(port, protocol) Returns the service based on named parameters.

ip2long(ip) Converts a string with an IP address into a proper address.

long2ip(proper_address) Converts a proper address into an IP address with dotted
format.

openlog(ident, option, Opens a connection to the system log, opposite of closelog
facility)

pfsockopen([hostname, port, Opens a persistent socket connection based on the named
errno, errstr, timeout]) parameters.

socket_set_blocking(socket, Determines the blocking mode for the named socket.
mode)

socket_set_timeout(socket, Determines the socket timeout period.
seconds, microseconds)

syslog(priority, message) Writes the named message to the system log.

635

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 635

Output Buffer Functions
The functions in the table that follows enable you to control the output buffer from PHP.

Function Description

flush() Flushes the output buffer.

ob_start() Enables output buffering.

ob_get_contents() Gets the contents of the output buffer.

ob_get_length() Gets the length of the output buffer.

ob_end_flush() Sends the output buffer contents and disables output
buffering.

ob_end_clean() Deletes the output buffer contents and disables output
buffering.

ob_implicit_flush() Toggles implicit flushing on and off.

PHP Configuration Information
With these functions, you can easily determine what your PHP is communicating to the server based on
its setup, and alter configuration options from your PHP script.

Function Description

assert(assertion) Verifies whether or not an assertion is false.

assert_options(what,[value]) Returns the assert flags.

dl(library) Loads the named extension library.

extension_loaded(name) Verifies whether or not an extension library has been
loaded.

get_cfg_var(var) Returns the named configuration variable value.

get_current_user() Returns the owner of the PHP script.

get_defined_constants() Returns an array with all the defined constants and their
values.

get_extension_funcs Returns the functions in the named module.
(module_name)

get_include_path() Returns the current include_path configuration option.

get_included_files() Returns an array containing the filenames of those
included in the script with the include_once()
function.

636

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 636

Function Description

get_loaded_extensions() Returns the compiled and loaded modules.

get_magic_quotes_gpc() Returns the setting of magic_quotes_gpc.

get_magic_quotes_runtime() Returns the setting of magic_quotes_runtime.

get_required_files() Returns an array containing the filenames of those
included in the script with the require_once() function.

getenv(var) Returns the named environment variable value.

getlastmod() Returns when the page was last modified.

getmygid() Returns the group ID for the current script.

getmyinode() Returns the inode of the script.

getmypid() Returns the process ID for PHP.

getmyuid() Returns the user ID for the owner of the PHP script.

getopt() Returns array of options/argument pairs from the com-
mand line argument list.

getrusage([who]) Returns resource usage.

ini_alter(varname, newvalue) Updates the php.ini file based on the named
parameters.

ini_get_all([extension]) Returns configuration options.

ini_get(varname) Returns the named value from the php.ini file.

ini_restore(varname) Restores the previous value in the php.ini file.

ini_set(varname, newvalue) Sets the named value in the php.ini file.

memory_get_usage() Returns the amount of memory allocated to PHP.

php_ini_scanned_files() Returns a list of parsed ini files from an additional
directory.

php_logo_guid() Returns the PHP logo GUID.

php_sapi_name() Returns the interface between the Web server and PHP.

php_uname() Returns information about the operating system
running PHP.

phpcredits(flag) Displays the credits for PHP.

phpinfo() Displays information about the current environment and
configuration of PHP.

phpversion() Displays the currently running PHP version.

putenv(setting) Sets the value of an environment variable.

Table continued on following page

637

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 637

Function Description

restore_include_path() Restores the include_path configuration option.

set_include_path(path) Sets the include_path configuration option.

set_magic_quotes_runtime Turns this feature on or off.
(newsetting)

set_time_limit(seconds) Sets the maximum amount of time a PHP script can run.

version_compare(string1, Compares two PHP version numbers.
string2)

zend_logo_guid() Returns the Zend logo GUID.

zend_version() Returns the current Zend engine.

Program Execution Functions
The functions in the table that follows allow PHP code to execute commands directly from the script.

Function Description

escapeshellarg(arg) Escapes a string to be used as a shell argument.

escapreshelllcmd(cmd) Escapes shell metacharacters in the named command.

exec(command[, array, Executes the named command and returns last line of
return_var]) results.

passthru(command[, Executes the named command and returns the raw output.
return_var])

system(command[, return_var]) Executes the named command and returns all output.

Spelling Functions
You can have PHP perform spell checks for you, as long as you supply a reference it can use.

Function Description

aspell_check(link, word) Using the named link as a reference, it will check the
spelling of the named word.

aspell_check-raw(link, word) Using the named link as a reference, it will check the
spelling of the named word without changing the case or
trimming the word.

638

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 638

Function Description

aspell_new(master, individual) Loads a named master dictionary and returns a link
identifier.

aspell_suggest(link, word) Using the named link as a reference, it will offer sugges-
tions for spelling the named word, and return results in
an array format.

pspell_add_to_personal(link, Adds the named word to a personal dictionary.
word)

pspell_add_to_session(link, Adds the named word to a session’s wordlist.
word)

pspell_check(link, word) Using the named link as a reference, it will check the
spelling of the named word.

pspell_clear_session Deletes a current session’s wordlist.

pspell_config_create(language Configures options to open a dictionary.
[, spelling, jargon, encoding])

pspell_config_ignore(link, n) Configures spell check so that words under n characters
long will be ignored

pspell_config_mode(link, mode) Changes the number of suggestions offered.

pspell_config_personal(link, Sets the file that will contain a personal wordlist.
file)

pspell_config_repl(link, file) Sets the file that contains replacements pairs.

pspell_config_runtogether Determines if run-together words are valid.
(link, flag)

pspell_config_save_repl Determines if replacement pairs should be saved with
(link, flag) the personal wordlist.

pspell_new(language[, spelling, Loads a new dictionary with a personal wordlist.
jargon, encoding, mode])

pspell_save_wordlist(link) Saves the personal wordlist to named link.

pspell_store_replacement(link, Stores a replacement pair for a word.
misspelled, correct)

pspell_suggest(link, word) Suggests a list of alternatives for the named word.

Session Functions
The functions in the table that follows are useful when utilizing sessions in your PHP scripts.

639

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 639

Function Description

session_cache_limiter Returns the cache limiter, or sets a new one.
([cache_limiter])

session_decode(string) Decodes the named session data.

session_destroy() Destroys session data.

session_encode() Encodes session data as a string.

session_get_cookie_params() Gets information about session cookie configuration.

session_id([id]) Returns session ID, or sets a new one.

session_is_registered(varname) Verifies whether or not named variable has been regis-
tered in current session.

session_module_name Returns session module or sets new one.
([module_name])

session_name([name]) Returns session name or sets new one.

session_register(name[, Registers variables with the current session.
var1, var2...])

session_save_path([path]) Returns path where session data is saved, or sets a
new one.

session_set_cookie_params Configures the session cookie based on the named
(expiration[, path, domain]) parameters.

session_set_save_handler(open, Sets user-level session storage based on named
close, read, write, destroy, gc) parameters.

session_start() Starts a new session.

session_unregister(name) Unregisters session variables.

session_unset() Releases all session variables.

String Functions
There are times when you need PHP to manipulate strings for you, and luckily there are many functions
that help you do just that.

Function Description

addcslashes(string, charlist) Adds slashes before named characters in named string.

addslashes(string) Adds slashes to quoted characters in the named strings
for database queries.

bin2hex(string) Converts binary data into ASCII hexadecimal format.

640

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 640

Function Description

chop(string) Deletes trailing spaces from the named string.

chr(ascii) Returns the character based on the named ASCII code.

chunk_split(string[, Divides named string by inserting the character named
length, div]) by div every length characters.

convert_cyr_string(string, Converts named string from one Cyrillic character set to
from, to) another.

count_chars(string[, mode]) Counts the number of characters in the named string.

crc32(string) Calculates the crc32 of 32-bit lengths of string.

crypt(string[, char]) Using named 2-character parameter, this will DES-
encrypt the named string.

echo(string) Displays named string.

ereg(exp, string[, array]) Searches the named string for the named expression and
stores the results in the named array.

ereg_replace(exp1, exp2, string) Searches and replaces exp1 with exp2 in the named
string.

eregi(exp, string[, array]) Searches the named string for the named expression
(case-insensitive) and stores the results in the named
array.

eregi_replace(exp1, exp2, Searches and replaces exp1 with exp2 (case-insensitive)
string) in the named string.

explode(separator, string[, Divides the named string using the named separator and
limit]) returns results in array format, opposite of implode.

get_html_translation_table Returns the named translation table.
(table[, quote_styles])

get_meta_tags(filename[, path]) Returns meta tag information from named file.

hebrev(text[, max_chars_ Converts Hebrew text to visual text.
per_line])

hebrevc(text[, max_chars_ Converts Hebrew text to visual text with newlines.
per_line])

htmlentities(string[, Converts characters from named string into HTML
quote_style]) entities.

htmlspecialchars(string[, Converts special characters from named string into
quote_style]) HTML entities.

implode(delimiter, array_name) Opposite of explode, this combines bits of the named
array together using the named delimiter tag, equal to
join.

Table continued on following page

641

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 641

Function Description

join(delimiter, array_name) Equal to implode, this combines bits of the named array
together using the named delimiter tag.

levenshtein(str1, str2) Calculates the Levenshtein distance between the two
named strings.

ltrim(string) Deletes spaces from the beginning of the named string.

md5_file(filename) Calculates the MD5 hash of the named file.

md5(string) Calculates the MD5 hash of the named string.

metaphone(string) Calculates the metaphone key of the named string.

money_format(format, number) Formats the number as a currency.

nl2br(string) Inserts HTML code for
 before all line breaks in
named string.

number_format(number, decimals) Formats the number based on the named parameters.

ord(string) Returns the ASCII code of the first character in the
named string.

parse_str(string[, array]) Parses the string and stores results in named array.

print(string) Displays the string and returns a value of 1 or 0 based on
success of results.

printf(format[, arg1, arg2, ...]) Displays a formatted string based on the named
parameters.

quoted_printable_decode(string) Converts a quoted-printable string to an 8-bit string.

quotemeta(string) Escapes meta characters in the named string.

rawurldecode(string) Decodes the named URL-encoded string, opposite of
rawurlencode.

rawurlencode(string) URL-encodes the named string, opposite of
rawurldecode.

rtrim(string) Deletes trailing spaces from the end of the named string.

setlocale(category, locale) For functions in the named category, this sets the locale
information.

sha1_file(filename[, output]) Calculates the sha1 hash for a file.

sha1(string[, output]) Calculates the sha1 hash for a string.

similar_text(string1, Determines the similarity between two named strings.
string2[, percent])

642

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 642

Function Description

soundex(string) Determines soundex key of the named string.

split(exp, string[, limit]) Splits the named string using the named expression.

spliti(exp, string[, limit) Splits the named string using the named expression
(case-insensitive).

sprintf(format[, arg1, arg2...]) Displays the formatted string based on the named
parameters.

sql_regcase(string) Searches named string (case-insensitive) and returns a
regular expression

sscanf(string, format[, Parses input from the named string based on named
var1, var2...]) parameters.

str_ireplace(oldexp, Similar to str_replace except it is case-insensitive.
newexp, string)

str_pad(string, length[, Pads the named string to the named length with another
pad_string, pad_type]) string.

str_repeat(string, number) Repeats a named string a named number of times.

str_replace(oldexp, Replaces one expression with another in named string.
newexp, string)

str_rot13(string) Performs the ROT13 encoding on the named string.

str_shuffle(string) Randomly shuffles the string.

str_word_count(string[, Counts the number of words in the string.
format])

strcasecmp(string1, string2) Compares two named strings, case-insensitive.

strchr(string, exp) Locates named expression in named string.

strcmp(string1, string2) Similar to strcasecamp, except comparison is
case-sensitive.

strcoll(string1, string2) Compares the two strings based on locale.

strcspn(string1, string2) Returns the number of characters at the beginning of
string1 that do not match string2, opposite of strspn.

strip_tags(string) Removes HTML and PHP tags from the named string.

stripcslashes(string) Removes C slashes from the named string.

stripslashes(string) Removes escape slashes from the named string.

stristr(string, exp) Finds all occurrences of a named expression in a named
string (case-insensitive).

Table continued on following page

643

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 643

Function Description

strlen(string) Returns the length of the named string.

strnatcasecmp(string1, string2) Using “natural order,” compares two named strings
(case-insensitive).

strncmp(string1, string2, n) Compares first n characters of two named strings.

strpos(string, exp) Returns numerical position of first occurrence of named
expression in named string.

strrchr(string, exp) Locates the last occurrence of named expression in
named string.

strrev(string) Reverses the named string.

strrpos(string, exp) Returns numerical position of last occurrence of named
expression in named string

strspn(string1, string2) Returns the number of characters at the beginning of
string1 that match string2, opposite of strcspn.

strstr(string, exp) Finds all occurrences of a named expression in a named
string (case-sensitive).

strtok(string1, string2) Tokenizes named string based on named parameter,
string2.

strtolower(string) Converts named string to lowercase characters.

strtoupper(string) Converts named string to uppercase characters.

strtr(string, exp1, exp2) Translates characters based on the named parameters.

substr(string, start[, Returns the named number of characters from the
num_char]) named start position in the named string.

substr_count(string, exp) Returns the number of occurrences of named expression
in the named string.

substr_replace(string, Replaces text within named string based on named
replacement, start[, num_char]) parameters.

trim(string) Deletes extra space at the beginning and end of the
named string.

ucfirst(string) Converts the first character to uppercase.

ucwords(string) Converts the first character of each word to uppercase.

vprintf(format, arguments) Displays a formatted string.

vsprintf(format, arguments) Returns a formatted string as an array.

wordwrap(string[, width, Using the named break character, this will wrap the
break, cut]) string based on the named parameters.

644

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 644

URL Functions
The functions in the table that follows allow you to handle URLs within your PHP code.

Function Description

base64_decode(string) Decodes an encoded string, opposite of base64_encode.

base64_encode(string) Encodes a string, opposite of base64_decode.

parse_url(url) Parses the URL into components.

urldecode(string) Decodes an encoded string, opposite of urlencode.

urlencode(string) Encodes a string, opposite of urldecode.

Variable Functions
Variables are a common tool used in PHP, and there are numerous functions to increase your ability to
manipulate them.

Function Description

doubleval(var) Doubles the value of the variable.

empty(var) Verifies whether or not the variable exists and has a non-
zero value.

floatval(var) Returns the float value of a variable.

get_defined_vars() Returns all the defined variables in a script.

get_resource_type(handle) Returns the resource type.

gettype(var) Shows the field type of the variable.

import_request_variable Imports GET/POST/Cookie variables into the global scope.
(types[, prefix])

intval(var[, base]) Using the named base, this returns the integer value of the
variable.

is_array(var) Verifies whether or not the variable is an array.

is_bool(var) Verifies whether or not the variable is Boolean.

is_callable(var) Verifies whether or not the variable can be called as a
function.

is_double(var) Verifies whether or not the variable is a double.

Table continued on following page

645

PHP Functions

26 557440 AppC.qxd 2/6/04 9:18 AM Page 645

Function Description

is_float(var) Verifies whether or not the variable is a float.

is_int(var) Equal to is_integer and is_long, verifies whether or not
the variable is an integer.

is_integer(var) Equal to is_int and is_long, verifies whether or not the
variable is an integer.

is_long(var) Equal to is_int and is_integer, verifies whether or not
the variable is an integer.

is_null(var) Verifies whether or not the variable is null.

is_numeric(var) Verifies whether or not the variable is a number or numeric
string.

is_object(var) Verifies whether or not the variable is an object.

is_real(var) Verifies whether or not the variable is a real number.

is_resource(var) Verifies whether or not the variable is a resource.

is_string(var) Verifies whether or not the variable is a string.

isset(var) Verifies whether or not the variable has been assigned a
value.

print_r(exp[, return]) Displays readable information about a variable.

serialize(value) Generates a storable version of variable.

settype(var, type) Sets the named variable to the named type.

strval(var) Returns the string value of the named variable.

unserialize(string) Generates a PHP value from a stored version.

unset(var) Deletes the named variable.

var_dump(exp) Displays information about the named expression.

var_export(exp) Outputs a string representation of the variable.

646

Appendix C

26 557440 AppC.qxd 2/6/04 9:18 AM Page 646

D
MySQL Data Types

See the table that follows for the potential data or field types in MySQL.

MySQL Field Type Description

bigint(length) Numeric field that stores integers from -
9223372036854775808 to 9223372036854775807.
(Adding the unsigned parameter allows storage of 0
to 18446744073709551615.) The parameter length
limits the number of characters to be displayed.

bit Equal to tinyint field.

blob Equal to a text field, except it is case-sensitive when
sorting and comparing. Stores up to 65535 characters.

bool Equal to tinyint field.

boolean Equal to tinyint field.

char(length) Any characters can be in this field, but the field will
have a fixed length.

date Stores a date as yyyy-mm-dd.

datetime Stores date and time as yyyy-mm-dd hh:mm:ss.

dec(length,dec) Equal to decimal field.

decimal(length,dec) Numeric field that can store decimals. Length limits
the number of characters that will be displayed, and
the dec parameter limits the number of decimal
places that can be stored. A price field that would
store prices up to 999.99, for example, would be
defined as decimal(6,2).

Table continued on following page

27 557440 AppD.qxd 2/6/04 9:18 AM Page 647

MySQL Field Type Description

double(length,dec) A medium-sized floating point number that
stores values from -1.7976931348623157E+308 to -
2.2250738585072014E-308, 0, and 2.2250738585072014E-
308 to 1.7976931348623157E+308. Length parameter
determines how many characters will be displayed; dec
parameter determines how many decimal places are dis-
played. (Adding the unsigned parameter allows only
positive numbers to be stored.)

enum(“option1”, “option2”, ...) Allows only certain values to be stored in this field, such
as true and false, or a list of states. 65535 different
options can be allowed.

fixed(length,dec) Equal to decimal field.

float(length,dec) A small floating point number that stores values from
-3.402823466E+38 to -1.175494351E-38, 0, and
1.175494351E-38 to 3.402823466E+38. Length parameter
determines how many characters will be displayed; dec
parameter determines how many decimal places are dis-
played. (Adding the unsigned parameter allows only
positive numbers to be stored.)

float(precision) Equal to float(length,dec) except the length and
dec parameters are undefined. To be used with a true
floating point number. (Adding the unsigned parameter
allows only positive numbers to be stored.)

int(length) Numeric field that stores integers from -2147483648 to
+2147483647, but can be limited with the length param-
eter. Length limits the number of characters that can be
shown, not the value. Mathematical functions can be per-
formed on data in this field. Signifying the unsigned
parameter permits positive integers (and zero) up to
4294967295.

longblob Equal to longtext except it is case-sensitive when sort-
ing and comparing.

longtext Allows storage of up to 4294967295 characters.

mediumblob Equal to mediumtext field except it is case-sensitive
when sorting and comparing.

mediumint(length) Numeric field that stores integers from -8388608 to
8388607. (Adding the unsigned parameter allows
storage of 0 to 16777215.) Length limits the number of
characters to be displayed.

648

Appendix D

27 557440 AppD.qxd 2/6/04 9:18 AM Page 648

MySQL Field Type Description

mediumtext Allows storage of up to 1677215 characters.

numeric(length,dec) Equal to decimal field.

real(length,dec) Equal to double field.

set(“option1”, “option2”, ...) Similar to enum field, but with set there can be none or
more than one of the available options. Set allows up to
64 options.

smallint(length) Numeric field that stores integers from -32768 to 32767.
(Adding the unsigned parameter allows storage of 0 to
65535.) Length limits the number of characters to be dis-
played.

text Any character can be in this field, and the maximum size
of the data is 64K (65536 characters).

time Stores time as hh:mm:ss.

timestamp Stores date and time as yyyy-mm-dd hh:mm:ss. Useful
for automatically capturing current date and time.

tinyblob Equal to tinytext field, except it is case-sensitive when
sorting and comparing.

tinyint(length) Numeric field that stores integers from -128 to 127.
(Adding the unsigned parameter allows storage of 0 to
255.) Length limits the number of characters to be shown.

tinytext Allows storage of up to 255 characters.

varchar(length) Any character can be in this field, and the data can vary
from 1 to 255 characters. Maximum length of field is
denoted in parentheses.

year(length) Stores a year in 4-character format (by default). It is pos-
sible to specify a 2-year format by signifying so with the
length parameter.

649

MySQL Data Types

27 557440 AppD.qxd 2/6/04 9:18 AM Page 649

27 557440 AppD.qxd 2/6/04 9:18 AM Page 650

E
MySQL Quick Reference

In this appendix, we have listed some quick reference notes for your use. These topics are covered
in more depth in Chapter 3 and on the MySQL Web site at www.mysql.com.

Database Manipulation Commands
Use the following commands to create and make changes to your database and tables.

Command What it does

CREATE databasename Creates the database

CREATE tablename (field1, field2, Creates a new table
field3, and so on PRIMARY KEY(field))

ALTER TABLE tablename WHERE condition Modifies a table in the database

RENAME TABLE oldtablename TO newtablename Renames a table in the database

INSERT INTO tablename (field1, Inserts information into the table
field2, . . .) VALUES (“value1”,
“value2” . . .)

UPDATE tablename SET field1=value1, Changes information already stored in
field2=value2 . . . WHERE condition the table

DROP tablename Deletes the table

DROP database Deletes the database

LOAD DATA INFILE “filename” Loads a large quantity of data into the
INTO TABLE tablename database

28 557440 AppE.qxd 2/6/04 9:18 AM Page 651

Connecting to the Database
Before you can connect to the database, you need four things:

❑ Database name

❑ Host Server name

❑ Username

❑ Password

Connect to the database using the following command (in PHP):

$connection = mysql_connect(“servername”, “username”, “password”);

You then need to select the appropriate database by using the following command (in PHP):

<?php
$database = mysql_select_db(“databasename”, $connection)

or die(“couldn’t find the database”);
?>

Accessing the Database
MySQL commands are inserted within your PHP code to access the database in this way:

<?php
$query = mysql_query(“UPDATE field1 FROM tablename WHERE condition1”)

or die(“Couldn’t find the table”);
$result = mysql_fetch_array($query);
?> //your information has now been updated

Retrieving Data from the Database
You can access the data stored in our tables with the following statement (you can use * to retrieve
all fields):

SELECT field1, field2 FROM tablename

Condition Clauses
Use the following conditions in conjunction with this statement:

SELECT * FROM tablename WHERE

652

Appendix E

28 557440 AppE.qxd 2/6/04 9:18 AM Page 652

Conditions (use % for wildcard):

field = value
field > value
field < value
field >= value
field <= value
field != value
field BETWEEN value1 AND value2
field LIKE value
field NOT LIKE value
field IN (value1, value2, value3, etc)
field NOT IN (value1, value2, value3, etc)

Selecting from Multiple Tables
You can retrieve information from two or more tables at once by using the following statements:

SELECT table1.field, table2.field FROM table1, table2 WHERE
table1.field = table2.field;

or

SELECT table1field, table2field FROM table1 LEFT JOIN table 2;

Sorting the Results
You can sort the results of the SELECT query by using the following clause at the end of the statement:

SELECT * FROM tablename WHERE field1=value1 ORDER BY field2 ASC|DESC

Limiting the Results
If you would like to limit the results returned from our query, you can modify your SELECT statement
like this:

SELECT * FROM tablename WHERE field1=value1
ORDER BY field2 ASC
LIMIT offset, number_of_rows_to_be_returned

653

MySQL Quick Reference

28 557440 AppE.qxd 2/6/04 9:18 AM Page 653

28 557440 AppE.qxd 2/6/04 9:18 AM Page 654

F
Comparison of Text Editors

There are many software programs out there that you can use to enter all your code. Some have
better options than others, so we’ve put together a chart to help you compare apples with apples.
This chart lists the editors alphabetically and compares common text editor features, such as syn-
tax highlighting.

Many of these editors provide similar features, so your decision really depends on your budget,
your needs, and how comfortable you are with each user interface.

You can read more about features not listed here, as many of these editors provide other unique
benefits. We encourage you to visit the following Web sites to download these programs and get
more information:

❑ AnyEdit: www.anyedit.org

❑ Dreamweaver MX 2004: www.macromedia.com

❑ EditPlus: www.editplus.com

❑ HTML-Kit: www.chami.com/html-kit/

❑ jEdit: www.jedit.org

❑ Notepad: www.microsoft.com

❑ PhpED: www.nusphere.com

❑ PHPEdit: www.phpedit.net

❑ SourceEdit: www.sourceedit.com

❑ TextPad: www.textpad.com

❑ UltraEdit-32: www.ultraedit.com

❑ WordPad: www.microsoft.com

29 557440 AppF.qxd 2/6/04 9:18 AM Page 655

P
H

P

B
u

il
t-

in
B

lo
ck

C

od
e

W
Y

S
IW

Y
G

H

ig
h

li
gh

te
d

S
p

el
l

FT
P

M

od
e

L
in

e
W

or
d

A

u
to

-
W

eb
 D

es
ig

n

S
ea

rc
h

 a
n

d

E
d

it
or

S
yn

ta
x

C
h

ec
k

er
A

cc
es

s
E

d
it

in
g

N
u

m
b

er
s

W
ra

p
C

om
p

le
ti

on
E

d
it

or
R

ep
la

ce
P

ri
ce

A
ny

E
d

it
✓

✓
✓

✓
✓

✓
Fr

ee

D
re

am
w

ea
ve

r
✓

✓
✓

✓
✓

✓
✓

✓
✓

$3
99

M
X

 2
00

4

E
d

it
Pl

us
✓

✓
✓

✓
✓

✓
$3

0

H
T

M
L

-K
it

✓
✓

✓
✓

✓
✓

✓
✓

Fr
ee

jE
d

it
✓

✓
✓

✓
Fr

ee

N
ot

ep
ad

✓
✓

Fr
ee

Ph
pE

D
✓

✓
✓

✓
✓

✓
✓

✓
$2

99

PH
PE

d
it

✓
✓

✓
✓

✓
✓

Fr
ee

So
ur

ce
E

d
it

✓
✓

✓
✓

✓
✓

✓
$7

9

Te
xt

Pa
d

✓
✓

✓
✓

✓
$2

7

U
lt

ra
E

d
it

-3
2

✓
✓

✓
✓

✓
✓

✓
✓

$3
5

W
or

d
Pa

d
✓

✓
Fr

ee

656

Appendix F

29 557440 AppF.qxd 2/6/04 9:18 AM Page 656

G
Choosing a Third-Party Host

Many people like to run their own servers out of their homes or offices, and that is a feasible solu-
tion for hosting, if you have the time. But hosting your own Web site can lead to more problems
than it’s worth. You need to think about backup power, keeping the security holes patched, regular
maintenance, regular upgrades, and many other issues. And keep in mind that not only do you
need to have a Web server running; you need to have something to take care of your domain name
servers (DNS servers).

With third-party hosting solutions, you have trained IT professionals who make sure your Web
server stays up and running 24 hours a day. It’s their job to make sure your site is secure and
always available for viewing.

Hosting Options
Should you decide to have a third party host your site, there are many options to choose from
when making your hosting choice. Here are a few criteria to look at when outsourcing hosting:

❑ Supported languages: PHP, JAVA, CGI, and so on.

❑ Supported databases: MySQL, Postgresql, MSSQL, and so on.

❑ Server control: Super User Access

❑ Server access: Such as FTP, telnet, SSH, and so on.

❑ Configuration ability: Web Server settings/configurations, cron jobs, htaccess, and so on.

❑ Administration GUIs: E-mail, database, user setup, and so on.

❑ Bandwidth usage: Web site, e-mail, streaming media, database connections, and so on.

❑ Price: Based on features, contract time, and other criteria.

30 557440 AppG.qxd 2/6/04 9:18 AM Page 657

Keep in mind that you aren’t likely to have every combination and possibility with every host, so it’s
important that you know enough about hosts to make a well-thought-out decision before jumping into a
long contract. To that end, let’s get into a little more detail about each of those topics.

Supported Languages
First of all, we will talk about the supported languages. Obviously, because you bought this book, we’re
assuming you are looking into using PHP, but there are other languages you may need to use. There
may be a time when another language, such as JavaScript, is better suited for a job than PHP. For exam-
ple, if you want live streaming audio or video on your site, you are likely to use a Java applet of some
sort because PHP needs a request from the server to process information. PHP can do it with different
calls to the server, but because it is more of a client request from the browser, a client-side language
works much better for this task.

There may also be times when you need to use another programming language to accomplish some-
thing a client already has set up at a different host or server. If so, it is nice to at least have the option of
using, say, a Perl script, rather than spending the time and money to redevelop the application in PHP.

Supported Databases
Again, because this book is geared toward MySQL, you will probably need a host that supports MySQL.
However, there are many other databases you can use with PHP.

Here are just some of the databases that PHP can work with:

❑ MySQL

❑ PostgreSQL

❑ MS SQL Server

❑ MS Access

❑ Sybase

Depending on your situation, you may want to choose a host that has more than one of these databases
set up by default. Some larger companies, for example, are using MSSQL as their database, usually
because they are using ASP (Active Server Pages from Microsoft) for their programming. Should you
need to convert any site to PHP, you will be glad to know that PHP can connect and work nicely with
MSSQL as well. Also, keep in mind that you don’t have to continue using the other databases; you can
always port the data over to MySQL using PHP to ease the troubles of manual conversion.

Server Control and Access
Many hosts out there won’t give a Web developer full access and/or control over their hosted domain.
We tend to shy away from those hosts because you are more likely to run into problems with them when
you want to do some custom configuration to the server.

658

Appendix G

30 557440 AppG.qxd 2/6/04 9:18 AM Page 658

Look into the type of access your host provides. Obviously, your host will give you FTP access so you
can upload your files to the Web server. Some hosts, however, will give you FTP access but nothing else.
The problem is that you are likely to run into a situation in which you want to configure your server. For
this you will need either telnet or SSH access to use the command line.

In fact, the ability to configure is often necessary when performing tasks that usually aren’t allowed by
hosts by default. For example, consider htaccess. With htaccess, you can deny and allow access to certain
files and directories based on the users you allow in the htpasswd file. (See Chapter 11 for more infor-
mation on htaccess.)

Along with htaccess, most hosts allow you to use cron jobs, but are not likely to set them up for you.
Therefore, you need to telnet into the server and edit the crontab file to allow you the ability to run
scheduled tasks. There are countless configuration settings that you might want to change if your host
allows you to configure them. Keep that in mind when choosing your hosting solution.

Administration GUIs
Certain hosts offer Administration GUIs (Graphical User Interfaces) or User Control Panels as a feature
of their packages. A lot of people don’t really care for GUIs, but when you don’t have a choice, either
because you don’t have sufficient access to the server or you don’t fully understand how to get things
done through telnet, a point-and-click solution is a wonderful tool.

The interface can be as simple as one that allows you to view information about the server, or it can be as
complex as one that allows you to install applications and programming languages with the click of a
button. Also, keep in mind that if you have a client that wants to be able to administer its e-mail users,
many of the control panels have utilities that allow the client to do so themselves. With such a feature,
rather than having to call you or the hosting company to set up an e-mail account, the client can simply
log on to the control panel and set up and delete users as the need arises.

Bandwidth and Site Usage
Bandwidth and site usage factor into the overall price of hosting. Hosting companies usually give out
only so much bandwidth usage per site per month. Should you go over that amount, there is usually a
hefty charge.

Consider the following issues when looking into bandwidth:

❑ Web site traffic

❑ E-mail usage

❑ Database connections

❑ Streaming media

If you have heavy activity in any or all of these areas, before you know it, you will get billed for band-
width overusage. You need to consider how many people will visit your site on average. In addition,
hosts count e-mail usage in the end-of-the-month calculation used to tally your bill. Some hosts will
even go so far as to monitor your FTP access and count that toward the total bandwidth used.

659

Choosing a Third-Party Host

30 557440 AppG.qxd 2/6/04 9:18 AM Page 659

Database connections don’t really relate to bandwidth usage, but hosts often limit the amount of
database connections you can make as another way to control the number of people allowed to visit the
site at one time.

Finally, streaming media is very heavy on bandwidth; should you plan to use it as a form of conveying
information to the end users of your site, your hosting bill could rise dramatically.

Pricing
You need to consider all the preceding areas when figuring out how much your host is worth to you.
Rather than total price, look at the price per feature. You won’t often get all the features you want for
your site, but as long as you get most of them and you choose the host that has the lowest price per fea-
ture, you will probably make a wise hosting choice.

When using price to make your choice, ask yourself how much a particular feature is worth to you.
Remember that some hosting companies require that you sign up for a full year and they won’t offer a
refund of any sort should you receive poor service and/or decide the service isn’t worth the money you
are paying. It’s best to find a host that will allow you to choose either monthly, quarterly, or yearly hosting
options. That way you don’t have to wait a full year to leave if you’re dissatisfied. Just keep in mind that
when you choose a shorter option, such as monthly or quarterly, the host will often charge a little more
than if you pay up front, or they may charge service setup fees that might be waived if you pay up front.

Making the Choice
When making your hosting decision, it’s very important to consider the criteria outlined in this chapter.
You really don’t want to get stuck in a situation in which you are unhappy with the service you are
receiving or, worse yet, your paying client is disappointed with services you recommended.

The following is a list of ten hosting options that we feel are the best bang for your buck. You may want
to consider them when making your decision:

❑ www.olm.net

❑ www.lunarpages.com

❑ www.globat.com

❑ www.vervehosting.com

❑ www.ipowerweb.com

❑ www.websytz.com

❑ www.infiniology.com

❑ www.powweb.com

❑ www.inmotionhosting.com

❑ www.hostcolor.com

660

Appendix G

30 557440 AppG.qxd 2/6/04 9:18 AM Page 660

H
An Introduction to PEAR

PHP is a terrific scripting language. It is relatively easy to learn, especially if you already know
other programming languages such as JavaScript, C++, or Perl. In no time at all, you can get some
excellent pages up and running on your server, accessing databases, authenticating users, and pro-
viding dynamic, up-to-date content for your visitors.

So, you just spent six months creating your company’s Web site. It’s nearly perfect—users are
being served up-to-the-minute content, and you have set up a complex Content Management
System that enables almost anyone in the company to create new content. It’s efficient, it’s pretty,
and you feel pretty darned good about it.

As you sit here thumbing through the appendixes, wondering if there are any more useful nuggets
of information, in walks your boss, the IT Manager. She tells you once again what a fine job you did,
congrats on the promotion—you know, the usual. As she gets up to leave, she stops in the doorway
and casually mentions something that is going to completely overload your work schedule:

“Oh, by the way, HR is switching to an Oracle-based database accounting package. It’s pretty slick.
And we decided that since we’ll be using Oracle anyway, all of our databases will be switched to
Oracle. That won’t be a problem, will it?”

Of course, the problem here stems from the way PHP accesses databases. The wonderful thing
about PHP is that it supports a very wide variety of databases. The bad thing is that it has
database-specific commands for each one.

Every developer has had this happen, so you are not alone. It might not be too difficult to change
your code, but it will probably be time consuming, especially if you have hundreds of pages to
update.

For example, to run a database query, do the following with various databases:

❑ MySQL: mysql_query(“SELECT * FROM table”)

❑ Microsoft SQL: mssql_query(“SELECT * FROM table”)

❑ FrontBase: fbsql_query(“SELECT * FROM table”)

31 557440 AppH.qxd 2/6/04 9:18 AM Page 661

❑ Sybase: sybase_query(“SELECT * FROM table”)

❑ PostgreSQL: pgsql_query(“SELECT * FROM table”)

Those may seem fairly simple to change, but this is just scratching the surface. Oracle doesn’t even have
a _query() function. You have to use ora_parse() on the SQL statement, and then run ora_exec().
You must also consider that there may be some specific functions you are using in MySQL that have no
equivalent in Oracle. Perhaps you are even using very specific SQL statements in MySQL that are not
supported in Oracle or are executed in a different way.

Now you can see how you might have your work cut out for you. Go ahead and give your IT Manager
a resounding thump on the head for not foreseeing this change six months ago. (It’s okay; just tell her I
told you to do it.)

Wouldn’t it be cool if there were a way to write your code more abstractly, so that when you run a func-
tion such as get_query_results(), it would be smart enough to know what type of database you are
connecting to and perform all of the necessary steps to retrieve the data? Enter PEAR.

What Is PEAR?
PEAR is the PHP Extension and Add-on Repository. It is an extensive online collection of free PHP mod-
ules and classes for many different functions. Modules exist for XML parsing, database processing, user
authentication, and more. In most cases, these modules make life easier for the developer by hiding the
details of more complex functions and by providing a friendly programming interface and function set
for accessing low-level functions. This is called abstraction, and the interface module is referred to as the
abstraction layer.

This appendix does not provide you with installation instructions or step-by-step instructions on how
to use any specific modules. Rather, our intention is to tell you about some of the more popular PEAR
modules and explain what some of their benefits and pitfalls may be. We will include simple examples
for clarification of some points, but they are not intended to be used as is.

If you would like more information about PEAR and the modules available, visit http://pear.php.net.

Requirements
PEAR is designed to be used with PHP version 4. Specifically, it will work with PHP versions 4.0.4 or
newer. It is bundled with PHP, and the newest versions of PHP install PEAR by default. There is a very
good chance that PEAR is already installed on your server, and you can begin using it right away.

For detailed installation instructions, visit http://pear.php.net.

The Packages
Many, many modules are available for PEAR. They are referred to as “packages,” and they can be found
at http://pear.php.net/packages.php. Packages are written by PHP developers using specific

662

Appendix H

31 557440 AppH.qxd 2/6/04 9:18 AM Page 662

coding standards. Each package is developed by a team or individual, and must contain specific infor-
mation such as documentation and a list of dependencies (both to and from other packages).

The packages are defined as “nodes” on a “tree.” For example, the XML_Parser node is grouped with
other XML packages. This grouping is for organizational purposes only—dependencies have nothing to
do with the locations of nodes on a tree. The Mail package, for example, depends on the Net_SMTP
package, even though they are not connected nodes.

PEAR package developers are required to follow a strict set of coding standards called, logically enough,
the PEAR Coding Standards. One of the great things about PEAR (and open source development in gen-
eral) is that anyone can develop a package and have it inserted into the package tree. (“PEAR tree”—
isn’t that clever? I’m just waiting for the first person to create a Partridge package.)

The big package we are going to discuss in this appendix is the database package PEAR DB. While there
are many excellent packages, this one is probably the most widely used. Many love it, and many hate it.
It definitely has its benefits, but it has a few downsides, too. We’ll touch on those shortly.

We’ll also take a look at a few other package nodes, including Authentication, Mail, Payment, XML, and
HTML.

PEAR DB
Before you delve into PEAR, you must be aware that most PEAR packages use objects and classes. If you
are not familiar with PHP’s implementation of object-oriented programming, you may want to read the
Classes and Objects section of the PHP manual (www.php.net/oop).

In order to use PEAR DB (also written as PEAR::DB), you must include the file db.php in your page.
This is your “window” to the PEAR DB classes, and it is the only file you need to include. It will imple-
ment a class called DB_common, which is contained in the DB/common.php file.

In common.php, you find the code that is common across different databases and some basic utility func-
tions. If necessary, some of the classes will be overwritten, depending on the specific database driver file
you load.

This brings us to the third file: driver. This file is loaded dynamically, depending on which database
you specify as the one you will use. If you are using MySQL, for example, DB/mysql.php is loaded. It
implements a class called DB_mysql that extends DB_common, and contains classes and functions specific
to the needs of MySQL databases.

What does all this mean? Basically, it’s mostly transparent to you as far as database access goes. You
include db.php in your page and specify the database you are accessing (along with user, password,
host, and database, as usual), and PEAR DB does the rest.

Let’s say you have a database with the following two tables. You may remember these tables from
Chapter 9. Let’s use these tables in an example to see how PEAR DB compares to standard database
functions. All of our examples will use these two tables.

663

An Introduction to PEAR

31 557440 AppH.qxd 2/6/04 9:18 AM Page 663

id league_id alias real_name

1 2 Average Man Bill Smith

2 2 The Flea Tom Jacobs

3 1 Albino Dude George White

4 3 Amazing Woman Mary Jones

id league

1 Amazing People

2 Dynamic Dudes

3 Stupendous Seven

4 Justice Network

Our first example uses MySQL-specific commands to retrieve all of the records and display them on the
screen. For simplicity’s sake, we will include the database constants in the same code. Just remember
that the best coding practice is to put them into a separate config.php file and include them.

<?php
$host = ‘yourhost’;
$uname = ‘yourname’;
$passwd = ‘yourpass’;
$db_name = ‘yourdatabase’;

$conn = mysql_connect($host, $uname, $passwd)
or die(‘Could not connect to MySQL database. ‘ . mysql_error());

mysql_select_db($db_name,$conn);

$sql = “SELECT * FROM superhero s, league l WHERE l.id = s.league_id”;
$result = mysql_query($sql) or die(mysql_error());

while ($row = mysql_fetch_array($result)) {
echo $row[‘alias’] . “ (“ . $row[‘real_name’] . “) is a member of “;
echo “the “ . $row[‘league’] . “ League.
”;

}
?>

Here is what the code looks like if you use PEAR DB:

<?php
$host = ‘yourhost’;
$uname = ‘yourname’;
$passwd = ‘yourpass’;
$db_name = ‘yourdatabase’;
$db_type = ‘mysql’;

664

Appendix H

31 557440 AppH.qxd 2/6/04 9:18 AM Page 664

require_once(‘DB.php’);
$dsn = “$db_type://$uname:$passwd@$host/$db_name”;
$conn = DB::connect($dsn);
if (DB::isError($conn))

die (“Unable to connect: “ . $conn->getMessage() . “\n”);

$sql = “SELECT * FROM superhero s, league l WHERE l.id = s.league_id”;
$result = $conn->query($sql);
if (DB::isError($result)

die (“Query ($sql) failed: “ . $result->getMessage() . “\n”);

while ($row = $result->fetchRow(DB_FETCHMODE_ASSOC)) {
echo $row[‘alias’] . “ (“ . $row[‘real_name’] . “) is a member of “;
echo “the “ . $row[‘league’] . “ League.
”;

}
?>

If you load either page in your browser, you will see the following on the screen:

Average Man (Bill Smith) is a member of the Dynamic Dudes League.
The Flea (Tom Jacobs) is a member of the Dynamic Dudes League.
Albino Dude (George White) is a member of the Amazing People League.
Amazing Woman (Mary Jones) is a member of the Stupendous Seven League.

The PEAR DB method takes more lines, and the syntax is a little different (which can be especially diffi-
cult if you are not familiar with objects). So why should you bother to use PEAR DB?

Remember that PEAR DB acts as an abstraction layer to help you interface with your database. If you
look closely at the PEAR DB code, you’ll notice that none of the functions seem to refer to the type of
database you are accessing. In fact, they are quite generic. In contrast, the first code snippet uses mysql_
functions throughout the code. That’s not a problem, as long as you always use MySQL.

Remember your IT Manager’s passing comment? Your company has just decided to switch from MySQL
to Oracle. Which one of these small code segments would you prefer to modify? Okay, perhaps even the
MySQL code would take only a couple of minutes, but try to imagine this on a grand scale. Also remem-
ber that Oracle commands are different—you must pass the SQL statement to the server and commit it.
MySQL doesn’t work that way.

Now you should see the benefits of using PEAR DB’s abstraction layer. In fact, by keeping the $db_type
variable (or an SQL_DB_TYPE) constant in an included file, all you should have to do to make your entire
Web site work with the new database is change the $db_type variable from mysql to oci8—theoreti-
cally, of course. This assumes that every SQL statement you used is compatible with both MySQL and
Oracle (which is doubtful) and that every PEAR DB function you used for MySQL is compatible with
Oracle (also doubtful). But at least you will have a lot less work to do.

There are definite benefits to using PEAR DB. For example PEAR DB:

❑ Enables you to easily change your code to work with any database backend supported by
PEAR.

❑ Provides built-in error checking and error handling.

665

An Introduction to PEAR

31 557440 AppH.qxd 2/6/04 9:18 AM Page 665

❑ Creates defaults for common methods (such as fetchRow()).

❑ Offers extended functionality—PEAR DB offers database functions that PHP does not natively
provide. For example, a method (DB::isManip) tells you whether or not a SQL statement
manipulates data or simply retrieves it. PHP has no equivalent function.

There are caveats to using PEAR DB as well. Some of these are:

❑ You must use SQL compatible with other databases or change your SQL statements when you
change DB servers. You would have to do that without PEAR DB, of course, but you should
know that PEAR DB does not solve this problem.

❑ PEAR DB is not as efficient as native PHP code, because you are running things in an abstrac-
tion layer, and there may be some very complicated things going on “under the hood.”

❑ Not all database-specific functions are available through PEAR DB. For example, MySQL’s func-
tion mysql_fetch_object has no PEAR DB equivalent. Workarounds exist for some functions
(such as casting the results of a fetchRow to an object); of course, that defeats the purpose of
having an abstraction layer.

So, should you install PEAR and use PEAR DB? Perhaps you should. You need to weigh the benefits
against potential problems and determine if it’s right for you. In the meantime, if you are working on a
big PHP project, make sure you are absolutely sure what database you will be accessing. You can avoid a
lot of headaches in the future (your IT Manager will thank you for that).

Other PEAR Packages
Pear::DB may be the most popular package available, but it is not the only package available. Let’s take a
look at a few of the other packages available in PEAR, including HTML, Authentication, Payment, and
Mail.

For more information on PEAR DB and other PEAR packages, visit http://pear.php.net.

HTML
The HTML node contains quite a few packages, designed to make some HTML functions easier. A good
example of this is HTML_BBCodeParser. This neat piece of code takes UBB style tags ([b], [img], and
so on) and converts them to HTML (, , and so on). If you have ever been to a forum online
(such as www.phpbuilder.com/board), you have seen these tags in action. This package allows you
to create your own custom BBCode, and it claims to generate valid XHTML 1.0 code.

Other HTML packages include:

❑ HTML_Menu, which enables the easy creation and maintenance of an HTML menu navigation
system

❑ HTML_QuickForm, which provides methods for creating, validating, and processing HTML forms.

❑ Pager for HTML pagination (1–10, 11–20, and so on).

666

Appendix H

31 557440 AppH.qxd 2/6/04 9:18 AM Page 666

Authentication
The Authentication packages attempt to make it a little easier to add user authentication to your site.
Auth offers the capability to use several different methods of storing and retrieving login data, such as
databases supported by PEAR, SMTP mail servers, and SAMBA, to name just a few. Auth_PrefManager
offers a method of storing and retrieving user preference data, to be used any way you see fit.

Payment
How cool would it be to be able to link your site up to several different online payment and credit card
processing companies? Now you can. These packages provide a means to connect to these systems:

❑ CyberCash online payment API.

❑ CyberMut, which allows you to use the CyberMut Payment system of the Credit Mutuel
(French bank).

❑ Payment_Clieop creates a clieop3 file for sending to a Dutch bank. We can’t tell you how
many times we have needed this!

❑ Payment_DTA creates German data transaction files.

❑ SPPLUS allows you to use the SPPLUS payment system with the Caisse d’Epargne (French
bank).

❑ TCLink connects with credit card processing through the Trust Commerce gateway.

Very international, wouldn’t you say?

Mail
The PEAR::Mail package provides functions for sending mail with PHP. It supports the PHP mail()
function, SMTP, and sendmail. It also provides e-mail address validation conforming to RFC 822 stan-
dards.

Other Mail packages include mailparse, which provides functions for parsing a mail message;
Mail_Mime, which handles the creation and manipulation of mime e-mails; and Mail_Queue, which
puts large groups of e-mails in a queue to be sent later (great for very large mailing lists).

667

An Introduction to PEAR

31 557440 AppH.qxd 2/6/04 9:18 AM Page 667

31 557440 AppH.qxd 2/6/04 9:18 AM Page 668

I
AMP Installation

This appendix will guide you through installation of Apache, MySQL, and PHP for both Windows
and Linux operating systems.

Installing with Windows
By following our step-by-step guide, you will successfully have all three components installed on
your Windows system. This guide includes instructions for Windows NT, Windows 2000,
Windows XP, and Windows .NET 2003.

Install Apache
Apache will act as the server for your PHP/MySQL Web site. Installation is easy, as you will see.

This installation is for Windows NT, Windows 2000, Windows XP, and Windows .NET 2003. For
other versions of Windows, complete installation instructions can be found at www.apache.org.
Note that you must have TCP/IP running on your machine in order for your installation to be
operational.

The following are the basic steps for installation:

1. Go to www.apache.org, and click the HTTP Server link.

While the Apache Software Foundation provides many different software packages, this is
the only one we are concerned with at this time.

2. Click “Download from a Mirror” to choose an FTP site for downloading.

3. Click the Win 32 Binary-MSI Installer link to download.

If you experience problems downloading this file, you can try a different mirror site; click
the drop-down box near the top of the screen to locate one.

4. Click the MSI file to initiate the installation wizard for the Apache software.

32 557440 AppI.qxd 2/6/04 9:18 AM Page 669

After accepting the installation agreement, you will see a screen that is equivalent to a
readme.txt file—it gives basic information about the Apache software and where to go to find
more information. We highly recommend that you read this file.

5. Click Next. You will see the Server Information screen.

6. Enter the following information:

❑ Domain name: For example, domainname.com

❑ Server name: For example, server.domainname.com

❑ Net administrator’s e-mail address

❑ Who Are We Installing Apache For?

7. Select “All Users” if you want a server that will be available to anyone wishing to see your site
or “Only the Current User” for a server that will be used for testing purposes before files are
uploaded to a live server on another computer.

8. Click Next to select a setup type.

Typical installation is recommended for beginners and will suffice for most needs. Advanced
users may feel more comfortable choosing Custom setup.

9. Click Next.

The Destination Folder screen appears.

10. If you do not want your Apache files saved in the default path, click Change and select an alter-
nate path; then click Next.

The Ready to Install the Program screen appears.

11. Click Install to finish installation.

For configuration options and customization, please refer to Chapter 1 of this book.

Install PHP
This installation is for the PHP module on Windows 98, ME, and Windows 2000/XP/NT. For all other
Windows versions, please refer to the source Web site, www.php.net.

The following are the steps for installing PHP:

1. Go to the PHP Web site at www.php.net.

2. Scroll down to the “downloads” section and click the appropriate link for the version you wish
to install.

3. Scroll down to the Windows Binary section. If you are running your PHP on an Apache server,
as we do in this book, click the PHP Package link to be able to run PHP on Apache Server.

4. Click any FTP site to begin the download.

5. Unzip your file using any standard unzip program and save it to the directory of your choice.

We recommend unzipping it to c:\ and then renaming it to c:\php\. It’s best not to save your
file in a directory with a space in it, as it can cause Web server problems.

670

Appendix I

32 557440 AppI.qxd 2/6/04 9:18 AM Page 670

6. Before you can run PHP, you will need to rename php.ini-dist to php.ini.

By default, the PHP installation provides two copies of your common configuration file:
php.ini-dist and php.ini-recommended. The php.ini-dist file is meant to be used for
development purposes, while php.ini-recommended should be used when your site goes live,
as it has additional security measures in place that the php.ini-dist does not have.
Depending on your reason for using PHP, you would choose the php.ini file that best suits
your needs. For the purposes of this book, we are going to be using the php.ini-dist file sim-
ply because it is easier to work with and will present you with fewer obstacles. Once you are
more familiar with PHP in general, we encourage you to switch to the php.ini-recommended
file as your default. Therefore, you need to rename the configuration file as indicated in this step
in order for your PHP installation to be complete. Make sure to save your new php.ini file to
your c:\windows directory so Apache can find it.

7. Copy php4ts.dll into the c:\program files\Apache Group\Apache2\bin directory so that
Apache can find it.

This file can be found in the c:\php directory, not the c:\php\dlls directory.

You now need to configure your PHP to run with Apache and MySQL. Please refer to Chapter 1 for
more information on this step.

Install MySQL
MySQL is the database that holds all the data to be accessed by your Web site. This MySQL installation
guide is for Windows 95, 98, 2000, NT, XP, and .NET 2003. For all other versions of Windows, please
refer to the source Web site at www.mysql.com.

Proceed with the following steps to install MySQL:

1. Go to the source Web site, www.mysql.com, and click “downloads” on the navigation bar near
the top of the page.

2. Scroll down to the latest stable version of MySQL, and click that link.

3. Scroll down to the Windows section of the downloadable files, and click Select a Mirror.

4. Find a mirror and click to download (you may choose either HTTP or FTP to download).

5. Unzip the file to a temporary directory of your choice.

6. Click setup.exe to run the installation program. You will see the first of the Installation Wizard
screens.

7. Click Next to display the informational screen.

We highly recommend that you read this screen before you continue.

8. Click Next, which brings you to the Choose Destination Location screen.

9. If the default directory is acceptable, simply click Next; otherwise, click Browse and select a dif-
ferent destination.

10. Click Next.

671

AMP Installation

32 557440 AppI.qxd 2/6/04 9:18 AM Page 671

11. The next screen allows you to customize your installation; typical installation is sufficient for
most users.

12. Click the setup type you prefer, and click Next to begin the installation.

After installing the appropriate files, the final screen will simply indicate the installation is
complete. Click Finish to end the wizard.

You now need to configure your MySQL installation to fit your needs. See Chapter 1 for more information.

Installing with Linux
This section covers the installation of the three components of the AMP module using a Linux system.

In this instance, we will cover an installation from the source for all three AMP components. Other meth-
ods are available, such as RPM, deb, and ebuild. We’ve chosen to cover source installations instead
because this method offers the most flexibility and works on nearly all UNIX-like systems.

Install MySQL
The following are the steps to install MySQL for a Linux system:

1. Go to the MySQL Web site (www.mysql.com) and download the latest stable version of the
MySQL database server.

The link for this file is most likely located at the bottom under the heading Source Downloads.

2. Grab the tarball, named something along the lines of mysql-4.0.x.tar.gz.

3. Open a console window and change the directory (cd) to the folder where you downloaded the
tarball.

4. If there isn’t a user on the system dedicated to running the mysql daemon (typically mysql),
you’ll need to create one. To do this, in the console, enter the following commands:

> groupadd mysql
> useradd –g mysql mysql

5. Extract the tarball, and change to the directory it creates:

> tar –xzf mysql-VERSION.tar.gz
> cd mysql-VERSION
VERSION is the (sub)version of the mysql source tarball you downloaded, ‘0.15a’

6. Next, configure the source this way:

> ./configure —prefix=/usr/local/mysql

Using the --prefix switch tells the installer where to put the mysql libraries and binaries after
they’re built.

672

Appendix I

32 557440 AppI.qxd 2/6/04 9:18 AM Page 672

7. Compile the source:

> make

8. Install the libraries and binaries.

> make install

Note that you will need to be logged in as superuser (root) to perform this step and the follow-
ing steps in the MySQL installation.

9. If this is the first time MySQL has been installed on your machine (in other words, not an
upgrade), run this script to install the initial database/tables:

> scripts/mysql_install_db

10. Fix permissions on installed files, and copy over the default configuration file.

> chown –R root /usr/local/mysql
> chown –R mysql /usr/local/mysql/var
> chgrp –R mysql /usr/local/mysql
> cp support-files/my-medium.cnf /etc/my.cnf

Any changes you wish to make to customize MySQL should be made in this file.

11. Start the MySQL daemon:

> /usr/local/mysql/bin/mysqld_safe —user=mysql &

You’ll probably want to add the previous command to whatever facilities are available to auto-
matically start the daemon at boot. This varies by OS, so you’ll need to find out what works on
your system. Here is one easy way to add this that works with most systems (but may not be
the “best” way):

> echo ‘/usr/local/mysql/bin/mysqld_safe —user=mysql &’ >> /etc/rc.local

Install Apache
Follow these steps to install Apache:

1. Go to the Apache Web site (http://httpd.apache.org) and download the latest stable ver-
sion of the Apache 2 Web server.

2. Grab the tarball, named something along the lines of httpd-2.0.x.tar.gz.

3. Open a console window, and change the directory (cd) to the folder where you downloaded the
tarball.

4. Next, extract the tarball, and change to the directory it creates:

> tar –xzf httpd-2.0.47.tar.gz
> cd httpd-2.0.47

673

AMP Installation

32 557440 AppI.qxd 2/6/04 9:18 AM Page 673

5. Configure the source:

> ./configure \
—prefix=/usr/local/apache2 \
—enable-so \
—enable-mods-shared=max \
—enable-modules=most

Using the --prefix switch tells the installer where to put the Apache server after it’s built. For
a complete list of configuration options, run ./configure -help.

6. Compile the source:

> make

7. Install the server:

> make install

Note that you will need to be logged in as superuser (root) to perform this step and the follow-
ing steps in the Apache installation.

8. Start the Apache daemon:

> /usr/local/apache2/bin/apachectl start

9. Add the command to start Apache to whatever boot scripts you like, so the server starts every
time you reboot. For example:

> echo ‘/usr/local/apache2/bin/apachectl start

Install PHP
Follow these steps to install PHP:

1. Go to the PHP Web site (www.php.net) and download the latest stable version of PHP.

2. Grab the tarball, named something along the lines of php-4.3.x.tar.gz.

3. Open a console window, and change the directory (cd) to the folder where you downloaded
the tarball.

4. Next, extract the tarball, and change to the directory it creates:

> tar –xzf php-4.3.3.tar.gz
> cd httpd-4.3.3

5. Configure the source:

> ./configure \
—with-apxs2=/usr/local/apache2/bin/apxs \
—with-mysql=/usr/local/mysql

Make sure you point to the correct locations for the Apache 2 apxs binary, and the base of the
MySQL installation directory. There are numerous configuration options for PHP, and we would
almost need a chapter just to describe them all. For a complete list of configuration options, run
./configure -help.

674

Appendix I

32 557440 AppI.qxd 2/6/04 9:18 AM Page 674

6. Compile the source:

> make

7. Install PHP.

> make install

You will need to be logged in as superuser (root) to perform this step.

At this point, you should configure your php.ini file as you like and verify that the necessary directives
have been placed in Apache’s httpd.conf file. Refer to Chapter 1 for details on this.

675

AMP Installation

32 557440 AppI.qxd 2/6/04 9:18 AM Page 675

32 557440 AppI.qxd 2/6/04 9:18 AM Page 676

In
de

x

Index

SYMBOLS & NUMERICS
& (ampersand), 46, 226
$admin array, 553
\ (backslash), 556
: (colon) delimiter, 160
$ (dollar sign), 43
–– (double dashes), 296, 297
== (double equals sign), 602
“ (double quotation marks)

alternates to, 84
echo function and, 40

// (double slashes) in PHP, 35
= (equals sign), 602
<fieldset> tag (HTML), 410
/ (forward slash), 556
<legend> tag (HTML), 410
$movie_footer variable, 116
| (pipe), 556
$_POST array, 277, 589–590
? (question mark), 559
; (semicolon)
if statement and, 64
in PHP, 34

[] (square brackets), 556

A
abstraction, 662
abstraction layer, 662, 665
accepting user input, 191–192
access log entry (Apache), 574
accessing

database, 652, 661–662
executable file, Apache, 15

account information
changing or deleting

administrator and, 355
user and, 332, 340, 342–343

logging in and, 542–546
adding

administrator to database, 326–327
array, 75–79
comments in PHP, 35, 36
data to table, 122–123
item to form, 159–160
link to table, 120–122
NEXT/PREV buttons, 561–565
welcome message, 66–68

AddMovie.php file, 154–155, 160
AddPerson.php file, 155–156, 160
add.php file, 460, 471, 472–473
$admin array, 553
admin_area.php file, 350–351
administration interface, 165
administration table schema, 326
administrator

adding to database, 326–327
CBA board application, 542, 544–547
login system for, 348–356

admin_login.php file, 349–350
admin.php file

bulletin board system
BBcode administration, 555–559
board administration, 552–554
code for, 521–524
explanation of, 552
forum administration, 555
user administration, 554–555

33 557440 index.qxd 2/6/04 9:18 AM Page 677

admin.php file (continued)
Content Management System and, 378–379
explanation of, 416–418
mailing list, 425–426, 430, 431, 433
preventing unauthorized user from loading, 603

admin_transact.php file, 428–429, 433–436
advertising and spam, 454–455
AGAINST keyword, 419
ALTER command (MySQL), 94
AMP (Apache, MySQL, PHP) module

Apache role in, 12–13
installers, 29
installing

with Linux, 672–675
with Windows, 669–671

interaction of, 11–12
MySQL role in, 13–14
PHP role in, 13

ampersand (&), 46, 226
Analog, 580, 581, 582
analyzing reports, 584–586
anonymous user, 320
Apache. See also AMP module; Apache Web server

customizing installation, 15–17
help system, 28
htaccess file and, 318–321
installation configuration for, 14–15
log files in, 574–576
role of in AMP module, 12–13

Apache Web server
errors and

generating automatic e-mail notification, 220–223
overview of, 215–216
showing user error message, 216–220

PHP functions and, 611–612
Applications Programming Interface (API), 215
array

associative, 415–416
foreach command, 74–79
foreach function (PHP) and, 104–106
manipulating string as, 150
multidimensional, 271
PHP and, 416
PHP functions and, 612–615
$_POST, 277, 589–590
setting values for, 608
sorting, 73–74
syntax, 73

article
deleting from site, 404–405, 414
pending, 407–408
posting to site and commenting on, 361, 387
retracting or publishing, 414

asp_tags setting (PHP), 19
associative array, 415–416
atomicity, 242
audience for book, 1
auth_admin.inc.php file, 348
authentication of user, 505, 551–552
auth.inc.php file, 322
authorizing password, 322–325
auth_user.inc.php file, 332
auto-increment feature, 465
auto_increment parameter (MySQL), 92
avatar, 568
AWStats, 583

B
back references, 559
background color of table, 272
backing up file before modifying, 129
backslash (\), 556
bandwidth and site usage, 659–660
BBcode

administration of, 555–559
creating, 666

bbcode() function, 557–558
BBcode tool, 546, 547
BDB table (MySQL), 94
bigint(length) field type (MySQL), 90
binary log (MySQL), 577–578
blob field type (MySQL), 90
boundary information, 296
breadcrumbs, 565–567
browser

calling PHP program, 38
displaying text in, 605
opening, 590
transaction page and, 282

BSD, 11
bulletin board system

administration page, 544–545
admin.php file

BBcode administration, 555–559
board administration, 552–554
code for, 521–524

678

admin.php file (continued)

33 557440 index.qxd 2/6/04 9:18 AM Page 678

explanation of, 552
forum administration, 555
user administration, 554–555

BBCode Administration screen, 548
breadcrumbs, 565–567
compose.php file, 530–532
config.php file, 517–518
conn.php file, 506
Create Account screen, 543, 544
Edit Account screen, 549
editforum.php file, 526–527
features of, 504–505, 568
footer.php file, 519
forgotpass.php file, 520–521
functions.php file, 510–517
header.php file, 518–519, 551
history of, 503–504
home page, 542, 543
http.php file, 517
index.php file, 519–520
Login screen, 542
login.php file, 520
pagination, 561–565
post, creating, 547–548
Search function, 548, 559–561
search.php file, 532–533, 560–561
setup.php file, 506
transact-admin.php file, 533–535
transact-affirm.php file, 539–541, 555
transact-post.php file, 535–536
transact-user.php file, 536–539
User Administration screen, 545–546
useraccount.php file, 524–526
viewforum.php file, 528–529
viewtopic.php file, 527, 562

button
NEXT/PREV, 561–565
radio/submit, 145–149

C
calculating movie takings, 123–124
calendar, PHP functions for, 616–619
cannibalization of code, 300
Cart32 software, 459
cart.php file, 460, 473–477
cascade delete, 177–182
cascading style sheet (CSS), 396, 504, 567–568
case-sensitivity of variable and table names, 590
cbashop.php file, 460, 467–469

change.php file, 460, 477, 478
charedit.php file, 256–260, 273–276
char(length) field type (MySQL), 88
charlist.php file, 255–256, 270–273
char_transact.php file, 260–262, 276–282
checkbox, 144–145
checking

for mistakes, 602
syntax, 588
user input for format errors, 203–214

checkout.php file, 460, 478–483
checkout2.php file

code for, 483–488
explanation of, 489–490
overview of, 460

checkout3.php file, 460, 490–497
Chicago Bulletin Board System, 503
Christensen, Ward (inventor), 503
class functions (PHP), 619–620
closing tag (PHP), 34, 83
CMS (Content Management System)

Admin screen, 388–389
application, code for

admin.php file, 378–379, 416–418
cmstables.php file, 362–363, 382–383, 391–392
comment.php file, 379, 418
compose.php file, 375–376, 383, 384, 411–413
conn.php file, 361, 390–391
cpanel.php file, 371–373, 406–408
footer.php file, 366, 408
forgotpass.php file, 381, 420
header.php file, 365–366, 396–398
http.php file, 367, 398
index.php file, 381, 419–420
login.php file, 380, 383, 384
outputfunctions.php file, 363–365, 392–398
pending.php file, 377–378, 385
reviewarticle.php file, 376–377, 385, 386, 413–416
search.php file, 379–380, 419
transact-article.php file, 369–371, 402–406
transact-user.php file, 367–369, 398–402
useraccount.php file, 373–375, 408–411
viewarticle.php file, 381–382, 420–421

Create Account screen, 387
Modify Account screen, 389–390
overview of, 360
Pending Articles screen, 388
posting articles to site, 361
search form, 397
transaction pages, 398–402

679

CMS (Content Management System)

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 679

cmstables.php file
code for, 362–363
explanation of, 391–392
screen for, 382–383

code. See also coding practices; listings
cannibalization of, 300
consistency of, 35–36
downloading, 3, 4
errors in

spotting, 601–602
submitting, 5

syntax
array, 73
checking, 588
CREATE TABLE command (SQL), 251
else statement, 607
heredoc, 84, 113, 310
if statement (PHP), 64, 606–607
MySQL, 94
nested if statement, 607
PHP, 34–35, 83–84, 605
SELECT command (MySQL), 101–102

troubleshooting, 232–233
coding practices

maintainability and, 158
PHP

functions and, 68–72
includes and, 65–68
overview of, 35–36

SQL, 166
SQL query, 114
variables, location of, 313

colon (:) delimiter, 160
column

char_main table, 251–252
naming standards for, 246

combo box, 174–176
comic book fan Web site. See also bulletin board

system; Content Management System (CMS)
Character Database home page, 263
charedit.php file, 273–276
charlist.php file, 270–273
char_transact.php file, 276–282
code for, 253–262
designing, 241–245, 252–253
e-commerce and, 457–459
Edit Powers page, 263–264
New Character page, 264, 265
overview of, 2, 10
poweredit.php file, 265–269

commands. See also functions
die(), 550
foreach (array), 74–79
MySQL

database manipulation, 651
DELETE, 94, 177, 182
MATCH, 561
overview of, 94
SELECT, 94, 101–104
UPDATE, 94, 180–182

PHP
print(), 83
while, 79–83

require, 266
running SQL from phpMyAdmin, 248
SQL

CREATE DATABASE yourdatabase, 247–248
CREATE TABLE, 250–251
INNER JOIN, 435
SQL_CALC_FOUND_ROWS, 563

switch, 277, 402
comment.php file, 379, 418
comments

adding in PHP, 35, 36
on article, posting, 361

commit.php file
checking dates and numbers, 207–209
creating, 172–173
editing, 186
user input and, 197–199

common.php file, 663
communication and e-commerce site, 501
community list, subscribing to, 5
comparison operators (MySQL), 102
compose.php file

bulletin board system, 530–532
Content Management System

code for, 375–376
explanation of, 411–413

composite primary key, 242
condition clauses, 652–653
config.php file

bulletin board system, 517–518
constants and, 266
database, creating, 249, 250
mailing list administration, 424, 430–433
PEAR DB and, 664

configuration information functions (PHP), 636–638
confirmation, getting

code for, 299–308
explanation of, 308–315

680

cmstables.php file

33 557440 index.qxd 2/6/04 9:18 AM Page 680

confirmmail.php, 313
conn_comic.php file, 298
connecting

to data source, 390–391
to database, 652

connection variables (MySQL), 95–96
conn.inc.php file, 328, 348
conn.php file

bulletin board system, 506
Content Management System, 361, 390–391

consistency of code, 35–36
constants and PHP, 41–43, 266
content. See also Content Management System (CMS)

description of, 359–360
for mailing list, 423–424

Content Management System (CMS)
Admin screen, 388–389
application, code for

admin.php file, 378–379, 416–418
cmstables.php file, 362–363, 382–383, 391–392
comment.php file, 379, 418
compose.php file, 375–376, 383, 384, 411–413
conn.php file, 361, 390–391
cpanel.php file, 371–373, 406–408
footer.php file, 366, 408
forgotpass.php file, 381, 420
header.php file, 365–366, 396–398
http.php file, 367, 398
index.php file, 381, 419–420
login.php file, 380, 383, 384
outputfunctions.php file, 363–365, 392–398
pending.php file, 377–378, 385
reviewarticle.php file, 376–377, 385, 386, 413–416
search.php file, 379–380, 419
transact-article.php file, 369–371, 402–406
transact-user.php file, 367–369, 398–402
useraccount.php file, 373–375, 408–411
viewarticle.php file, 381–382, 420–421

Create Account screen, 387
Modify Account screen, 389–390
overview of, 360
Pending Articles screen, 388
posting articles to site, 361
search form, 397
transaction pages, 398–402

conventions used in book, 3–4
cookie tracking with PHP, 345–347
cookies

“headers already sent” error, 590–591
passing variables through, 52, 55–58

saving information in, 598
spoofing, 347

cookies_set.php file, 345
copying file before modifying, 129
cpanel.php file

code for, 371–373
explanation of, 406–408

CREATE command (MySQL)
IF NOT EXISTS, 391
overview of, 94

CREATE DATABASE yourdatabase command (SQL),
247–248, 432

CREATE TABLE command (SQL), 250–251
createmovie.php file, 96–97
create.php file, 460–463
createreviews.php file, 128–129
createtemp.php file, 460, 471–472
credit card processing, 500
CSS (cascading style sheet), 396, 504, 567–568
customer

characteristics of, 497–498
feedback from, 501–502

customer service, 499
customers table, 462
customizing

Apache installation, 15–17
PHP installation, 19–20

D
data

adding to table, 122–123
paginating, 561–565
in record, editing, 182–190
retrieving from database, 268, 652–653

data, displaying in table
background color of, 272
calculating movie takings, 123–124
case-sensitivity of name of, 590
creating

comic book review, 391–392
mailing list, 432–433
movie review, 128–129
shopping cart, 460–463

data, adding to, 122–123
for database-driven information, 326
defining headings for, 111–114
filling with data, 114–116
improving, 117–120
joining in database, 107–108

681

data, displaying in table

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 681

data, displaying in table (continued)
linking, 170
links, adding to, 120–122
movie details, displaying, 126–128
naming standards for, 246, 270
new information, displaying, 124–126
putting data together, 116–117
querying for review, 129–130
relationship and, 128–133
retrieving information from multiple, 653
reviews, displaying, 131–133

database. See also database-driven information; table
accessing, 652, 661–662
administration interface, 165
connecting to, 652
creating

bulletin board system, 550–551
movie site, 96–101
in MySQL, 247–252

designing
comic book site, 241–245
datatypes and, 246–247
relational, 238–239
standardization and, 246

editing
cascade delete, 177–182
data in record, editing, 182–190
deleting record, 177
inserting record in relational database, 169–176
inserting simple data, 166–169

joining tables in, 107–108
keys, 239–240
mailing list and, 432
normalization, 241–246
products, filling, 463–466
querying, 101–108
referencing individual tables, 106–107
referential integrity, 241
relational

benefits of, 128
deleting records from, 180
inserting record in, 169–176
MySQL as, 88

relationship, 240
retrieving data from, 268, 652–653

database manipulation commands (MySQL), 651
database-driven information

administration section, 348–356
cookie tracking with PHP, 345–347
overview of, 325–327

session tracking with PHP and MySQL
code for, 327–337
explanation of, 337–344

datatypes
database design and, 246–247
MySQL, 647–649

date field type (MySQL), 89
date function, 396
date, PHP functions for, 616–619
date validation, 212–213
date.php file, 64, 595–596
datetime field type (MySQL), 89
datetime format, 403
db_insertpics.php, 298
db_makeconfirm.php file, 300, 309–310
db.php file, 663
debugging. See also troubleshooting

coding practices and, 36
enabling E_NOTICE errors, 226
form, 140
switch statement, closing, 402
tips for, 591–592

decimal(length,dec) field type (MySQL), 89
default value in form, 149
defining value set for form, 141–144
DELETE command (MySQL), 94, 177, 182
delete page, 342, 343, 344
DELETE query, 281, 453
delete_account.php file, 336–337
delete.php file

cascade delete, 178–179
shopping cart application, 460, 477–478

delete_user.php file, 354–355
deleting

account information, 332, 340, 342–343
article from site, 414
cascade delete, 177–182
cookie, 346
foreign key and, 180
pending article from site, 404–405
record from database, 177
user account, privileges and, 355
user from mailing list, 453–454

delivery, timely, and e-commerce site, 501
DESCRIBE command (MySQL), 94
designing

database, 241–245
datatypes and, 246–247
e-commerce site, 499–500
relational database, 238–239

682

data, displaying in table (continued)

33 557440 index.qxd 2/6/04 9:18 AM Page 682

standardization and, 246
system, user input and, 191–192

die() command, 550
directory functions (PHP), 620–623
display page, 342
display_errors setting (PHP), 19
displaying

date, 396
movie details in table, 126–128
movie on own page, 600–601
movie reviews in table, 131–133
new information in table, 124–126
text in browser, 605

displaying data. See data, displaying in table
document root (Apache), changing, 16–17
dollar sign ($), 43
double dashes (––), 296, 297
double equals sign (==), 602
double quotation marks (“)

alternates to, 84
echo function and, 40

double slashes (//) in PHP, 35
downloading

code, 3, 4
forum_styles.css file, 541
images for store home page, 467

DROP command (MySQL), 94
dynamic title page, 150

E
echo function (PHP)

alternates to, 83
debugging and, 591–592
first program, creating, 36–38

e-commerce
characteristics of customers and, 497–498
checking for mistakes, 602
comic book fan site and, 458–459
communication and, 501
credit card processing, 500
customer feedback and, 501–502
customer service, 499
delivery issues, 501
design of site, 499–500
information and, 498
merchandise for, 501
navigation of site, 500
options, payment, and tax, 602
overview of, 457
pricing and, 501

privacy policy, 499
registering, login, and order tracking, 603
return policy, 499
shopping cart application

add.php file, 472–473
cart.php file, 473–477
cbashop.php file, 467–469
change.php file, 477, 478
checkout.php file, 478–483
checkout2.php file, 483–490
checkout3.php file, 490–497
create.php file, 460–463
createtemp.php file, 471–472
delete.php file, 477–478
getprod.php file, 469–471
overview of, 459–460
products.php file, 463–466

trust and, 498–499
Edit case, 403
editforum.php file, 526–527
editing database

cascade delete, 177–182
data in record, editing, 182–190
deleting record, 177
inserting record in relational database, 169–176
inserting simple data, 166–169

editors
comparison of, 655–656
troubleshooting and, 588

efficiency and coding practices
functions (PHP), 68–72
includes (PHP), 65–68
overview of, 36

else statement, 607. See also if/else combination
(PHP)

e-mailing. See also mailing list
confirmation, getting

code for, 299–308
explanation of, 308–315

“From:” parameter, adding, 287–291
information on errors

automatically to administrator, 220–223, 229–231
in book to authors, 5

multipart message, 294–297
PHP and, 285–286
sending e-mail, 286–287
sending HTML code in

overview of, 291–292
using headers, 292–294

spam and, 454–455

683

e-mailing

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 683

empty() function, 200
enabling E_NOTICE errors, 226
enum(“option1”,”option2”,...) field type

(MySQL), 89
equals sign (=), 602
ereg() function, 212, 556
errata page for book, 4
error handler

creating, 227–229
setting up, 229–231

error handling functions (PHP), 624
error log entry

Apache, 575–576
MySQL, 576–577
PHP, 576

error messages
header function, 149–150
“headers already sent”, 54, 58
“Internal Server Error”, 219–220, 221
options for, 229
“Page Not Found”, 219, 220
server codes, 217–218
showing user, 218–219
URL encoded, 200, 201
user input and, 200–202

error types (PHP), 224–225
ErrorDocument method (Apache)

generating automatic e-mail notification, 220–223
showing user error message, 216–220

error_log setting (PHP), 19
error_reporting() function, 226
error_reporting setting (PHP), 19
errors. See also error handler; error messages

Apache Web server and
ErrorDocument method, 216–220
generating automatic e-mail notification, 220–223
overview of, 215–216

in code, submitting, 5
conditions not met, 232
enabling E_NOTICE, 226
in format, checking user input for, 203–214
“headers already sent”, 54, 58, 590–591
parse, 233, 588
PHP and

error types, 224–225
generating and resolving, 225–231

spotting in code, 601–602
trapping, 550–551
variables not being output, 232–233

executable file, Apache, accessing, 15

executing SQL statement, 248
exercises

answers to, 595–603
overview of, 2

exit() function, 448
expansion and coding practices, 36
explode() function, 159, 160

F
fatal error, 225, 226
feedback

from customer, 501–502
log file as, 585

field
full-text indexed, 419, 561
hidden, creating, 472

field types (MySQL), 647–649
<fieldset> tag (HTML), 410
file

backing up before modifying, 129
http.conf and ErrorDocument method, 216
httpd.conf, 318
including, 607
log

Apache and, 574–576
MySQL and, 576–578
overview of, 573–574
PHP and, 576
reports, analyzing, 584–586
software for analyzing, 579–584

modifying
coding practices and, 36
copying before, 129

my.cnf (MySQL) configuration options, 24–27
password, creating, 318–319
PHP functions for, 620–623
php.ini

e-mail and, 286
error logging and, 576
passing variables through cookies, 52
register_globals setting and, 589–590
session.cookie_lifetime configuration, 55

protecting
htaccess and, 318–321
overview of, 317–318
session and cookie functions, 322–325

file extension
.inc, 34
.php, 34, 38

684

empty() function

33 557440 index.qxd 2/6/04 9:18 AM Page 684

file_uploads setting (PHP), 20
First Normal Form, 245
firstmail.php file, 286–287
firstprog.php file, 37, 39
footer.php file

bulletin board system, 519
Content Management System, 366, 408
movie site, 596

for statement, 608
foreach command (array), 74–79
foreach function (PHP), 104–106, 608
foreign key (MySQL)

deleting and, 180
movie site and, 170
naming, 240
standards for, 246

forgotpass.php file
bulletin board system, 520–521
Content Management System, 381, 420

form
checkbox, 144–145
creating, 136–138
debugging, 140
default response, 159
defining value set for, 141–144
dynamic title page, 150
FORM element, 138–139
hidden and password input, 151–159
INPUT element, 139–140
input testing, 149–150
item, adding, 159–160
parts of, 58–59
passing variables through, 59–63, 606
processing, 140–141
radio button, 145–149
submitting, 433
ternary operator, 150–151

FORM element (HTML), 138–139
format errors, checking user input for, 203–214
formatting

date, 617–619
text based on user preferences, 597

form1.html file, 136
form2.html file, 141–142
form3.php file, 145–146
form4.php file, 151–152, 159, 160
formprocess1.php file, 136–137
formprocess2.php file, 142–143
formprocess3.php file, 146–147

forum
administration page, 544–545
admin.php file

BBcode administration, 555–559
board administration, 552–554
code for, 521–524
explanation of, 552
forum administration, 555
user administration, 554–555

BBCode Administration screen, 548
breadcrumbs, 565–567
compose.php file, 530–532
config.php file, 517–518
conn.php file, 506
Create Account screen, 543, 544
Edit Account screen, 549
editforum.php file, 526–527
features of, 504–505, 568
footer.php file, 519
forgotpass.php file, 520–521
functions.php file, 510–517
header.php file, 518–519, 551
history of, 503–504
home page, 542, 543
http.php file, 517
index.php file, 519–520
Login screen, 542
login.php file, 520
pagination, 561–565
post, creating, 547–548
Search function, 548, 559–561
search.php file, 532–533, 560–561
setup.php file, 506
transact-admin.php file, 533–535
transact-affirm.php file, 539–541, 555
transact-post.php file, 535–536
transact-user.php file, 536–539
User Administration screen, 545–546
useraccount.php file, 524–526
viewforum.php file, 528–529
viewtopic.php file, 527, 562

forum_styles.css file, 541
forward slash (/), 556
Foxserv, 29
“From:” parameter, adding to e-mail, 287–291
full-text indexed field, 419, 561
FULLTEXT KEY keyword, 392
functions. See also commands

Apache/PHP, 611–612
array, 612–615

685

functions

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 685

functions (continued)
bbcode(), 557–558
class/object/function handling, 619–620
configuration information, 636–638
creating and calling, 607–608
creating reusable, 392–398
date/time/calendar, 616–619
directory and file, 620–623
echo (PHP), 36–38, 83, 591–592
empty(), 200
ereg(), 212, 556
error handling and logging, 624
error_reporting(), 226
exit(), 448
explode(), 159, 160
foreach (PHP), 104–106, 608
getdate(), 223
header, 149–150, 313, 314
htmlspecialchars(), 394, 396, 406, 409–410,

557
HTTP, 624
image, 624–629
mail, 629
mail()

Content Management System and, 400–401
e-mailing and, 286–287, 290–291, 315
ErrorDocument and, 223
mailing list and, 436–437, 450, 451

mathematical, 630–631
md5(), 312
miscellaneous, 631–632
mktime(), 213
MySQL date and time, 214
MySQL server and, 632–634
mysql_errno(), 550
mysql_insert_id(), 168, 278, 448, 497
n12br(), 394, 396, 557
network, 634–635
output buffer, 636
outputComments(), 395
outputStory(), 394, 413–414
pagination

bulletin board system, 505, 561–565
going to first or last page, 603

parameters for, 611
PHP, 68–72
preg_replace(), 556
print_r, 74
program execution, 638
redirect(), 517

require(), 159
search

bulletin board system, 505, 548, 559–561
e-commerce site, 500

session, 639–640
session_id(), 473
session_start(), 52, 54, 399, 402
setcookie(), 55–57
showComments(), 395
showTopic(), 557, 562
spelling, 638–639
string, 640–644
string manipulation, 212
strtoupper(), 150
trim(), 212
trimBody(), 392–394
type validating, 210–211
ucfirst(), 150
UNIX_TIMESTAMP() (SQL), 213–214
URL, 645
urlencode(), 51
userOptionList(), 554
variable, 645–646

functions.php file, 510–517

G
GD library, 624
GET method (FORM element, HTML), 139
getdate() function, 223
getprod.php file, 460, 469–471
global variable, 68
graphic. See also image

e-commerce site and, 498
for movie rating, 131–133

H
Hayes, Dennis C. (inventor), 503
header function

e-mail and, 313, 314
errors in, 149–150

header, sending HTML in e-mail using, 292–294
header.php file

bulletin board system, 518–519, 551
Content Management System, 365–366, 396–398
message based on time of day, displaying, 596
Welcome message, 66

“headers already sent” error, 54, 58, 590–591
HEAP table (MySQL), 93

686

functions (continued)

33 557440 index.qxd 2/6/04 9:18 AM Page 686

help resources
AMP installers, 29
HTML, 138, 410
MySQL, 28, 109
within programs, 28
Web sites, 28, 593–594

heredoc syntax, 84, 113, 310
hidden field, creating, 472
hierarchy level and naming, 160
hits, number of, 585
hosting options

Administration GUIs, 659
bandwidth and site usage, 659–660
criteria for, 657–658
databases supported, 658
languages supported, 658
pricing, 660

htaccess, 317–321, 659
HTML
FORM element, 138–139
forms and, 58
INPUT element, 139–140
PHP and, 34, 38–41
sending in e-mail

overview of, 291–292
using headers, 292–294

tags
<fieldset>, 410
<legend>, 410

Web site resources, 138, 410
htmlspecialchars() function

bulletin board system, 557
Content Management System, 394, 396, 406,

409–410
HTTP Analyze, 583–584
HTTP functions (PHP), 624
http.conf file and ErrorDocument method, 216
httpd.conf file, 318
http.php file

bulletin board system, 517
Content Management System, 367, 398

I
if statement. See also if/else combination

nested, 607
PHP and, 63–64
syntax, 64, 606–607
troubleshooting, 232

if/else combination (PHP), 65, 411

IGNORE keyword, 277, 282
image. See also graphic

e-commerce site and, 498
PHP functions for, 624–629
storing, 297–299

.inc file, 34
includes (PHP), 65–68
incrementing value, alternate to, 84
indexes (MySQL), 91–92
index.php file

administration section, 348
bulletin board system, 519–520
Content Management System, 381, 419–420
database, creating, 164–165
screen for, 337, 338
session tracking, 327

information on e-commerce site, 498
INNER JOIN command (SQL), 435
InnoDB table (MySQL), 93–94
INPUT element (HTML), 139–140
input field for form, 59
input testing, 149–150
INSERT INTO tablename VALUES command

(MySQL), 94
INSERT query, 277–278
inserting

HTML inside PHP, 40–41
record in relational database, 169–176
simple data in database, 166–169

installation configuration
Apache, 14–17
MySQL, 20–28
overview of, 9–10
PHP, 17–20
troubleshooting, 587

installers, AMP, 29
installing AMP

with Linux, 672–675
with Windows, 669–671

interactivity. See form
“Internal Server Error” error message, 219–220, 221
int(length) field type (MySQL), 88
int(length)unsigned field type (MySQL), 89
IRC resource, 594
ISAM table (MySQL), 93
is_array function, 210
is_bool function, 210
is_numeric function, 210, 211
is_object function, 210
is_string function, 210

687

is_string function

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 687

J
JOIN statement, 270, 271, 274
joining tables in database, 107–108

K
key

foreign (MySQL)
deleting and, 180
movie site and, 170
naming, 240
standards for, 246

overview of, 239–240
primary (MySQL)

characteristics of, 239
composite, 242
movie site and, 170
naming, 270
overview of, 92
standards for, 246

Web site resources, 560
KEY keyword, 392
keywords

AGAINST, 419
FULLTEXT KEY, 392
IGNORE, 277, 282
KEY, 392
MATCH, 419
PRIMARY KEY, 392
UNIQUE KEY, 392

“knowledge is power”, 238

L
leapyear.php file, 65
<legend> tag (HTML), 410
limiting query results, 653
line numbers and PHP, 36, 588
link

adding to table, 120–122
e-commerce site and, 500
recognizing e-mail address and turning into, 603

linking
product to information about product, 468–469
tables, 170

Linux
htaccess installation, 318–319
installing AMP with, 672–675
as open source, 11

list and checkbox, 144–145
list item value, 159
listings

AddMovie.php file, 154–155, 160
AddPerson.php file, 155–156, 160
add.php file, 460, 471, 472–473
admin_area.php file, 350–351
admin_login.php file, 349–350
admin.php file

bulletin board system, 521–524, 552–559
Content Management System and, 378–379
explanation of, 416–418
mailing list, 425–426, 430, 431, 433
preventing unauthorized user from loading, 603

admin_transact.php file, 428–429, 433–436
auth_admin.inc.php file, 348
auth.inc.php file, 322
auth_user.inc.php file, 332
cart.php file, 460, 473–477
cbashop.php file, 460, 467–469
change.php file, 460, 477, 478
charedit.php file, 256–260, 273–276
charlist.php file, 255–256, 270–273
char_transact.php file, 260–262, 276–282
checkout.php file, 460, 478–483
checkout2.php file

code for, 483–488
explanation of, 489–490
overview of, 460

checkout3.php file, 460, 490–497
cmstables.php file

code for, 362–363
explanation of, 391–392
screen for, 382–383

comment.php file, 379, 418
commit.php file

checking dates and numbers, 207–209
creating, 172–173
editing, 186
user input and, 197–199

common.php file, 663
compose.php file

bulletin board system, 530–532
Content Management System, 375–376, 411–413

config.php file
bulletin board system, 517–518
constants and, 266
database, creating, 249, 250
mailing list administration, 424, 430–433
PEAR DB and, 664

688

JOIN statement

33 557440 index.qxd 2/6/04 9:18 AM Page 688

conn_comic.php file, 298
conn.inc.php file, 328, 348
conn.php file

bulletin board system, 506
Content Management System, 361, 390–391

cookies_set.php file, 345
cpanel.php file

code for, 371–373
explanation of, 406–408

createmovie.php file, 96–97
create.php file, 460–463
createreviews.php file, 128–129
createtemp.php file, 460, 471–472
date.php file, 64, 595–596
db_makeconfirm.php file, 300, 309–310
db.php file, 663
delete_account.php file, 336–337
delete.php file

cascade delete, 178–179
shopping cart application, 460, 477–478

delete_user.php file, 354–355
editforum.php file, 526–527
firstmail.php file, 286–287
firstprog.php file, 37, 39
footer.php file

bulletin board system, 519
Content Management System, 366, 408
movie site, 596

forgotpass.php file
bulletin board system, 520–521
Content Management System, 381, 420

form3.php file, 145–146
form4.php file, 151–152, 159, 160
formprocess1.php file, 136–137
formprocess2.php file, 142–143
formprocess3.php file, 146–147
functions.php file, 510–517
getprod.php file, 460, 469–471
header.php file

bulletin board system, 518–519, 551
Content Management System, 365–366, 396–398
message based on time of day, displaying, 596
Welcome message, 66

http.php file
bulletin board system, 517
Content Management System, 367, 398

index.php file
administration section, 348
bulletin board system, 519–520

Content Management System, 381, 419–420
database, creating, 164–165
screen for, 337, 338
session tracking, 327

leapyear.php file, 65
logged_admin.php file, 349
logged_user.php file, 327, 328
login.php file

bulletin board system, 520
Content Management System, 380, 383, 384
creating, 61–62
session and cookie functions, 323–324

make_table.php file, 249–250
moviedata.php file, 97–98
movie_details.php file

creating, 123–124
modifying, 129–130
movie details, displaying, 126–128
new information, displaying, 124–126

movie.php file
checking dates and numbers, 203–206
creating, 170–172
editing, 182–185
explanation of, 188–190
user input and, 193–197

movie1.php file
cookies and, 56–57
creating, 49
forms and, 59–60, 62
functions and, 68–69
sessions and, 52–53
while command and, 80–81, 83

moviesite.php file
array, adding to, 75–79
creating, 42
functions and, 69–72
register_globals and, 48–49
saving information on for next visit, 598
URL variables and, 47
variables and, 43
while command and, 80–83

outputfunctions.php file, 363–365, 392–398
pc_confirm.php file, 304–305
pc_sendconf.php file, 302–303, 311–312
pc_sendmail.php file

creating, 287, 288, 290–291
header and, 292–293
multipart message and, 295–296

pending.php file, 377–378, 385

689

listings

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 689

listings (continued)
postcard.php file

confirmation, getting, 301–302, 310–311
creating, 287–288
header and, 292–293
loading and verifying, 306–308
multipart message and, 294–295

poweredit.php file, 253–255, 265–269
products.php file, 460, 463–466
producttest.php file, 465
quickmsg.php file, 426–428, 434, 436
register.php file, 328
remove.php file, 443, 453–454
reviewarticle.php file

code for, 376–377, 385, 386
explanation of, 413–416

search.php file
bulletin board system, 532–533, 560–561
Content Management System, 379–380, 419

select.php file, 102–103, 104–105
select2.php file, 105–108
setcookie.php file, 345
setcookie_pw.php file, 345, 346
setcookie_un.php file, 345, 346
setup.php file

code for, 506–510
explanation of, 549–551
screen for, 541–542

sql.php file, 425
startform.php file, 152–154, 160
table1.php file, 111–112, 114–115
table2.php file, 116, 117–119, 120–121
template.php file, 322
testcookie.php file, 346, 347
thanks.php file

code for, 441–443
explanation of, 451–453

transact-admin.php file, 533–535
transact-affirm.php file, 539–541, 555
transact-article.php file

code for, 369–371
explanation of, 402–406

transact-post.php file, 535–536
transact-user.php file

bulletin board system, 536–539
code for, 367–369
explanation of, 398–402

unlogged_admin.php file, 349

unlogged_user.php file, 327
update_account.php file, 334–336
update_user.php file, 351–354
useraccount.php file

bulletin board system, 524–526
code for, 373–375
explanation of, 408–411

user_login.php file, 332–333
user_personal.php file, 332, 333–334
user.php file

code for, 437–439
explanation of, 446–447
screen for, 444

viewarticle.php file, 381–382, 420–421
viewforum.php file, 528–529
viewpostcard.php file, 305–306
viewtopic.php file, 527, 562

local-infile option (my.cnf file), 26
log file

Apache and, 574–576
MySQL and, 576–578
overview of, 573–574
PHP and, 576
reports, analyzing, 584–586
software for analyzing, 579–584

log-bin option (my.cnf file), 27
log_errors setting (PHP), 19
LogFormat directive (Apache), 574–575
logged_admin.php file, 349
logged_user.php file, 327, 328
logging functions (PHP), 624
logical operators (MySQL), 102
login

administrators and, 348–356
cookie tracking, 345–347
process of, 337, 338, 339
session tracking

code for, 327–337
explanation of, 337–344

using PHP for, 322–325
login.php file

bulletin board system, 520
Content Management System, 380, 383, 384
creating, 61–62
session and cookie functions, 323–324

longblob field type (MySQL), 90
longtext field type (MySQL), 90

690

listings (continued)

33 557440 index.qxd 2/6/04 9:18 AM Page 690

M
mail() function

Content Management System and, 400–401
e-mailing and, 286–287, 290–291, 315
ErrorDocument and, 223
mailing list and, 436–437, 450, 451

mail functions (PHP), 629
mail server, setting up for PHP, 285–286
mailing list. See also e-mailing

administration page
code for, 424–430
explanation of, 430–437

content for, 423–424
ethics and, 454–455
overview of, 423
Quick Message page, 444
Removal page, 445
Signup form

code for, 437–445
explanation of, 446–454

subscribing to, 5
Thank You screen, 444, 445

maintainability, 158
make_table.php file, 249–250
management of content. See Content Management

System (CMS)
manipulating string as array, 150
many-to-many relationship, 240, 245
map of subdirectories, 566
MATCH command (MySQL), 561
MATCH keyword, 419
mathematical functions (PHP), 45, 630–631
max_execution_time setting (PHP), 19
max_input_time setting (PHP), 19
md5() function, 312
mediumblob field type (MySQL), 90
mediumint(length) field type (MySQL), 89
mediumtext field type (MySQL), 90
memory_limit setting (PHP), 19
merchandise for e-commerce site, 501
message

custom, building, 436
multipart, e-mailing, 294–297

methods
ErrorDocument (Apache) notification, 216–223
GET (FORM element, HTML), 139
POST (FORM element, HTML), 139, 140
verification, 200

mktime() function, 213
modifying file

coding practices and, 36
copying before, 129

Monty Python sketch, 454–455
movie review Web site. See also table

database, creating, 96–101
inserting movie into database, 170–176
overview of, 2, 9
printing lead actor and director for each movie in

database, 598–600
showing each movie on own page, 600–601
sorting by movie type and year produced, 600
user input and, 192–202
welcome message, adding, 66–68

moviedata.php file, 97–98
movie_details.php file

creating, 123–124
modifying, 129–130
movie details, displaying, 126–128
new information, displaying, 124–126

$movie_footer variable, 116
movie1.php file

cookies and, 56–57
creating, 49
forms and, 59–60, 62
functions and, 68–69
sessions and, 52–53
while command and, 80–81, 83

movie.php file
checking dates and numbers, 203–206
creating, 170–172
editing, 182–185
explanation of, 188–190
user input and, 193–197

moviesite.php file
array, adding to, 75–79
creating, 42
functions and, 69–72
register_globals and, 48–49
saving information on for next visit, 598
URL variables and, 47
variables and, 43
while command and, 81–83

multidimensional array, 271
my.cnf file (MySQL) configuration options, 24–27
MyISAM table (MySQL), 93

691

myISAM table (MySQL)

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 691

MySQL. See also AMP module
configuring installation

my.cnf file, 24–27
overview of, 23–24
setting up users and privileges, 27–28

connection variables, 95–96
database

creating, 96–101
joining tables in, 107–108
querying, 101–108
referencing individual tables, 106–107

database manipulation commands, 651
datatypes, 647–649
documentation, 109
foreach function (PHP), 104–106
help system, 28
log files in, 576–578
overview of, 87–88
PHP and, 94–95
PHP functions and, 632–634
role of in AMP module, 13–14
structure

field types, 88–91
indexes, 91–92
null/not null options, 91
overview of, 88

syntax and commands, 94
table types, 93–94
testing installation of, 20–23

mysql.allow_persistent setting (PHP), 20
mysqlbinlog utility, 578
mysql_connect(“hostname”,”user”,”pass”)

function, 94, 95
mysql_errno() function, 550
mysql_error() function, 95
mysql_fetch_array(“results variable from

query”) function, 95
mysql_fetch_rows(“results variable from

query”) function, 95
mysql_insert_id() function, 168, 278, 448, 497
mysql.max_links setting (PHP), 20
mysql.max_persistent setting (PHP), 20
mysql_query(“query”) function, 95
mysql_select_db(“database name”) function, 94

N
naming

foreign key (MySQL), 240
hierarchy level and, 160

primary key (MySQL), 270
SQL query, 130
standards for, 246, 270
variables, 590

navigation of e-commerce site, 500
nested if statement, 607
Netcraft Web site, 12
network functions (PHP), 634–635
NEXT button, adding, 561–565
“No characters” message, 272
nonrelational database system, 88
normalization, 241–246
notice, 225
n12br() function, 394, 396, 557
NULL value, 277
null/not null options (MySQL), 91
numbering lines (PHP), 36, 588
NuSphere Technology Platform, 29

O
object functions (PHP), 619–620
object oriented programming and PHP, 14
ON statement, 270, 271
one-to-many relationship, 240
one-to-one relationship, 240
online selling

characteristics of customers and, 497–498
checking for mistakes, 602
comic book fan site and, 458–459
communication and, 501
credit card processing, 500
customer feedback and, 501–502
customer service, 499
delivery issues, 501
design of site, 499–500
information and, 498
merchandise for, 501
navigation of site, 500
options, payment, and tax, 602
overview of, 457
pricing and, 501
privacy policy, 499
registering, login, and order tracking, 603
return policy, 499
shopping cart application

add.php file, 472–473
cart.php file, 473–477
cbashop.php file, 467–469
change.php file, 477, 478

692

mySQL

33 557440 index.qxd 2/6/04 9:18 AM Page 692

checkout.php file, 478–483
checkout2.php file, 483–490
checkout3.php file, 490–497
create.php file, 460–463
createtemp.php file, 471–472
delete.php file, 477–478
getprod.php file, 469–471
overview of, 459–460
products.php file, 463–466

trust and, 498–499
Open Source Initiatives (OSI), 10–11
open source program, 3, 10–11
opening new browser, 590
opening tag (PHP), 34, 83
operators
if statement (PHP), 63
MySQL, 102
PHP, 84
ternary, 150–151

opt-in and opt-out, 455
Oracle, 661–662
orderdet table, 463
ordermain table, 463
OSI (Open Source Initiatives), 10–11
output buffer functions (PHP), 636
output_buffering setting (PHP), 19
outputComments() function, 395
outputfunctions.php file, 363–365, 392–398
outputStory() function, 394, 413–414

P
“Page Not Found” error message, 219, 220
pages. See Web pages
pagination function

bulletin board system, 505, 561–565
going to first or last page, 603

parameters
auto_increment (MySQL), 92
“From:”, adding to e-mail, 287–291
for function, 611
unique (MySQL), 92

parse error, 233, 588
passing variables between pages

overview of, 606
register_globals and, 45–46, 48, 50
through cookies, 52, 55–58
through forms, 58–63
through sessions, 52–54
through URL, 46–51

overview of, 46–50
special characters and, 51

password, authorizing, 322–325
password file, creating, 318–319
pc_confirm.php file, 304–305
PCRE regular expression, 556–559
pc_sendconf.php file, 302–303, 311–312
pc_sendmail.php file

creating, 287, 288, 290–291
header and, 292–293
multipart message and, 295–296

PEAR (PHP Extension and Add-on Repository)
Authentication packages, 667
DB (Database package), 663–666
HTML node, 666
Mail package, 667
package development for, 662–663
Payment packages, 667

pending.php file, 377–378, 385
PHP. See also AMP module; passing variables between

pages; PHP5
alternate syntax for, 83–84
Apache installation and, 15
arrays
foreach command, 74–79
sorting, 73–74
syntax, 73

coding practices, 35–36
constants and, 41–43, 266
efficiency in coding

functions and, 68–72
includes and, 65–68

error types, 224–225
errors, generating and resolving, 225–231
first program, creating, 36–38
functions

Apache server and, 611–612
array, 612–615
class/object/function handling, 619–620
configuration information, 636–638
date/time/calendar, 616–619
directory and file, 620–623
error handling and logging, 624
HTTP, 624
image, 624–629
mail, 629
mathematical, 630–631
miscellaneous, 631–632
MySQL server and, 632–634
network, 634–635

693

PHP

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 693

PHP (continued)
output buffer, 636
program execution, 638
session, 639–640
spelling, 638–639
string, 640–644
URL, 645
variable, 645–646

HTML and, 34, 38–41
if statement, 63–64
if/else combination, 65
installation configuration for, 17–20
log files in, 576
mail server, setting up for, 285–286
mathematical functions, 45
MySQL and, 94–95
role of in AMP module, 13
syntax rules, 34–35, 605
variables and, 43–44
while command, 79–83

.php extension, 34, 38
PHP Extension and Add-on Repository (PEAR)

Authentication packages, 667
DB (Database package), 663–666
HTML node, 666
Mail package, 667
package development for, 662–663
Payment packages, 667

PHP5, 3, 10, 14
PHPBuilder.com Web site, 593
PHPEdit, 588
php.ini file

e-mail and, 286
error logging and, 576
passing variables through cookies, 52
register_globals setting and, 589–590
session.cookie_lifetime configuration, 55

phpMyAdmin
description of, 109
running SQL command from, 248
testing SQL query in, 167

PHPTriad, 29
pipe (|), 556
planning site, 237–238. See also designing
poll, 568
POSIX-style regular expression, 556
$_POST array, 277, 589–590
POST method (FORM element, HTML), 139, 140
post, returning, 562–563

postcard.php file
confirmation, getting, 301–302, 310–311
creating, 287–288
header and, 292–293
loading and verifying, 306–308
multipart message and, 294–295

poweredit.php file, 253–255, 265–269
precision setting (PHP), 19
preg_replace() function, 556
PREV button, adding, 561–565
preventing unauthorized user from loading page, 603
pricing, competitive, and e-commerce site, 501
PRIMARY KEY keyword, 392
primary key (MySQL)

characteristics of, 239
composite, 242
movie site and, 170
naming, 270
overview of, 92
standards for, 246

print() command (PHP), 83
print_r function, 74
privacy policy, 499
privileges, setting up

administration, 348, 355, 356
MySQL, 27–28

procedural programming and PHP, 14
processing

credit card, 500
form, 140–141

products for e-commerce site, 501
products table, 462
products.php file, 460, 463–466
producttest.php file, 465
program execution functions (PHP), 638
protecting files

htaccess and, 318–321
overview of, 317–318
session and cookie functions, 322–325

P2P mailing list, 5
Publish case, 404

Q
query. See also querying; SQL query
DELETE, 281, 453
INSERT, 277–278
UPDATE, 280

query log (MySQL), 577

694

PHP (continued)

33 557440 index.qxd 2/6/04 9:18 AM Page 694

query string, 46
querying

database, 101–102
sorting and limiting results of, 653
table, 129–130

question mark (?), 559
quickmsg.php file, 426–428, 434, 436
quoting, 568

R
radio button and multi-line list box, 145–149
record

cascade delete, 177–182
deleting from database, 177
editing data in, 182–190
inserting in relational database, 169–176
removing from database, 453–454

redirect() function, 517
referencing individual tables in database, 106–107
referential integrity, 241, 280, 281
referring site, 586
register_globals setting (PHP)

passing variables between pages and, 45–46, 48, 50
setting to OFF, 20, 276–277
troubleshooting and, 589–590

register.php file, 328
registration process, 338, 339–341
regular expressions

for bulletin board system, 505, 555
date validation and, 212
overview of, 203, 555
PCRE, writing, 556–559
recognizing e-mail address and turning into link, 603
types of, 555–556
Web site resources, 559

relational database system
benefits of, 128
deleting records from, 180
designing, 238–239
inserting record in, 169–176
keys, 239–240
MySQL as, 88
normalization, 241–246
referential integrity, 241
relationship, 240

relationship, 128–133, 240
remove.php file, 443, 453–454
removing user from mailing list, 453–454
require command, 266

require() function, 159
resources. See help resources; Web sites
Retract case, 404
retrieving data from database, 268, 652–653
return policy, 499
return to site, encouraging users to, 359–360
returning

post, 562–563
unneeded field, 126

reusable function, creating, 392–398
reverse duplication, 271
reviewarticle.php file

code for, 376–377, 385, 386
explanation of, 413–416

S
Save Changes feature, 403
search engine, 593
search function

bulletin board system, 505, 548, 559–561
e-commerce site, 500

search.php file
bulletin board system, 532–533, 560–561
Content Management System, 379–380, 419

Second Normal Form, 245
security issues

confirming subscription and, 449
cookies, 55
credit card processing, 500
privacy policy, 499
protecting files

htaccess and, 318–321
overview of, 317–318
session and cookie functions, 322–325

register_globals and, 45–46
session ID and, 52
W3 Security FAQ Web site, 55, 551

SELECT command (MySQL)
overview of, 94
syntax, 101–102
WHERE clause, 102–104

SELECTED flag, 190
select.php file, 102–103, 104–105
select2.php file, 105–108
selling online

characteristics of customers and, 497–498
checking for mistakes, 602
comic book fan site and, 458–459
communication and, 501

695

selling online

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 695

selling online (continued)
credit card processing, 500
customer feedback and, 501–502
customer service, 499
delivery issues, 501
design of site, 499–500
information and, 498
merchandise for, 501
navigation of site, 500
options, payment, and tax, 602
overview of, 457
pricing and, 501
privacy policy, 499
registering, login, and order tracking, 603
return policy, 499
shopping cart application

add.php file, 472–473
cart.php file, 473–477
cbashop.php file, 467–469
change.php file, 477, 478
checkout.php file, 478–483
checkout2.php file, 483–490
checkout3.php file, 490–497
create.php file, 460–463
createtemp.php file, 471–472
delete.php file, 477–478
getprod.php file, 469–471
overview of, 459–460
products.php file, 463–466

trust and, 498–499
semicolon (;)
if statement and, 64
in PHP, 34

sending e-mail, 286–287
server, mail, setting up for PHP, 285–286. See also

Apache Web server
session functions (PHP), 639–640
session tracking with PHP and MySQL

code for, 327–337
explanation of, 337–344

session_destroy() command, 399
session_id() function, 473
sessions

cookies compared to, 55
“headers already sent” error, 590–591
login information and, 396
passing variables through, 52–54, 606

session.save_path setting (PHP), 20
session_start() function, 52, 54, 399, 402

session_unset() command, 399
setcookie() function, 55–57
setcookie.php file, 345
setcookie_pw.php file, 345, 346
setcookie_un.php file, 345, 346
setup.php file

code for, 506–510
explanation of, 549–551
screen for, 541–542

Seuss, Randy (inventor), 503
shopping cart application

add.php file, 472–473
cart.php file, 473–477
cbashop.php file, 467–469
change.php file, 477, 478
checkout.php file, 478–483
checkout2.php file, 483–490
checkout3.php file, 490–497
create.php file, 460–463
createtemp.php file, 471–472
delete.php file, 477–478
getprod.php file, 469–471
overview of, 459–460
products.php file, 463–466

short_open_tag setting (PHP), 19
showComments() function, 395
showTopic() function, 557, 562
Signup form for mailing list

code for, 437–445
explanation of, 446–454

skeleton script
creating, 151–158
rationale for, 158–159

smallint(length) field type (MySQL), 89
smilie, 568
software

log files and, 579–584
open source program, 10–11
phpMyAdmin, 109
shopping cart, 459
text editors, 655–656
versions of, 3

sorting
arrays, 73–74
query results, 653

sorting.php, 74
source code, downloading, 3, 4
spam, 454–455
spelling functions (PHP), 638–639

696

selling online (continued)

33 557440 index.qxd 2/6/04 9:18 AM Page 696

SQL. See also SQL query
coding practices, 166
commands

CREATE DATABASE yourdatabase, 247–248
CREATE TABLE, 250–251
INNER JOIN, 435
SQL_CALC_FOUND_ROWS, 563

database interaction and, 163
timestamp generation using, 213–214

SQL query
coding practices for, 114
naming, 130
testing in phpMyAdmin, 167

SQL_CALC_FOUND_ROWS command (SQL), 563
sql.php file, 425
square brackets ([]), 556
standardization of database design, 246
startform.php file, 152–154, 160
statements. See commands; functions
statistics

Apache and, 574–576
MySQL and, 576–578
overview of, 573–574
PHP and, 576
reports, analyzing, 584–586
software for analyzing, 579–584

storing image, 297–299
string functions (PHP), 640–644
string, manipulating as array, 150
string manipulation functions, 212
strtoupper() function, 150
style sheet, 396, 504, 567–568
subdirectories, map of, 566
submit button, 145–149
submitting form, 433
switch command, 277, 402
switch condition, 159
syntax

array, 73
checking, 588
CREATE TABLE command (SQL), 251
else statement, 607
heredoc, 84, 113, 310
if statement (PHP), 64, 606–607
MySQL, 94
nested if statement, 607
PHP, 34–35, 83–84, 605
SELECT command (MySQL), 101–102

T
table

background color of, 272
BDB (MySQL), 94
calculating movie takings, 123–124
case-sensitivity of name of, 590
creating

comic book review, 391–392
mailing list, 432–433
movie review, 128–129
shopping cart, 460–463

customers, 462
data, adding to, 122–123
for database-driven information, 326
defining headings for, 111–114
filling with data, 114–116
improving, 117–120
InnoDB (MySQL), 93–94
joining in database, 107–108
linking, 170
links, adding to, 120–122
movie details, displaying, 126–128
MyISAM (MySQL), 93
naming standards for, 246, 270
new information, displaying, 124–126
orderdet, 463
ordermain, 463
products, 462
putting data together, 116–117
querying for review, 129–130
referencing individual in database, 106–107
relationship and, 128–133
retrieving information from multiple, 653
reviews, displaying, 131–133

table1.php file, 111–112, 114–115
table2.php file, 116, 117–119, 120–121
tags
.=<<<EOD, 116
=<<<EOD and EOD;, 114, 128
HTML

<fieldset>, 410
<legend>, 410

opening and closing (PHP), 34
technical support, 4, 5
template.php file, 322
ternary operator, 150–151
testcookie.php file, 346, 347

697

testcookie.php file

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 697

testing
Apache installation, 15
environment for, 592
MySQL installation, 20–23
PHP installation, 18
products.php file, 465–466
SQL query in phpMyAdmin, 167

text, displaying in browser, 605
text editors

comparison of, 655–656
troubleshooting and, 588

text field, editing, 189
text field type (MySQL), 89
thanks.php file

code for, 441–443
explanation of, 451–453

Third Normal Form, 245
third-party host

Administration GUIs, 659
bandwidth and site usage, 659–660
criteria for, 657–658
databases and languages supported, 658
pricing, 660
server control and access, 658–659

time field type (MySQL), 89
time, PHP functions for, 616–619
timestamp, changing date into, 213–214
tinyblob field type (MySQL), 90
tinyint(length) field type (MySQL), 89
tinytext field type (MySQL), 90
title for page, setting dynamically, 150
tracking number for shipment, 501
tracking number of times visitor loads page, 598
traffic, increasing, 586
transact-admin.php file, 533–535
transact-affirm.php file, 539–541, 555
transact-article.php file

code for, 369–371
explanation of, 402–406

transaction page
browser and, 282
Content Management System, 398–402
overview of, 253

transact-post.php file, 535–536
transact-user.php file

bulletin board system, 536–539
code for, 367–369
explanation of, 398–402

trapping errors, 215, 229, 550–551
trend, analyzing, 585

trim() function, 212
trimBody() function, 392–394
troubleshooting. See also debugging

code, 232–233
“headers already sent” error, 590–591
installation, 587
parse errors, 588
variables, 589–590

trust and e-commerce, 498–499
type validating functions, 210–211

U
ucfirst() function, 150
UltraEdit, 588
UNIQUE KEY keyword, 392
unique parameter (MySQL), 92
UNIX_TIMESTAMP() function (SQL), 213–214
unlogged_admin.php file, 349
unlogged_user.php file, 327
UPDATE command (MySQL), 94, 180–182
update page, 342, 343, 344
UPDATE query, 280
update_account.php file, 334–336
update_user.php file, 351–354
updating data, 182–190
upload_max_filesize setting (PHP), 20
URL

passing variables through, 46–50, 606
special characters in, 51

URL functions (PHP), 645
urlencode() function, 51
user input

checking for format errors, 203–214
design of system and, 191–192
limiting on form, 141–144
validation of, 192–202

user profile, 568
useraccount.php file

bulletin board system, 524–526
code for, 373–375
explanation of, 408–411

user_login.php file, 332–333
username

authorizing, 322–325
choosing and checking at registration, 340, 342
visitor, passing between pages, 52–54

userOptionList() function, 554
user_personal.php file, 332, 333–334

698

testing

33 557440 index.qxd 2/6/04 9:18 AM Page 698

user.php file
code for, 437–439
explanation of, 446–447
screen for, 444

users. See also user input; username
allowing to post articles to site, 361, 387
anonymous, 320
authentication of, 505, 551–552
encouraging to return to site, 359–360
preferences of, 585
removing from mailing list, 453–454
setting up in MySQL, 27–28
showing error messages to, 218–219

user_transact. php file
code for, 439–441
explanation of, 447–451

V
validating user input, 203–214
value

for array, setting, 608
default, in form, 149
defining for form, 141–144
editing, 189
incrementing, alternate to, 84
list item, 159
NULL, 277
setting to variable, 605

varchar datatype, 251
varchar(length) field type (MySQL), 88
variable functions (PHP), 645–646
variables

case-sensitivity of names of, 590
coding practices for, 313
connection (MySQL), 95–96
global, 68
passing between pages

overview of, 606
register_globals and, 45–46
through cookies, 55–58
through forms, 58–63
through sessions, 52–54
through URL, 46–51

PHP and, 43–44
setting value to, 605
troubleshooting, 232–233, 589–590

variables_order setting (PHP), 20
verification method, 200
viewarticle.php file, 381–382, 420–421

viewforum.php file, 528–529
viewpostcard.php file, 305–306
viewtopic.php file, 527, 562
visitor to site

hits, number of, 585
tracking number of times page loaded by, 598
username, passing between pages, 52–54
using form to get information from, 59–63

W
warning, 225
Web browser

calling PHP program, 38
displaying text in, 605
opening, 590
transaction page and, 282

Web pages
displaying movie on, 600–601
passing variables between

overview of, 606
register_globals and, 45–46, 48, 50
through cookies, 52, 55–58
through forms, 58–63
through sessions, 52–54
through URL, 46–51

passing visitor username between, 52–54
preventing unauthorized user from loading, 603
title for, setting dynamically, 150
tracking number of times visitor loads, 598

Web server. See Apache Web server
Web sites. See also comic book fan Web site; movie

review Web site
AMP installers, 29
Analog, 580
AWStats, 583
BDB table (MySQL), 94
Cart32 software, 459
cascading style sheet, 567–568
editors, 588, 655
GD library, 624
help resources, 593–594
HTML information, 410
HTTP Analyze, 583
InnoDB table (MySQL), 94
IRC resource, 594
MD5 Message-Digest Algorithm, 312
MySQL, 14
Netcraft, 12
Open Source Initiative, 11

699

Web sites

In
de

x

33 557440 index.qxd 2/6/04 9:18 AM Page 699

Web sites (continued)
open source projects, 11
PEAR, 662
PHP, 13
PHPBuilder.com, 593
phpMyAdmin, 109
P2P mailing list, 5
regular expressions, 559
third-party hosts, 660
Webalizer, 579
WebTrends, 580
Wrox, 4, 593
W3 Security FAQ, 55, 551

Webalizer, 579
WebTrends, 580–581, 582
welcome message, adding, 66–68
WHERE clause (SELECT command, MySQL), 102–104

while command (PHP), 79–83
Windows

htaccess installation, 319
installing AMP with, 669–671

workflow application and achieving confirmation, 300
Wrox Web site, 4, 593
W3 Security FAQ Web site, 55, 551
W3C Web site, 138

Y
year(length) field type (MySQL), 90

Z
Zend Technologies, Ltd., 13
Zero Form, 245

700

Web sites (continued)

33 557440 index.qxd 2/6/04 9:18 AM Page 700

	Contents
	Introduction
	Part I: Getting Started
	Chapter 1: Introduction and Installation Configuration
	Installation Configuration
	Brief Intro to PHP, Apache, MySQL, and Open Source
	What Is Open Source?

	How the Pieces of the AMP Module Work Together
	Apache
	PHP
	MySQL

	PHP5: The Future of PHP
	A Brief Overview of PHP5
	How Changing to PHP5 Affects This Book

	Installation Configuration of Apache
	Customizing Your Installation

	Installation Configuration of PHP
	Testing Your Installation
	Customizing Your Installation

	Installation Configuration of MySQL
	Testing Your Installation
	Configuring Your Installation
	Try It Out: Setting Up Privileges

	Where to Go for Help and Other Valuable Resources
	Help within the Programs
	Source Web Sites
	AMP Installers

	Summary

	Part II: Movie Review Web Site
	Chapter 2: Creating PHP Pages
	Overview of PHP Structure and Syntax
	How PHP Fits with HTML
	The Rules of PHP Syntax
	The Importance of Coding Practices

	Creating Your First Program
	Try It Out: Using echo

	Using HTML to Spice Up Your Pages
	Integrating HTML with PHP
	Try It Out: Using PHP within HTML

	Considerations with HTML Inside PHP

	Using Constants and Variables to Spice Up Your Pages
	Overview of Constants
	Try It Out: Using Constants

	Overview of Variables
	Try It Out: Using Variables

	Passing Variables Between Pages
	Try It Out: Using URL Variables
	Try It Out: Passing the Visitor's Username

	What Is a Cookie?
	Try It Out: Setting a Cookie

	Passing Through Forms
	Try It Out: Using Forms to Get Information

	Using if/else Arguments
	Using if Statements
	Try It Out: Using if

	Using if and else Together
	Try It Out: Using if and else

	Using Includes for Efficient Code
	Try It Out: Adding a Welcome Message

	Using Functions for Efficient Code
	Try It Out: Working with Functions

	A Word About Arrays
	Array Syntax
	Sorting Arrays
	Try It Out: Sorting Arrays

	foreach Constructs
	Try It Out: Adding Arrays

	While You're Here . . .
	Try It Out: Using the while Function

	Alternate Syntax for PHP
	Alternates to the <?php and ?> php Tags
	Alternates to the echo Command
	Alternates to Logical Operators
	Alternates to Double Quotes: Using heredoc
	Alternates to Incrementing Values

	Summary
	Exercises

	Chapter 3: Using PHP with MySQL
	Overview of MySQL Structure and Syntax
	MySQL Structure
	MySQL Syntax and Commands

	How PHP Fits with MySQL
	Connecting to the MySQL Server
	Looking at a Ready-Made Database
	Try It Out: Creating a Database

	Querying the Database
	WHERE, oh WHERE
	Try It Out: Using the SELECT Query

	Working with PHP and Arrays of Data: foreach
	Try It Out: Using foreach

	A Tale of Two Tables
	Try It Out: Referencing Individual Tables
	Try It Out: Joining Two Tables

	Helpful Tips and Suggestions
	Documentation
	Using PHPMyAdmin

	Summary
	Exercises

	Chapter 4: Using Tables to Display Data
	Creating a Table
	Try It Out: Defining the Table Headings

	Populating the Table
	Try It Out: Filling the Table with Data
	Try It Out: Putting it All Together
	Try It Out: Improving Our Table

	Who's the Master?
	Try It Out: Adding Links to the Table
	Try It Out: Adding Data to the Table
	Try It Out: Calculating Movie Takings
	Try It Out: Displaying the New Information
	Try It Out: Displaying Movie Details

	A Lasting Relationship
	Try It Out: Creating and Filling a Movie Review Table
	Try It Out: Querying for the Reviews
	Try It Out: Displaying the Reviews

	Summary

	Chapter 5: Form Elements: Letting the User Work with Data
	Your First Form
	Try It Out: Say My Name
	FORM Element
	INPUT Element
	Processing the Form
	Driving the User Input
	Try It Out: Limiting the input choice

	INPUT Checkbox Type
	One Form, Multiple Processing
	Try It Out: Radio Button, Multi-Line List Boxes

	Radio INPUT Element
	Multiple Submit Buttons
	Basic Input Testing
	Dynamic Page Title
	Manipulating a String as an Array to Change the Case of the First Character
	Ternary Operator

	Using Them All
	Try It Out: Hidden and password input
	The Skeleton Script
	Default Response
	Adding Items

	Summary

	Chapter 6: Letting the User Edit the Database
	Preparing the Battlefield
	Try It Out: Setting Up the Environment

	Inserting a Simple Record from phpMyAdmin
	Try It Out: Inserting Simple Data

	Inserting a Record in a Relational Database
	Try It Out: Inserting a Movie with Known Movie Type and People

	Deleting a Record
	Try It Out: Deleting a Single Record

	Cascade Delete
	Try It Out: Cascade Delete

	Editing Data in a Record
	Try It Out: Editing a Movie

	Summary

	Chapter 7: Validating User Input
	Users Are Users Are Users . . .
	What Now?
	Forgot Something?
	Try It Out: Setting Up the Environment

	Checking for Format Errors
	Try It Out: Checking Dates and Numbers

	Summary

	Chapter 8: Handling and Avoiding Errors
	How the Apache Web Server Deals with Errors
	Apache's ErrorDocument Directive
	Try It Out: Using Apache's ErrorDocument Method

	Apache's ErrorDocument: Advanced Custom Error Page
	Error Handling and Creating Error Handling Pages with PHP
	Other Methods of Error Handling

	Summary
	Exercises

	Part III: Comic Book Fan Site
	Chapter 9: Building Databases
	Getting Started
	Nam et Ipsa Scientia Potestas Est!
	What Is a Relational Database?
	Keys
	Relationships
	Referential Integrity
	Normalization

	Designing Your Database
	Creating the First Table
	What's So Normal About These Forms?
	Standardization
	Finalizing the Database Design

	Creating a Database in MySQL
	Try It Out: Create the Table

	Creating the Comic Character Application
	Try It Out: The Comic Book Character Site

	Summary

	Chapter 10: E-mailing with PHP
	Setting Up PHP to Use E-mail
	Sending an E-mail
	Try It Out: Sending a Simple E-mail
	Try It Out: Collecting Data and Sending an E-mail

	Dressing Up Your E-mails with HTML
	Try It Out: Sending HTML Code in an E-mail
	Try It Out: Sending HTML by Using Headers

	Multipart Messages
	Try It Out: Multipart Messages

	Storing Images
	Try It Out: Storing Images

	Getting Confirmation
	Try It Out: Getting Confirmation

	Summary

	Chapter 11: User Logins, Profiles, and Personalization
	The Easiest Way to Protect Your Files
	Try It Out: Creating htaccess and htpasswd Files

	Friendlier Logins Using PHP's Session and Cookie Functions
	Try It Out: Using PHP for Logins

	Using Database-Driven Information
	Try It Out: Session Tracking with PHP and MySQL
	Try It Out: Cookie Tracking with PHP
	Try It Out: Administration Section

	Summary

	Chapter 12: Building a Content Management System
	Getting Your Users to Return
	Content
	Management
	System
	Putting It All Together

	Getting Started
	Try It Out: The Content Management System Application

	Summary

	Chapter 13: Mailing Lists
	First Things First
	What Do You Want to Send Today?
	Coding the Application
	Try It Out: Mailing List Administration

	Sign Me Up!
	Try It Out: Mailing List Signup

	Mailing List Ethics
	A Word About Spam (and SPAM)
	Opt-In vs. Opt-Out

	Summary

	Chapter 14: Online Selling: A Quick Way to E-Commerce
	Adding E-Commerce to the Comic Book Fan Site
	Something to Sell
	A Shopping Cart
	Try It Out: Defining the Database and Tables
	Try It Out: Adding Your Products
	Try It Out: Creating the Store Home Page
	Try It Out: Viewing the Products
	Try It Out: Creating a Table for the Shopping Cart
	Try It Out: Adding Products to the Cart
	Try It Out: Viewing the Shopping Cart
	Try It Out: Changing Items in the Cart
	Try It Out: Checking Out: Step One
	Try It Out: Checking Out: Step Two
	Try It Out: Checking Out: Step Three

	E-Commerce, Any Way You Slice It
	Information Is Everything
	Importance of Trust
	Easy Navigation
	Competitive Pricing
	Appropriate Merchandise
	Timely Delivery
	Communication
	Customer Feedback

	Summary
	Exercises

	Chapter 15: Creating a Bulletin Board System
	History of the Computer Bulletin Board
	Your Bulletin Board
	Try It Out: The Bulletin Board Code
	Try It Out: The Bulletin Board Application
	setup.php
	A Last Look at User Authentication
	admin.php
	Searching
	Pagination
	Breadcrumbs
	Going Out in Style

	Afterthoughts
	Summary
	Exercises

	Part IV: Advanced Users
	Chapter 16: Using Log Files to Improve Your Site
	What Is a Log?
	Where Are These Logs?
	Apache
	PHP
	MySQL

	Now That I Know What and Where They Are, What Do I Do with Them?
	Webalizer
	Analog
	WebTrends
	AWStats
	HTTP Analyze

	What Do the Reports Mean?
	User Preferences and Information
	Number of Hits and Page Views
	Trends over Time
	Referring Sites

	Summary

	Chapter 17: Troubleshooting
	Installation Troubleshooting
	Parse Errors
	Cleanup on Line 26 . . . Oops, I Mean 94
	Elementary, My Dear Watson!

	Empty Variables
	The Ultimate Bait-and-Switch
	Consistent and Valid Variable Names
	Open a New Browser

	"Headers Already Sent" Error
	General Debugging Tips
	Using echo
	Divide and Conquer
	Test, Test, Test!

	Where to Go for Help
	wrox.com
	PHPBuilder.com
	Source Web Sites
	Search and Rescue
	IRC Channels

	Summary

	Appendix A: Answers to Exercises
	Chapter 2
	Chapter 3
	Chapter 8
	Chapter 14
	Chapter 15

	Appendix B: PHP Quick Reference
	PHP Syntax
	Displaying to Browser
	Setting a Value to a Variable
	Passing Variables
	Through a URL
	Through Sessions
	Through a Form

	if Statements
	else Statements
	Nested if Statements
	Including a File
	Using Functions
	Arrays
	for
	foreach

	Appendix C: PHP Functions
	Apache/PHP Functions
	Array Functions
	Date/Time/Calendar Functions
	Class/Object/Function Handling Functions
	Directory and File Functions
	Error Handling and Logging Functions
	HTTP Functions
	Image Functions
	Mail Functions
	Mathematical Functions
	Miscellaneous Functions
	MySQL Functions
	Network Functions
	Output Buffer Functions
	PHP Configuration Information
	Program Execution Functions
	Spelling Functions
	Session Functions
	String Functions
	URL Functions
	Variable Functions

	Appendix D: MySQL Data Types
	Appendix E: MySQL Quick Reference
	Database Manipulation Commands
	Connecting to the Database
	Accessing the Database
	Retrieving Data from the Database
	Condition Clauses
	Selecting from Multiple Tables
	Sorting the Results
	Limiting the Results

	Appendix F: Comparison of Text Editors
	Appendix G: Choosing a Third-Party Host
	Hosting Options
	Supported Languages
	Supported Databases
	Server Control and Access
	Administration GUIs
	Bandwidth and Site Usage
	Pricing

	Making the Choice

	Appendix H: An Introduction to PEAR
	What Is PEAR?
	Requirements
	The Packages

	PEAR DB
	Other PEAR Packages
	HTML
	Authentication
	Payment
	Mail

	Appendix I: AMP Installation
	Installing with Windows
	Install Apache
	Install PHP
	Install MySQL

	Installing with Linux
	Install MySQL
	Install Apache
	Install PHP

	Index

